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The problem of mathematical interpretation of experimental research results concerning the
influence of incorporated TiO2 nanoparticles on the optical properties of the nonlinear optical
material potassium dihydrogen phosphate has been formulated and solved, by using the compu-
tational physics methods. The mathematical model is reduced to a Fredholm integral equation
of the first kind. A spline-iteration modification of the Landweber regularization method is sug-
gested for solving the ill-posed problem. The results of computational experiments are compared
with those of physical ones.
K e yw o r d s: incorporated TiO2 nanoparticles, nonlinear optical material potassium dihydro-
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1. Introduction

This work is aimed at elucidating the concept of
mathematical interpretation of experimental research
results. The essence of the problem consists in that
modern scientific data of experimental researches
have to be studied more carefully, in our opinion, from
the mathematical analysis viewpoint. This approach
makes it possible to enrich the body of experimen-
tal information and to obtain results, whose physical
meaning is deeper and more comprehensive. In this
sense, a situation where the stage of physical inter-
pretation is preceded by the stage of mathematical in-
terpretation seems to be the best. When interpreting
the results of physical measurements, there often arise
problems that are called ill-posed (incorrectly formu-
lated) in mathematics. Such problems are dealt, when
the parameters of some external influences have to be
determined by analyzing the regularities in physical
phenomena invoked by those influences.

As a typical example, we may point to the ex-
perimental solution of the majority of spectrographic
problems, when the measurements are aimed at find-
ing a true energy distribution in the spectrum of the
examined source, not distorted by a measurement de-
vice. The incorrectness of the problem in this physical
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situation follows from the origin of a mathematical
model, which establishes relationships between true
quantities and those observed with the help of real
devices. Such a model is formulated in the form of a
Fredholm integral equation.

It should be noted that the theory of integral equa-
tions and the practice of their application have been
one of the central research objects for a lot of branches
of mathematics within the last century. On the one
hand, the integral equations turned out at the cross-
road of many domains of abstract mathematics such
as functional analysis, theory of functions, mathe-
matical physics, algebra, computational mathemat-
ics, probability theory. On the other hand, their de-
velopment was stimulated by needs of the model ap-
proach in numerous problems of physics, astrophysics,
biophysics, mechanics, engineering, and other disci-
plines. Within the last 50 years, the main attention
was paid to the development of regular methods for
the solution of ill-posed problems. The latter include,
first of all, the solution of Fredholm integral equa-
tions of the first kind. These equations, or their sys-
tems, arise in a considerable number of application
tasks. A lot of problems can be reduced to them, e.g.,
the spectral composition of light radiation, processing
of experimental data associated with the diagnostics
of spherical or axially symmetric plasma formations,
determination of a true distribution for the config-
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urations of ternary stars, automatic regulation, re-
search of the wave reflection from a plane interface,
the problems of acoustics, kinematics, seismics, and
electrodynamics, mathematical processing of images,
and so on.

A specific feature of ill-posed problems consists in
that small “input” errors give rise to the appearance of
substantial “output” errors. However, modern math-
ematics takes advantage of the so-called “regulariza-
tion” methods that allow the sensitivity of the result
to small “input” errors to be substantially reduced
(smoothed out). The application of such methods in
order to interpret the results of physical measure-
ments often makes it possible to obtain rather exact
results even if an “imperfect” equipment was used. A
detailed review of available results and a large bib-
liography can be found, for example, in books [1]
and [2].

Here are some more remarks. Note first of all that,
in the modern mathematical literature, integral equa-
tions are considered as a subset of operator equati-
ons. As operator equations, we may classed, for exam-
ple, systems of algebraic equations. In this work, the
construction of a mathematical model in the form of a
Fredholm equation of the first kind is regarded as an
operator equation of the first kind. Moreover, while
solving the problems of giving a mathematical inter-
pretation to the results of experimental researches,
at least two approaches emerge. One of them is as-
sociated only with the elimination of the influence of
imperfections in the experimental equipment on the
measurement results. In other words, this approach
includes the solution of the problems dealing with
the reduction to the ideal equipment. The other ap-
proach in the mathematical interpretation is charac-
terized by a necessity of obtaining the parameters of
information that is supplied to the experimental sys-
tem on the basis of the registered information. In this
case, the inverse problem has to be solved. The prob-
lem examined in this work is an example of the latter
approach.

2. Formulation of the Physical Problem

The main body of this work is devoted to the anal-
ysis of a test example illustrating the application
of computational physics methods to the solution
of the problem dealing with the mathematical in-
terpretation of the results obtained in the course of

experimental researches of the influence of incorpo-
rated TiO2 nanoparticles on the optical properties
of a nonlinear optical material, single crystalline ma-
trices of potassium dihydrogen phosphate KH2PO4

(KDP). Owing to a unique combination of their phys-
ical properties, these materials find the wide applica-
tion in modern nonlinear optics, optoelectronics, and
photonics.

In the course of experiments, the angular distri-
bution of the laser radiation intensity transmitted
through a specimen (the scattering indicatrix) was
measured. In other words, the distribution of the light
intensity was registered. The indicatrix details con-
tain the information on the crystal structure, the in-
fluence of nanoparticle clusters in the crystal on the
laser radiation parameters, and some other proper-
ties [3].

The measurement channel of a laser installation
included a G-5 goniometer and a CCD linear array
(1024 pixels 25 × 200 𝜇m2, the 12-bit digital reso-
lution) with an attached wide-aperture focusing lens
(the diameter 𝑑 = 0.96 cm). The design features of
the measurement channel result in that the intensity
distributions observed at small angles differ substan-
tially from their predicted true values. The wide aper-
ture of the focusing lens distorts the data, in particu-
lar, at small measurement angles (𝜃 6 2∘). Since the
researched specimens are weakly scattering, just this
interval is the most attractive for researchers.

In order to explain the meaning of the mathemat-
ical interpretation of experimental researches at the
basic level, let us first consider the experimental re-
sults obtained for the intensity distribution of laser
radiation that freely propagates in air (experiment
without a test specimen). Let us suppose that the
discrete experimental data for the scattering indi-
catrix can be approximated by a continuous func-
tion (Fig. 1). One of the ultimate goals of discussed
experimental researches is the determination of the
influence of the incorporation of titanium dioxide
nanoparticles on the parameters of a laser beam
passed through a KDP crystal. It seems that the laser
beam parameters could be determined directly using
an installation with a fiber-optic (the fiber diameter
𝑑 = 410 𝜇m) spectrophotometer, which allows rather
an exact profile of the laser beam (Fig. 2) within
the interval of about (−1∘,+1∘) to be obtained. Ho-
wever, the difficulty consists in that those measure-
ments consume much more resources in comparison
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with the former installation, so that every new set of
data would demand an expensive equipment and a
long laborious work.

While analyzing the results of measurements car-
ried out with the help of a lens-equipped detector,
there emerges an issue concerning the relation be-
tween the true (Gaussian) angular distribution of the
intensity in the laser beam before the lens (Fig. 2)
and the measured scattering indicatrix (Fig. 1). It is
evident that it is impossible to establish a quantita-
tive relationship between those distributions making
no use of mathematical analysis methods. In other
words, the following problem arises: How can the pa-
rameters of the curve in Fig. 2 be obtained from the
experimental results depicted in Fig. 1?

3. Mathematical Model for Measurement
Channel of Laser Installation

The problem of mathematical interpretation of ex-
perimental research results is proposed to be solved
using the method of computational physics [4]. This
method includes several stages:

1) the development of a mathematical model for
the measurement channel of the laser installation;

2) the verification of the mathematical model ade-
quacy;

3) the determination of the main properties of the
equations that compose the mathematical model;

4) the choice and/or the modification of the meth-
ods of solution of the inverse problem;

5) computational experiments;
6) the comparison between the results of computa-

tional and physical experiments;
7) the physical interpretation of the experimental

research results.
The first two stages of the method were performed

in work [3].
It will be recalled that, in the most general form,

the mathematical modeling can be reduced to the
construction of an operator 𝐴 (of either mapping or
transformation), which is interpreted as a formaliza-
tion of the measurement process, when the element
𝑣 (the curve in Fig. 2) is transformed into the ele-
ment 𝑢 (the curve in Fig. 1), i.e. 𝐴𝑣 = 𝑢. It should
be emphasized that a physical implementation of the
operator 𝐴 is the measurement channel of the laser
installation, namely, a G-5 goniometer, a CCD linear
array, and a wide-aperture focusing lens. The formal-

Fig. 1. Scattering indicatrix obtained with the use of a detec-
tor with a lens. 𝑢(𝑥) is the dimensionless power of laser radia-
tion

Fig. 2. Scattering indicatrix (profile of a laser beam) obtained
on a high-precision installation with the use of a fiber-optic
detector. 𝑣(𝑝) is the dimensionless intensity of laser radiation
(𝑣(0) = 1)

ization in this specific case is based on the assumption
that the infinitesimal value of the registered radiation
power can be approximated by the expression

Δ𝑢 = 𝑣(𝑃 )𝐺(𝑂;𝑃 )Δ𝑆,

where 𝑣(𝑃 ) is the true radiation intensity scattered
by the specimen, 𝐺(𝑂;𝑃 ) is a function of the radia-
tion transmission at the beam incidence point on the
lens (it is determined by the ratio between the radi-
ation power registered by the CCD linear array and
the power of radiation incident on the lens), and Δ𝑆
is an element of the lens aperture area. Then, it is
natural to evaluate the radiation power measured by
the detector according to the expression

𝑢 (𝑂) =

∫︁∫︁
𝑆

𝑣(𝑃 )𝐺(𝑂;𝑃 )𝑑𝑆, (1)

where 𝑂 is the point at the lens center.
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Fig. 3. Isointensity curves on the lens

Denoting the distance from the specimen to the
lens as 𝐿 and the rotation angle of the goniometer
arm from the initial beam direction, when the beam
center Θ coincides with the lens center 𝑂, as 𝜃0, we
may accept the coordinate of the lens center to equal
𝑥 = 𝐿 sin 𝜃0 ≈ 𝐿𝜃0, and, with an error not exceeding
0.1% (𝐿 = 20 cm, |𝑥| 6 0.7 cm), write the relation

𝑟2 = 𝜌2 + 𝑥2 − 2 𝜌 𝑥 cos𝛼,

where 𝑟 is the polar radius of an arbitrary point of
the lens aperture reckoned in the coordinate system
with the origin at the lens center 𝑂 (𝑟 = |𝑂𝑃 |), 𝜌
is the polar radius of this point with respect to the
center Θ of the laser beam (𝜌 = |Θ𝑃 |), and 𝛼 is the
corresponding polar angle. In this case, expression (1)
acquires the form

𝑢 (𝑥) =

∫︁∫︁
𝑆

𝑣(𝑠, 𝑡)�̃�(𝑥; 𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑥 ∈ [−𝑎, 𝑎], (𝑎 6 0.7 cm),

(2)

where the coordinate origin coincides with the beam
center Θ, 𝑥 is the coordinate of lens center, and
𝑠 = 𝜌 cos𝛼 and 𝑡 = 𝜌 sin𝛼 are the coordinates of
an arbitrary point of the lens aperture.

Owing to the isotropy of studied specimens, the
intensity distribution is axially symmetric. Therefore,
the isointensity curves are circles with the radius 𝜌 =
= 𝐿 sin 𝜃 ≈ 𝐿𝜃, so that relation (2) is expedient to be
expressed in the polar coordinate system,

𝑢(𝑥) =

𝜌2(𝑥)∫︁
𝜌1(𝑥)

𝜌𝑣(𝜌)

𝛼2(𝑥,𝜌)∫︁
𝛼1(𝑥,𝜌)

𝐺(𝑥; 𝜌, 𝛼)𝑑𝜌𝑑𝛼,

𝑥 ∈ [−𝑎, 𝑎],

(3)

where 𝛼1(𝑥, 𝜌), 𝜌1(𝑥) and 𝛼2(𝑥, 𝜌), 𝜌2(𝑥) are the
corresponding limiting values of 𝛼(𝑥, 𝜌), 𝜌(𝑥)

(Fig. 3). In addition, the radiation transmission
function �̃�(𝑥; 𝑠, 𝑡) at the point 𝑃 of laser beam
incidence on the lens is supposed to be a character-
istic of the measurement process; it is equal to the
ratio between the registered radiation power and the
radiation power incident on the lens and depends on
the distance to the lens center 𝑟:

�̃�(𝑥; 𝑠, 𝑡) = �̂�(𝑟) = �̂�((𝜌2 + 𝑥2 − 2𝜌𝑥 cos𝛼)1/2) =

= 𝐺(𝑥; 𝜌, 𝛼). (4)

The function �̂�(𝑟) can be determined directly, be-
cause the beam diameter (𝛿 ≈ 0.9 mm) is much
smaller than the lens size. In the analyzed example,
the function �̂�(𝑟) was determined with the use of ex-
perimental data (Fig. 1) for the profile of a laser beam
that freely propagates in air. They can be approxi-
mated by a continuous function, the form of which is
close to the real transmission function, since 𝛿 ≪ 𝑑. It
should be noted that, by definition, the shape of the
function �̂�(𝑟) curve is completely similar to the scat-
tering indicatrix (Fig. 1).

For the approximation of experimental values,
the following set of functions was used: Gaussian,
parabola, and “hat” [5]. Therefore, the sought func-
tion �̂�(𝑟) can approximately be written as follows:

�̂�(𝑟) = 𝜒1(𝑅
2
1 − 𝑟2)

(︂
𝐴 exp((𝑟/𝑟𝐴)

2)− (𝑟/𝑟𝐵)
2−

−𝐶 exp

(︂
− (𝑟/𝑟𝐶)

2

1− (𝑟/𝑟𝐻)2

)︂
𝜒0(𝑟

2
𝐻 − 𝑟2)

)︂
, (5)

where 𝑅1 = 0.55089 cm, 𝐴 = 2.223, 𝐶 = 1.277, 𝑟𝐴 =
= 0.5808 cm, 𝑟𝐵 = 0.2357 cm, 𝑟𝐶 = 0.3574 cm, 𝑟𝐻 =
= 0.4711 cm, and 𝜒(𝑠) is the Heaviside function:

𝜒1(𝑠) =
{︁
1, 𝑠 > 0,
0, 𝑠 < 0, 𝜒0(𝑠) =

{︁
1, 𝑠 > 0,
0, 𝑠 6 0.

The corresponding relative root-mean-square approx-
imation error amounts to 3.6%. Since the laser beam
diameter does not equal zero, we used the value
𝑅1 = 0.5509 cm (𝑅1 > 𝑅) in calculations. The func-
tion 𝐺(𝑥, 𝜌, 𝛼) is symmetric (see Eq. (4)); therefore,
the internal integral in Eq. (3) can be calculated as
follows:

𝐾𝜌(𝑥, 𝜌) =

𝛼2(𝑥,𝜌)∫︁
0

𝐺(𝑥, 𝜌, 𝛼)𝑑𝛼 =

=
1

2

𝛼2(𝑥,𝜌)∫︁
𝛼1(𝑥,𝜌)

𝐺(𝑥, 𝜌, 𝛼)𝑑𝛼.
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For the same reason, it is clear that 𝛼1(𝑥, 𝜌) =
= −𝛼2(𝑥, 𝜌). Using the relation for the triangle sides,
the upper integration limit, 𝛼2(𝑥, 𝜌), can be found,

𝛼2(𝑥, 𝜌) =

{︃
arccos

(︁
𝜌2+𝑥2−𝑅2

1

2 𝜌 𝑥

)︁
, 𝜌+ 𝑥 > 𝑅1,

𝜋, 𝜌+ 𝑥 6 𝑅1.

Now, we can calculate the internal integral in Eq. (4):

𝐾(𝑥, 𝜌) =

𝛼2(𝑥,𝜌)∫︁
0

𝐺(𝑥, 𝜌, 𝛼)𝑑𝛼 =
1

2

𝛼2(𝑥,𝜌)∫︁
𝛼1(𝑥,𝜌)

𝐺(𝑥, 𝜌, 𝛼)𝑑𝛼.

Taking this expression into account (Fig. 4), the in-
tegral relation (3) can be rewritten in the form

𝑢 (𝑥) = 2

𝜌2(𝑥)∫︁
𝜌1(𝑥)

𝜌 𝑣(𝜌)𝐾𝜌(𝑥, 𝜌) 𝑑𝜌, 𝑥 ∈ [−𝑎, 𝑎].

While determining the limits of integration 𝜌1(𝑥) and
𝜌2(𝑥), two possible variants of the lens arrangement
with respect to the laser beam center have to be con-
sidered. In one of them, the beam center is located
in a circle with the radius 𝑅1:𝑥 6 𝑅1 (Fig. 3). In
the other, the beam center is beyond the circle,
i.e. 𝑥 > 𝑅1.

In work [3], it was shown that the mathematical
model for the measurement channel of laser instal-
lation is ultimately reduced to a Fredholm integral
equation of the first kind,

𝑢 (𝑥) =

𝑏∫︁
0

𝐾(𝑥, 𝜌) 𝑣(𝜌) 𝑑𝜌, 𝑥 ∈ [−𝑎, 𝑎], (6)

where 𝐾(𝑥, 𝜌) = 2𝜌𝐾𝜌(𝑥, 𝜌), and 𝑏 = 2𝑅1. The free
term 𝑢 (𝑥) in Eq. (6) is supposed to be a given func-
tion in the real Hilbert space 𝐿2[−𝑎, 𝑎], and the
sought function 𝑣(𝜌) is an element of the real Hilbert
space 𝐿2[0, 𝑏].

4. Verification of Mathematical
Model Adequacy

To verify the reliability of the mathematical model
for the measurement channel of the laser installation
for optical diagnostics, we used the Fredholm first-
kind integral equation (6) with the kernel 𝐾(𝑥, 𝜌) =
= 2𝜌𝐾𝜌(𝑥, 𝜌) and the data describing a true intensity

Fig. 4. Instrument function 𝐾𝜌(𝑥, 𝜌)

distribution in the scattered laser beam, 𝑣(𝜌). To ob-
tain the intensity distribution function 𝑣(𝜌), an op-
tical fiber with small aperture (the diameter 𝑑 =
= 410 𝜇m) was used as a measurement channel. The
theoretical values of the function �̄�(𝑥) were obtained
by directly calculating integral (6). They were com-
pared with the experimentally registered and approx-
imated scattering indicatrix 𝑢(𝑥).

A series of experiments were carried out, in which,
in particular,

a) the scattering of the laser beam propagating in
air (without a specimen) and

b) the scattering of the laser beam after its passage
through a wafer of the KDP crystal with TiO2 impuri-
ties were studied. In all series of measurements, laser
beams had a Gaussian distribution of intensity,

𝑣(𝜌) = 𝑎𝑘 exp
(︁
− (𝜌/𝜌𝑘)

2
)︁
, 𝑘 = 1, 2,

with 𝜌1 = 0.0447214 cm and 𝜌2 = 0.0421182 cm.
In Fig. 5, the solid curve demonstrates the plot

of the function �̄� (𝑥) obtained with the use of for-
mula (6) with the kernel 𝐾(𝑥, 𝜌) = 2𝜌𝐾𝜌(𝑥, 𝜌) cor-
responding to this experiment and the function 𝑣(𝜌)
at 𝑘 = 2. The symbols in the figure correspond to
experimental values of radiation power transmitted
through the lens. The approximation error for the re-
sults obtained did not exceed 5%.

In Fig. 6, the theoretical dependences of the laser
radiation intensity �̄� (𝑥) and the corresponding ap-
proximated analogs of the scattering indicatrix 𝑢(𝑥)
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Fig. 5. Theoretical curve (formula (6)) for the distribution of
radiation intensity at studying a KDP crystal with TiO2. Disks
correspond to the experimental data obtained with a detector
and a lens

Fig. 6. Theoretical curves for the laser radiation intensity
distributions and the scattering indicatrices (dashed curves):
variants a (I ) and b (II )

are exhibited. The upper curves correspond to the
radiation intensity without a specimen, whereas the
lower ones to the radiation intensity after the laser
beam transmission through a wafer of the KDP crys-
tal with TiO2 impurities.

On the basis of the presented data, a conclusion can
be drawn concerning the reliability of the mathemat-
ical model (6) for the description of the measurement
channel of the laser installation created on the basis
of a G-5 goniometer and a detector (a CCD linear
array and a focusing lens) for the optical diagnostics
of weakly scattering specimens.

5. Incorrectness of the Problem

The mathematical formulation of the problem con-
cerning the mathematical interpretation of the exper-
imental research results obtained for the influence of

incorporated TiO2 nanoparticles on the optical prop-
erties of the nonlinear optical material KDP is made
as follows. The radiation power measured by the de-
tector, 𝑢 (𝑥), is connected with the true radiation in-
tensity scattered by the specimen, 𝑣(𝜌), by means of
the operator equation

𝑢 = 𝐴𝑣, 𝑢 ∈ 𝐿2[−𝑎, 𝑎], 𝑣 ∈ 𝐿2[0, 𝑏], (7)

where 𝐴 is the Hilbert–Schmidt operator [6], provided
that the kernel 𝐾(𝑥, 𝜌) of Eq. (6) belongs to the space
𝐿2([−𝑎, 𝑎]× [0, 𝑏]), i.e.

𝑏∫︁
0

𝑎∫︁
−𝑎

(𝐾(𝑥, 𝜌))
2
𝑑𝑥 𝑑𝜌 < ∞. (8)

The research of the properties of Eq. (6) is reduced to
the study of properties of the operator 𝐴.

Theorem 1. The Hilbert–Schmidt operator 𝐴 with
the square-integrable kernel 𝐾(𝑥, 𝜌) is a compact lin-
ear operator in a Hilbert space with the norm satisfy-
ing the inequality

||𝐴|| 6

⎛⎝ 𝑏∫︁
0

𝑎∫︁
−𝑎

(𝐾(𝑥, 𝜌))
2
𝑑𝑥 𝑑𝜌

⎞⎠1/2

(9)

(see work [6]).
Actually, instead of the exact data 𝐾(𝑥, 𝜌) and

𝑢 (𝑥), we know only their approximations �̃�(𝑥, 𝜌) and
𝑢𝛿 (𝑥), for which

𝑏∫︁
0

𝑎∫︁
−𝑎

(︁
�̃�(𝑥, 𝜌)

)︁2

𝑑𝑥 𝑑𝜌 < ∞, ‖𝑢− 𝑢𝛿‖ 6 𝛿. (10)

Therefore, while carrying out computational experi-
ments, the initial mathematical formulation (7) of the
problem concerning the mathematical interpretation
of experimental research results can undoubtedly be
written in the form of an approximate operator equa-
tion with error level 𝛿, ℎ:

𝐴ℎ𝑣 = 𝑢𝛿, 𝑢𝛿 ∈ 𝐿2[−𝑎, 𝑎], 𝑣 ∈ 𝐿2[0, 𝑏], (11)

where ‖𝑢− 𝑢𝛿‖ 6 𝛿 and ‖𝐴−𝐴ℎ‖ 6 ℎ. In this case,
the norm of the operator 𝐴ℎ satisfies the inequality

||𝐴ℎ|| 6

⎛⎝ 𝑏∫︁
0

𝑎∫︁
−𝑎

(︁
�̃�(𝑥, 𝜌)

)︁2

𝑑𝑥 𝑑𝜌

⎞⎠1/2

. (12)
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Hence, we may assert that Eq. (11) is an operator
equation of the first kind, where 𝐴ℎ ∈ Λ(𝑉,𝑈) is
the linear compact operator from the Hilbert space
𝑉 = 𝐿2[0, 𝑏] to the Hilbert space 𝑈 = 𝐿2[−𝑎, 𝑎], 𝑢𝛿 ∈
∈ 𝑈 is a given element, 𝑣 ∈ 𝑉 is a sought element,
and Λ(𝑉,𝑈) is the space of all finite linear operators
determined on 𝑉 .

The compactness of the operator 𝐴ℎ is of prin-
cipal importance from the viewpoint of choosing a
method and constructing an algorithm for the solu-
tion of the first-kind operator equation (11), since the
compact operator 𝐴ℎ in an infinite-dimensional space
𝑉 has no finite inverse operator 𝐴−1

ℎ in the space 𝑈
[6]. However, this means that a formal inversion of
Eq. (11) or an attempt to find a solution of problem
(11) in the form 𝑣 = 𝐴−1

ℎ 𝑢𝛿 would not result in sat-
isfactory results under real experimental conditions,
because infinitesimally small variations in registered
results associated with the experimental procedure
would give rise to an arbitrarily large deviation in
the reconstructed function 𝑣(𝜌). Therefore, the solu-
tion of problem (11) is unstable, and the problem
itself is an Hadamard ill-posed one [7–10].

The problem

𝑢 = 𝐴𝑣, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, 𝐴 ∈ Λ(𝑉, 𝑈),

is called Hadamard well-posed if three conditions are
satisfied:

1) the range of values of the operator 𝐴, Range(𝐴),
coincides with 𝑈 , i.e. Range(𝐴) = 𝑈 (solvability con-
dition),

for ∀ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑉 ;

2) from the equality 𝐴𝑣1 = 𝐴𝑣2 for some 𝑣1, 𝑣2 ∈ 𝑉 ,
it follows that 𝑣1 = 𝑣2 (uniqueness condition),

for ∀ 𝑣1, 𝑣2 ∈ 𝑉 : 𝐴𝑣1 = 𝐴𝑣2 ⇒ 𝑣1 = 𝑣2;

3) the inverse operator 𝐴−1 is continuous on 𝑈 (sta-
bility condition),

lim
𝛿→0
ℎ→0

sup
𝑢𝛿 :||𝑢−𝑢𝛿||𝑈6𝛿

𝐴ℎ :||𝐴−𝐴ℎ||𝑉 →𝑈6ℎ

inf
𝑣∈𝐴−1𝑢

⃦⃦
𝑣 −𝐴−1

ℎ 𝑢𝛿

⃦⃦
𝑉
= 0.

In the case where at least one of those conditions is
violated, the problem is called ill-posed or, simply,
incorrect. In the practice of experimental researches,
this is the third condition that is violated most of-
ten. At the mathematical modeling, it can be formu-
lated as follows: Insignificant variations in the input

data (𝐴, 𝑢) can give rise to arbitrarily large changes
in the output data (𝑣).

In order to overcome the incorrectness of the
problem, let us introduce a regularizing operator
𝑅𝛼(𝛿, ℎ,𝐴ℎ) [5], for which

lim
𝛿→0
ℎ→0

sup
𝑢𝛿 :||𝑢−𝑢𝛿||𝑈6𝛿

𝐴ℎ :||𝐴−𝐴ℎ||𝑉 →𝑈6ℎ

inf
𝑣∈𝐴−1𝑢

‖𝑣−𝑅𝛼(𝛿, ℎ,𝐴ℎ)𝑢𝛿‖𝑉 =0,

where 𝐴−1𝑢 is the complete preimage of an element
𝑢, and 𝛼 is the regularization parameter.

Now, after the mathematical model has been for-
mulated and a conclusion about the reliability of the
mathematical model (6) for the measurement chan-
nel of a laser installation for optical diagnostics of
weakly scattering specimens created on the basis of a
goniometer G-5 and the detector consisting of a CCD
linear array and a focusing lens has been made, we
proceed to the stage of the inverse problem solution,
namely, the determination of the function 𝑣(𝜌) on the
basis of the known 𝑢(𝑥) and 𝐾(𝑥, 𝜌). In the operator
representation, this problem looks like Eq. (7) and is
ill-posed.

In order to obtain an approximate solution of
Eq. (11) in the framework of the specific problem un-
der consideration, the iterative Landweber method
was chosen (see Eq. (II.8)):

𝑣𝑘 = (𝐸 − 𝜇𝐴*
ℎ𝐴ℎ)𝑣𝑘−1 + 𝜇𝐴*

ℎ𝑢𝛿,

𝑘 = 1, 2, ...; (0 < 𝜇 < 2/ ‖𝐴ℎ‖2), 𝑣0 = 0.

Sound arguments in favor of this choice are the sim-
plicity of the software code implementation of the
method, as well as a high level of computation com-
patibility and a sufficient level of efficiency with re-
spect to both the required iteration number and the
approximate solution accuracy. The realization of the
Landweber method needs in the initialization of the
regularization parameter 𝛼 determining the termina-
tion of the iterative process.

A physical feature of the problem is the condition

𝑣(𝜌) > 0, ∀ 𝜌 ∈ (−∞,∞). (13)

In this work, we propose an approach of the a poste-
riori determination of the iteration number 𝑘*. It is
based on the application of the smoothing functional
(Tikhonov parametric functional, see Eq. (I.3))

Φ𝛼[𝑣, 𝑢𝛿] = ‖𝐴𝑣 − 𝑢𝛿‖2𝑈 + 𝛼Ω [𝑣],
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Fig. 7. Kernel of the integral equation (16)

where Ω[𝑣] is the stabilizing functional, and 𝛼 is the
regularization parameter, together with the discrep-
ancy principle (see Eq. (II.10))

‖𝐴𝑣𝑘* − 𝑢𝛿‖ ∈ [𝑎1𝛿, 𝑎2𝛿].

Concerning the exact solution 𝑣(𝜌) of Eq. (6), the
statement that this solution is continuous on [0, 𝑏],
has a continuous derivative, and is square-integrable
on [0, 𝑏] is valid a priori. Therefore, we may sup-
pose that the space 𝑉 is a Hilbert–Sobolev space:
𝑉 = 𝑊 1

2 [ 0, 𝑏] = 𝐻1[0, 𝑏]. Under such a formula-
tion, the stabilizing functional Ω [𝑣] and the Tikhonov
parametric functional Φ𝛼[𝑣, 𝑢𝛿] can be presented in
the form (see Eq. (I.8))

Ω [𝑣] = ‖𝑣‖2𝑊 1
2
,

Φ𝛼[𝑣, 𝑢𝛿] = ||𝐴ℎ 𝑣 − 𝑢𝛿||2𝐿2
+ 𝛼 ‖𝑣‖2𝑊 1

2
=

=

𝑎∫︁
−𝑎

[︂ 𝑏∫︁
0

�̃�(𝑥, 𝜌)𝑣(𝜌), 𝑑𝜌− 𝑢𝛿

]︂2
𝑑 𝑥+

+𝛼

𝑏∫︁
0

[︂
𝑣2(𝜌) + [[𝑣′(𝜌)

]︂2
]𝑑𝜌.

(14)

The number 𝑘* is determined, e.g., from the condition
that the functional 𝑆𝑆(𝑣𝑘, 𝑢𝛿) = |Ω𝑆 [𝑣𝑘]− 1.0| has
the extreme value on 𝑣𝑘* :

𝑣𝑘* = arg [inf
𝑘

𝑆𝑆 [𝑣𝑘, 𝑢𝛿]],

Ω𝑆 [𝑣𝑘] =
‖𝑣𝑘‖2𝑊 1

2

‖exp (−500.0𝜌2)‖2𝑊 1
2

. (15)

6. Computational Experiments

At the computational experiment stage, a new un-
known function, 𝑤(𝑠) = 𝑣(

√
𝑠), is introduced, by

making the substitution 𝑠 = 𝜌2. Then

𝑢 (𝑥) =

𝑏2∫︁
0

𝑤(𝑠)𝐾1(𝑥, 𝑠) 𝑑𝑠,

𝐾1(𝑥, 𝑠) = 𝐾𝜌(𝑥,
√
𝑠).

(16)

In the absence of a specimen, the profile of the func-
tion 𝐾1(𝑥, 𝑠) is shown in Fig. 7.

It should be emphasized that, while constructing
the regularizing algorithm, only the following addi-
tional information was used:

𝑤(𝑠) > 0, ∀ 𝑠 ∈ (−∞,∞).

The algorithm of the Landweber method is formu-
lated as follows:

𝑤0(𝑠) = �̃�0(𝑠),

𝑤𝑚(𝑠) = 𝑤+
𝑚−1(𝑠) + 𝜂

[︀
𝐹 (𝑠)−

−
𝛼𝑠∫︁
0

ℜ(𝑠, 𝑡) 𝑤+
𝑚−1(𝑡) 𝑑𝑡

]︀
, 𝑚 = 1, 2, ...,

𝑤+
𝑚(𝑠) = (𝑤𝑚(𝑠) + |𝑤𝑚(𝑠)|)/2,

0 < 𝜂 < 2/ ‖𝐴*
1𝐴1‖ ,

𝐹 (𝑠) =

𝛼𝑠∫︁
0

𝐾1(𝑥, 𝑠)𝑢𝛿(𝑥)𝑑𝑥, 𝛼𝑠 = 𝑎+𝑅1,

ℜ(𝑡, 𝑠) = ℜ(𝑠, 𝑡) =
𝑏2∫︁
0

𝐾1(𝑥, 𝑡)𝐾1(𝑥, 𝑠) 𝑑𝑥,

||𝐴*
1𝐴1||2 = ||ℜ(𝑡, 𝑠)||2 6

𝛼𝑠∫︁
0

𝛼𝑠∫︁
0

ℜ2(𝑡, 𝑠) 𝑑𝑡 𝑑𝑠.

(17)

A series of computational experiments was carried
out, in which the quantities 𝛽𝑛, the multipliers in the
arguments of Gaussian functions,

𝑣𝑛(𝜌) = 𝑎𝑛 exp
(︁
− (𝜌/𝜌𝑛)

2
)︁
= 𝑎𝑛 exp

(︀
−𝛽𝑛𝜌

2
)︀
;

𝑎𝑛 = 1; 𝑛 = 1, 2,
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were determined. Those functions simulate the inten-
sity distributions in a laser beam in the cases where

a) the laser beam propagates without a specimen,
and

b) the laser beam passed through a wafer of the
KDP crystal with TiO2 impurities.

To monitor the accuracy of solving the problem
with the help of the regularizing Landweber algo-
rithm (17),

1) the discrepancy functional ‖𝐴ℎ 𝑤𝑘 − 𝑤𝛿‖𝐿2
,

2) the Tikhonov stabilizing functional Ω[𝑤𝑘] =

= ‖𝑤𝑘‖2𝐿2
, and

3) the Sobolev stabilizing functional Ω[𝑤𝑘] =

= ‖𝑤𝑘‖2𝑊 1
2

were used.
The exact values of a posteriori known multipliers

in the arguments of exponential functions are

𝛽1 = 500.0, 𝛽2 = 563.717200778126.

In the both indicated calculation variants, the func-
tion

�̃�0(𝑠) = exp (−20.0𝑠)

was taken as a zeroth-order approximation.
In Fig. 8, to illustrate the application of the Tikho-

nov stabilizator

ΩT [𝑤𝑘] =
‖𝑤𝑘‖2𝐿2

‖exp (−500.0𝑠)‖2𝐿2

,

the plot of the function 𝑆T(𝑘) = |ΩT [𝑤𝑘]− 1.0|, (𝑘 =
= 26, 51) is shown.

The Sobolev stabilizator was also used in a similar
way (Fig. 9):

ΩS [𝑤𝑘] =
‖𝑤 𝑘‖2𝑊 1

2

‖exp (−500.0 𝑠)‖2𝑊 1
2

,

𝑆S(𝑘) = |ΩS[𝑤𝑘]− 1.0| .(𝑘 = 26, 51 ).

The results of the computational experiment ac-
cording to algorithm (17) are as follows:

𝛽1(𝑘 = 40) = 499.9999988285064,

𝛽2(𝑘 = 61) = 563.7172007781256.

A comparison of the values obtained for the coef-
ficients in the exponential function arguments with

Fig. 8. Plot of the function 𝑆T(𝑘) = |ΩT[𝑤𝑘]− 1.0|

Fig. 9. Plot of the function 𝑆S(𝑘) = |ΩS[𝑤𝑘]− 1.0|

the exact ones speaks for itself. In effect, we obtained
asymptotically exact solutions of Eq. (7) or, in other
words, normal solutions (I.7) of this equation:

𝑣†𝑛(𝜌) = exp
(︀
−𝛽𝑛𝜌

2
)︀
, 𝑛 = 1, 2.

The errors Δ𝑛 =
⃒⃒⃒
𝛽𝑛 − 𝛽𝑛

⃒⃒⃒
can be interpreted as a

result of the number rounding in the computer rep-
resentation.

Of undoubted interest is the answer to the question
about the error magnitude for the solution of Eq. (11)
with an inexact right-hand side,

𝐴𝑣 = 𝑢𝛿. (18)

When studying the influence of the error in the right-
hand side of Eq. (18) on the solution 𝑣(𝜌), as the “out-
put” function, we took a function that interpolates
the experimental values of scattering indicatrix after
the beam passage through the KDP crystal with TiO2

impurities (Fig. 10). The corresponding mean-square
approximation error equals 𝛿 = 0.051127.

As a result of calculations, we obtained the fol-
lowing value of multiplier in the exponential func-
tion argument: ˜̃

𝛽2 (𝑘 = 31) = 556.412. The rela-
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Fig. 10. Exact, 𝑢(𝑥), and approximate, 𝑢𝛿(𝑥), functions of
the scattering indicatrix

tive mean-square approximation error for the func-
tion ˜̃𝑣2(𝜌) equals 0.00925329, which is by a factor
of 5.5 less than the approximation error of the func-
tion 𝑢𝛿.

7. Conclusions

A mathematical model in the form of a Fredholm
integral equation of the first kind for the measure-
ment channel of the experimental laser installation
has been formulated for the mathematical interpreta-
tion of experimental research results concerning the
influence of TiO2 nanoparticles on the optical prop-
erties of a nonlinear optical material. The verifica-
tion of the adequacy of the mathematical model con-
firmed its reliability to an accuracy of nine signifi-
cant digits. The theory of spline-iterative methods of
computational physics for the solution of the prob-
lem of mathematical interpretation of experimental
research results is developed, and a spline-iterative
modification of the Landweber regularization method
is elaborated.

The parameters of a laser beam obtained experi-
mentally on the installation with a fiber optical spec-
trophotometer are confirmed by computational ex-
periments. The mathematical interpretation of the
experimental results revealed the self-focusing of a
laser beam owing to the presence of TiO2 impurities.

The solution of the problem concerning the math-
ematical interpretation of experimental research re-
sults can be regarded as the creation of a vir-
tual high-precision experimental equipment. This ap-
proach makes it possible to obtain essentially signifi-
cant physical results, which is impossible with the use
of available facilities.

APPENDIX I

Let us consult the fundamentals of the mathematical analysis
of modern scientific data concerning experimental researches
in general physics. While carrying out experimental researches
in laser physics, nonlinear optics, and quantum optics, instead
of exact problem data 𝐴 and 𝑢, only their approximation with
the error levels 𝛿 and ℎ are known:

||𝑢− 𝑢𝛿|| 6 𝛿, ||𝐴−𝐴ℎ|| 6 ℎ,

i.e. instead of the exact operator equation,

𝑢 = 𝐴𝑣, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, 𝐴 ∈ Λ(𝑉, 𝑈), (I.1)

the approximate operator equation

𝐴ℎ𝑣 = 𝑢𝛿, 𝑢𝛿 ∈ 𝑈, 𝐴ℎ ∈ Λ(𝑉, 𝑈). (I.2)

is solved.
The constructive solution of the problem consists in the ap-

proximation of the normal solution of Eq. (I.1), i.e. the solution
of Eq. (I.1) with the minimum norm in the space 𝑉 ,

𝑣† ∈ Range(𝐴†) = Range(𝐴*) = Ker(𝐴)⊥,

by the approximate solution of Eq. (I.2). Here, 𝐴† is a linear
operator pseudo-inverse to the operator 𝐴, i.e.

𝐴† : Range(𝐴)⊕ Range(𝐴)⊥ → 𝑉,Range(𝐴†) =

= Range(𝐴*) = Ker(𝐴)⊥.

The operator 𝐴† is continuous, if Range(𝐴) = Range(𝐴). The
following statement is valid [8]: the normal solution 𝑣† =

= 𝐴†𝑢(𝑢 ∈ Range(𝐴) ⊕ Range(𝐴)⊥) is the unique solution
of the equation 𝐴*𝐴𝑣 = 𝐴*𝑢 (𝑣 ∈ Range(𝐴*)).

As a rule, the mathematical models of type (I.1) in experi-
mental researches of laser physics, nonlinear optics, and quan-
tum optics have the property Range(𝐴) ̸= Range(𝐴) (e.g., if 𝐴
is a linear compact operator), i.e. solving the operator equation
𝐴𝑣 = 𝑢 is an ill-posed problem. The problem of stable approx-
imation to the exact solution of Eq. (I.1) at imperfect input
data 𝑢𝛿 ∈ 𝑈 , 𝐴ℎ ∈ Λ(𝑉, 𝑈), ‖𝑢− 𝑢𝛿‖ 6 𝛿, ‖𝐴−𝐴ℎ‖ 6 ℎ with
known 𝛿 and ℎ can be solved, only by using one of the regu-
larization methods. Among them, a key role is played by the
method, the theoretical basis of which was created by A.N. Ti-
khonov. According to this method, in order to solve Eq. (I.2),
a smoothing functional (Tikhonov parametric functional) is in-
troduced [7]:

Φ𝛼[𝑣, 𝑢𝛿] = ||𝐴ℎ𝑣 − 𝑢𝛿||2𝑈 + 𝛼Ω[𝑣], (I.3)

where Ω [𝑣] is the stabilizing functional (the stabilizator; as a
rule, Ω [𝑣] = ‖𝑣‖2𝑉 ), 0 < 𝛼 < 1 is the regularization parameter,
and ‖𝐴ℎ𝑣 − 𝑢𝛿‖2𝑈 is a discrepancy of Eq. (I.2) on the element 𝑣.

An element 𝑣𝛼 is determined, on which functional (I.3) has
a minimum, i.e.

Φ𝛼[𝑣𝛼, 𝑢𝛿] = inf
𝑣∈𝑉

Φ𝛼[𝑣, 𝑢𝛿]. (I.4)

If Ω [𝑣] = ‖𝑣‖2𝑉 in the Tikhonov functional (I.3), the Euler
equation has rather a simple form,

𝛼𝑣𝛼 +𝐴*
ℎ𝐴ℎ𝑣𝛼 = 𝐴*

ℎ𝑢𝛿. (I.5)
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In addition,

𝑣𝛼 = (𝛼𝐸 +𝐴*
ℎ𝐴ℎ)

−1𝐴*
ℎ𝑢𝛿 = 𝑅𝛼𝑢𝛿, (I.6)

where 𝑅𝛼 = (𝛼𝐸+𝐴*
ℎ𝐴ℎ)

−1𝐴*
ℎ. If (𝛿, ℎ) → 0. Then, according

to the definition of regularization operator, there must be 𝛼 →
→ 0. Therefore,

𝑣† = lim
𝛼→0

(𝛼𝐸 +𝐴*𝐴)−1𝐴*𝑢 (I.7)

should be taken as a solution of problem (I.4), if Ω[𝑣] = ‖𝑣‖2𝑉 .
Solution (I.7) is a normal one, i.e., if 𝑣 and 𝐴 are exact, the

normal solution of all solutions of the equation

𝐴𝑣 = 𝑢, 𝑣 ∈ 𝑉, 𝑢 ∈ 𝑈

is selected in the Tikhonov method. Formula (I.7) can be
rewritten in a different form:

𝑣† = 𝐴†𝑢,

where 𝐴† = lim
𝛼→0

(𝛼𝐸 + 𝐴*𝐴)−1𝐴* is the operator pseudo-

inverse to the operator 𝐴. If 𝛿 ̸= 0 and/or ℎ ̸= 0, the method
brings about a solution 𝑣𝛼, which is an approximation to the
normal solution 𝑣†. The following statement is valid for the
approximation and regularization properties of 𝑅𝛼 [11].

Theorem 2. Let 𝑣† ∈ 𝑉 be a normal solution of Eq. (I.1).
In the framework of method (I.6), if 𝛼(𝛿, ℎ) → 0 and
lim

𝛿,ℎ→0

ℎ2+𝛿2

𝛼(𝛿,ℎ)
= 0, then lim

𝛿,ℎ→0

⃦⃦
𝑣𝛼(𝛿,ℎ) − 𝑣†

⃦⃦
= 0.

The space that is used most often in applied calculations
is the Hilbert space 𝐿2 (𝐺). It consists of the classes of func-
tions that are equivalent among themselves and are Lebesgue
square integrable, i.e. the integral

∫︀
𝐺

|𝑢|2(𝑥)𝑑𝑥 is definite and

finite [6]. The scalar product on the space 𝐿2 (𝐺) of real func-
tions is given by the equality

(𝑢, 𝑣) =

∫︁
𝐺

𝑢(𝑥) 𝑣(𝑥) 𝑑𝑥.

In optics problems, where unknown functions are rather
smooth, Sobolev spaces are widely used [12]. The Sobolev
space 𝑊𝑘

𝑝 (𝐺) is a functional space that includes functions
from the Lebesgue space 𝐿𝑝 (𝐺). These functions have gen-
eralized derivatives up to a given order, which also belong
to 𝐿𝑝 (𝐺) (𝐺 ⊂ 𝑅𝑛). In other words, 𝑊𝑘

𝑝 (𝐺) is a space of
functions 𝑢 = 𝑢(𝑥) = 𝑢(𝑥1, 𝑥2, ..., 𝑥𝑛)) determined on a set
𝐺 ⊂ 𝑅𝑛, for which the 𝑝-th power of their absolute value and
their generalized derivatives up to the 𝑘-th order inclusive are
integrable. Sobolev spaces are Banach ones at 1 6 𝑝 6 ∞ and
Hilbert ones at 𝑝 = 2 (in the latter case, they are denoted, as
a rule, as 𝐻𝑘 (Ω)). The norm of the function 𝑢 ∈ 𝑊𝑘

𝑝 (Ω) is
introduced by the formula

‖𝑢‖𝑊𝑘
𝑝 (𝐺) =

⎛⎝ ∑︁
06|𝜎|6𝑘

∫︁
𝐺

|𝐷𝜎𝑢|𝑝
⎞⎠1/𝑝

=

=
∑︁

06|𝜎|6𝑘

||𝐷𝜎𝑢||𝐿𝑝(𝐺)(1 6 𝑝 < ∞), (I.8)

where 𝜎 = (𝜎1, 𝜎2, ..., 𝜎𝑛) is a multiindex, and

𝐷𝜎𝑢 =
𝜕|𝜎|𝑢

𝜕 𝑥𝜎1
1 𝜕 𝑥𝜎2

2 ... 𝜕 𝑥𝜎𝑛
𝑛

is the partial derivative of the order |𝜎| =
𝑛∑︀

𝑚=1
𝜎𝑚 (𝐷(0)𝑢 = 𝑢).

The scalar product in 𝐻𝑘 (Ω) is defined by the expression

(𝑢, 𝑣) =
∑︁

06|𝜎|6𝑘

(𝐷𝜎𝑢,𝐷𝜎𝑣).

Sobolev spaces have a fundamental value in the theory and
practice of numerical methods, variational problems, the the-
ory of partial differential equations, theory of functions, ap-
proximation theory, control theory, and many other domains
of mathematical analysis and its appendices.

APPENDIX II

As a rule, there are several methods to solve that of another
complicated problem. This remark fully concerns an ill-posed
problem. In this case, it is expedient to refer to the important
class of regularizing algorithms proposed by A.V. Bakushinsky
[11]. The idea of the approach consists in the construction of
a parametric family of functions G = {𝑔𝛼(𝜆), 𝛼 ∈ (0, 1)} that
are Borel-measurable on the half-axis [0,∞) and satisfy, at
∀𝜐 ∈ [0, 𝜐*], the conditions

sup
06𝜆<∞

𝜆𝜐 |1− 𝜆𝑔𝛼(𝜆)| 6 𝜒𝜐 𝛼𝜐 , (II.1)

sup
06𝜆<∞

√
𝜆|𝑔𝛼(𝜆)| 6 𝜒*𝛼

−1/2, (II.2)

where 𝜐*, 𝜒𝜐 , and 𝜒* are positive constants independent of
𝛼. The system of functions 𝐺 is called generating for the reg-
ularization method,

𝑅 = 𝑅𝛼 = 𝑔𝛼(𝐴
*
ℎ𝐴ℎ)𝐴

*
ℎ, 𝑔𝛼 ∈ G. (II.3)

The parameter 𝜐* of the function 𝑔𝛼 is called the qualification
of the method 𝑅𝛼, and the parameter 𝛼 = 𝛼(𝛿, ℎ) the regu-
larization parameter. Regularizators (II.3) make it possible to
reach the optimum order of accuracy on the classes of equa-
tions (I.1) with source-representable solutions. While studying
the problem of constructing optimum methods to solve the ill-
posed equation (I.1), a central-symmetric set M is introduced
into consideration; in the theory of ill-posed problems, it looks
like [13]

M𝜐,𝜌(𝐴) := {𝑧 : 𝑧 = |𝐴|𝜐𝑤, ||𝑤||𝑉 6 𝜌},

where 𝜐 > 0, 𝜌 > 0, and |𝐴| = (𝐴*𝐴)1/2.
The elements of the set M𝜐,𝜌(𝐴) are called source-

representable. It is known that, if Eq. (I.1) has a source-
representable solution 𝑣† ∈ M𝜐,𝜌(𝐴), then 𝑣† is the smallest
one in the metric of 𝑉 . In addition, the relation Range(|𝐴|𝜐) =
= Range(𝐴*) takes place for ∀𝜐 > 0, i.e. the elements |𝐴|𝜐𝑤
form an everywhere dense set in the subspace Ker(𝐴)⊥, to
which the normal solution of Eq. (I.1) belongs.

The regularizator set

R0 = {𝑔𝛼(𝐴*
ℎ𝐴ℎ)𝐴

*
ℎ, 𝑔𝛼 ∈ G} ⊂ R

includes the majority of known regularization methods [14]:
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1. Tikhonov regularizator

𝑅𝛼 = (𝛼𝐸 +𝐴*
ℎ𝐴ℎ)

−1𝐴*
ℎ

is an element of set R0 with the generating function

𝑔𝛼(𝜆) = (𝛼+ 𝜆)−1

and the parameters 𝜒* = 1/2 and 𝜒𝜐 = 𝜐𝜐(1 − 𝜐)(1−𝜐). The
qualification of Tikhonov method is 𝜐* = 1.

2. Generalized Tikhonov regularizator

𝑅𝛼 = (𝛼𝑞+1𝐸 + (𝐴*
ℎ𝐴ℎ)

𝑞+1)−1(𝐴*
ℎ𝐴ℎ)

𝑞𝐴*
ℎ ∈ R0, (II.4)

at 𝑞 > −1/2. Regularizator (II.4) is generated by the function

𝑔𝛼(𝜆 ) = 𝜆𝑞(𝛼𝑞+1 + 𝜆𝑞+1)−1

at 𝜐* = 𝑞 + 1.
3. Non-stationary iterative scheme of the Tikhonov

method. First, 𝑣0 = 0 is put. The elements 𝑣𝑘 (𝑘 = 1, 2, ...)

are determined in turn as solutions of the equations

𝛼𝑘𝑣𝑘 +𝐴*
ℎ𝐴ℎ𝑣𝑘 = 𝛼𝑘𝑣𝑘−1 +𝐴*

ℎ𝑢𝛿 (0 < 𝛼𝑘 < 𝛼𝑘−1, (II.5)

e.g., 𝛼𝑘 = 𝑞𝑘, where 0 < 𝑞 < 1. Method (II.5) is generated by
the function

𝑔𝛼(𝜆) =
1

𝜆

(︂
1−

𝑘∏︁
𝑖=1

𝛼𝑖

𝛼𝑖 + 𝜆

)︂
, 𝜆 ̸= 0,

and satisfies conditions (II.1) and (II.2) for 𝜒𝜐 = 𝑂(𝜐𝜐) at
0 < 𝜐 6 1, and for 𝜒𝜐 = 𝑂(𝑐𝜐

𝜐
) at 1 < 𝜐. The qualification of

the method is 𝜐* = ∞.
4. Implicit iterative scheme (the Fakeev–Lardy method).

First, 𝑣0 = 0 is put. The elements 𝑣𝑘 are determined in turn
from the equation

𝜇𝑣𝑘 +𝐴*
ℎ𝐴ℎ𝑣𝑘 = 𝜇 𝑣𝑘−1 +𝐴*

ℎ𝑢𝛿,

𝑘 = 1, 2, ...; (0 < 𝜇 = const).
(II.6)

The iterative method (II.6) turns out a regulizing one
(Eq. (II.3)) if

𝑔𝛼(𝜆) =
1

𝜆

(︂
1−

(︂
𝜇

𝜇+ 𝜆

)︂1/𝛼)︂
, 𝜆 ̸= 0, 1/𝛼 = 𝑘 = 1, 2, ... .

Conditions (II.1) and (II.2) are satisfied at 𝜒* = 𝜇−1/2, 𝜒𝜐 =

= (𝜐 𝜇)𝜐 , and 𝑘 > 𝜐. The qualification of the method is
𝜐* = ∞.

5. Asymptotic regularization method. The generating func-
tion of this method looks like

𝑔𝑡(𝜆) =

𝑡∫︁
0

𝑒−(𝑡−𝑠)𝜆𝑑𝑠 =
1

𝜆
(1− 𝑒−𝑡𝜆).

Therefore, 1− 𝜆𝑔𝑡(𝜆) = 𝑒−𝑡𝜆, and the approximate solution is
determined by the formula

𝑣𝑡 = (𝐸 −𝐴*
ℎ𝐴ℎ𝑔𝑡(𝐴

*
ℎ𝐴ℎ))𝑣0 + 𝑔𝑡(𝐴

*
ℎ𝐴ℎ)) 𝐴

*
ℎ𝑢𝛿, (II.7)

for arbitrary 𝑡 = 𝛼−1. Conditions (II.1) and (II.2) are satis-
fied at 𝜒* = 0.6382 and 𝜒𝜐 = (𝜐𝑒)𝜐 . The qualification of the
method is 𝜐* = ∞.

6. Explicit iterative scheme (the Landweber method). First,
𝑣0 = 0 is put. The elements 𝑣𝑘 are determined in turn from
the equation

𝑣𝑘 = (𝐸 − 𝜇𝐴*
ℎ𝐴ℎ) 𝑣𝑘−1 + 𝜇𝐴*

ℎ𝑢𝛿,

𝑘 = 1, 2, ... (0 < 𝜇 < 2/||𝐴ℎ||2).
(II.8)

The iterative method (II.8) is generated by the function

𝑔𝛼(𝜆) =
1

𝜆

(︁
1− (1− 𝜇𝜆)1/𝛼

)︁
, 𝜆 ̸= 0,

where the regularization parameter 𝛼 is such that the quantity
1/𝛼 accepts only integer values: 1/𝛼 = 𝑘 = 1, 2, ... . Conditions
(II.1) and (II.2) are satisfied at 𝜒* = 𝜇1/2 and 𝜒𝜐 =

= (𝜐/(𝜇𝑒))𝜐 . The qualification of the method is 𝜐* = ∞.
The main result of the theory of ill-posed problems concern-

ing the calculation of exact estimates for the approximations
of Eq. (I.2) can be formulated as follows. For Eq. (I.2) with the
approximately given operator 𝐴ℎ and the approximately given
right-hand side 𝑢𝛿, the order of convergence to the source-
representable normal solution 𝑣† ∈ M𝜐,𝜌(𝐴) does not exceed
𝜐

𝜐+1
for ∀𝜈 > 0, i.e.

⃦⃦
𝑣† −𝑅𝛼𝑢𝛿

⃦⃦
= 𝑂

(︀
(𝛿 + ℎ)𝜐/(𝜐+1)

)︀
. The

optimal order of accuracy at the indicated assumptions a priori
provides the choice of a regularization parameter that satisfies
the condition 𝛼 = 𝑐(𝛿 + ℎ)2/(𝜐+1), 𝑐 = const > 0.

If the information on the exact value of parameter 𝜐, which
determines the set M𝜐,𝜌(𝐴), is absent, the value of regulariza-
tion parameter at the practical solution of problem (I.2) is de-
termined directly in the course of solution, i.e. the a posteriori
choice of 𝛼 is made. One of the most effective and widespread
methods of the a posteriori choice of a regularization parameter
in the course of solution of Eq. (I.2) using the Tikhonov method
(I.6) (in the case 𝐴 = 𝐴ℎ and ℎ = 0) is called the discrepancy
principle. It was proposed and substantiated by V.A. Morozov
[15]. According to it, the parameter 𝛼 is selected according to
the condition

||𝐴𝑣𝛼 − 𝑢𝛿|| = 𝛿, (II.9)

where 𝑣𝛼 = (𝛼𝐸 + 𝐴*𝐴)−1𝐴*𝑢𝛿. In practice, 𝛼 is selected so
that the functional ‖𝐴𝑣𝛼 − 𝑢𝛿‖ should satisfy the condition

||𝐴𝑣𝛼 − 𝑢𝛿|| ∈ [𝑎1𝛿, 𝑎2𝛿], (II.10)

where 𝑎1 and 𝑎2 are certain numbers given beforehand (1 <

< 𝑎1 < 𝑎2).
In the case where the operator 𝐴ℎ is given inexactly, Gon-

charsky et al. [16,17] proposed a generalized discrepancy prin-
ciple. According to it, there must be

||𝐴ℎ𝑣𝛼 − 𝑢𝛿|| ∈ [𝑎1(𝛿 + ||𝑣𝛼||ℎ), 𝑎2(𝛿 + ||𝑣𝛼||ℎ)]. (II.11)

It is known [13, 14] that the regularizing algorithms (II.3)
that satisfy conditions (II.1) and (II.2), together with Moro-
zov’s discrepancy principle (II.10) or the generalized discrep-
ancy principle (II.11), allow the solution of problem (I.2) to
be determined with the optimal order of accuracy on the set
M𝜐,𝜌(𝐴) for every 𝜐 satisfying the condition 0 < 𝜐 < (2𝜐*−1).

To solve problem (I.2), M. Defriese and C. De Mol [18] com-
bined the Landweber iterative method and the a posteriori
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choice of a regularization parameter 𝛼 (the iteration number
1/𝛼 = 𝑘*). The essence of the stopping rule is as follows: the
iterative process (I.6) is continued, if

||𝐴ℎ 𝑣𝑘 − 𝑢𝛿|| >
2𝛿

2𝛿 − 𝜇||𝐴ℎ||2
, (II.12)

or terminated, if the inequality

||𝐴ℎ 𝑣𝑘* − 𝑢𝛿|| 6
2𝛿

2𝛿 − 𝜇||𝐴ℎ||2
(II.13)

is obeyed for the first time. The resulting 𝑣𝑘* is accepted as an
approximate solution of Eq. (I.2).

A specific feature of principles (II.9), (II.11), and (II.13), as
well as many others, is the fact that the error magnitude 𝛿 of
the right-hand side 𝑢𝛿 in Eq. (I.2) is contained in the explicit
form. However, in a lot of scientific experimental researches,
owing to their uniqueness, the determination of the error 𝛿

is very often rather subjective, as well as the choice of the
quantities 𝑎1 and 𝑎2 in Eq. (II.10) or (II.11). This problem is
especially relevant under the condition of a unique experiment.

Along with the problem of finding the error 𝛿, a considerable
fraction of the subjective approach is inherent to a situation
where that or another regularization method is selected. An
important role in this case is played by the presence of the
a priori or a posteriori information concerning the solution
of the problem [8], as well as the experience in carrying out
computational experiments.

1. A.F. Verlan’ and V.S. Sizikov, Integral Equations: Meth-
ods, Algorithms, Programs. Reference Textbook (Naukova
Dumka, Kyiv, 1986) (in Russian).

2. V.V. Ivanov, Methods of Computer Calculations. A Hand-
book (Naukova Dumka, Kyiv, 1986) (in Russian).

3. V.Ya. Gayvoronsky, V.M. Starkov, M.A. Kopylovskyi,
M.S. Brodyn, Ye.O. Vyshnyakov, O.Yu. Boyarchuk, and
I.M. Prytula, Ukr. Fiz. Zh. 55, 875 (2010).

4. V.N. Starkov, Constructive Methods of Computational
Physics in Interpretation Problems (Naukova Dumka,
Kyiv, 2002) (in Russian).

5. V.N. Starkov and A.Yu. Boyarchuk, in Issues of Computa-
tion Optimization (V.M. Glushkov Institute of Cybernet-
ics, Kyiv, 2009), Vol. 2, p. 339 (in Ukrainian).

6. A.N. Kolmogorov and S.V. Fomin, Elements of the Theory
of Functions and Functional Analysis (Dover, New York,
1999).

7. A.N. Tikhonov and V.Ya. Arsenin, Solutions of Ill-Posed
Problems (Wiley, New York, 1977).

8. V.V. Vasin and A.L. Ageev, Incorrect Problems with A
Priori Information (Nauka, Ekaterinburg, 1993) (in Rus-
sian).

9. V.S. Sizikov, Inverse Application Problems and MatLab.
A Handbook (Lan’, Saint-Petersburg, 2011) (in Russian).

10. A.K. Lowes, Inverse und Schlecht Gestellte Probleme
(Teubner, Stuttgart, 1989).

11. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems:
Theory and Applications (Kluwer, Dordrecht, 1994).

12. Encyclopedia of Mathematics, edited by I.M. Vinogradov
(Moscow, Sovetskaya Entsyklopediya, 1977–1985) (in Rus-
sian), Vol. 5.

13. G.M. Vainikko and A.Yu. Veretennikov, Iteration Proce-
dures in Ill-Posed Problems (Nauka, Moscow, 1986) (in
Russian).

14. S.G. Solodkii, Dr. Sci. Phys. Mat. thesis (Institute of Math-
ematics, Kyiv, 2003).

15. V.A. Morozov, Regular Methods for Solving Ill-Posed
Problems (Moscow Univ., Moscow, 1974) (in Russian).

16. A.V. Goncharskii, A.S. Leonov, and A.G. Yagola, Dokl.
Akad. Nauk SSSR 203, 1238 (1972).

17. A.V. Goncharskii, A.S. Leonov, and A.G. Yagola, Zh. Vy-
chisl. Mat. Mat. Fiz. 13, 294 (1973).

18. M. Defriese and C. De Mol, in Inverse Problems: An In-
terdisciplinary Study, edited by P.C. Sabatier (Academic
Press, New York 1987), p. 261.

Received 20.12.14.
Translated from Ukrainian by O.I. Voitenko

В.М.Старков, М.С.Бродин,
П.М.Томчук, В.Я. Гайворонський, О.Ю.Боярчук

МАТЕМАТИЧНА IНТЕРПРЕТАЦIЯ
РЕЗУЛЬТАТIВ ЕКСПЕРИМЕНТАЛЬНИХ
ДОСЛIДЖЕНЬ ВЛАСТИВОСТЕЙ
НЕЛIНIЙНО-ОПТИЧНОГО МАТЕРIАЛУ

Р е з ю м е

Iз використанням методiв обчислювальної фiзики форму-
люється та розв’язується проблема математичної iнтерпре-
тацiї результатiв експериментальних дослiджень впливу iн-
корпорованих наночастинок TiO2 на оптичнi властивостi
нелiнiйно-оптичного матерiалу KDP. Математична модель
представляється у виглядi iнтегрального рiвняння Фре-
дгольма першого роду. Пропонується сплайн-iтерацiйна мо-
дифiкацiя методу регуляризацiї Ландвебера розв’язання не-
коректно поставленої задачi. Результати проведених обчи-
слювальних експериментiв порiвнюються з апостерiорi вi-
домими даними фiзичних експериментiв.
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