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The interaction potential in symmetric and asymmetric systems composed of two nuclei has
been studied with regard for the quadrupole, octupole, and hexadecapole deformations of nu-
clei. The influence of dynamic multipole deformations of the nuclear surface on the barrier
height and the interaction energy between two nuclei is considered. The deformation parame-
ters corresponding to the minimum values of barrier height are evaluated.
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1. Introduction

The potential of nucleus-nucleus interaction is impor-
tant while describing the collisions of heavy ions and
at the formation of compound nuclei [1,2]. The corre-
sponding barrier height governs the mechanisms and
probabilities of nuclear reactions, reactions of sub-
barrier fusion and synthesis of superheavy elements,
as well as various near-barrier reactions [2–18].

The height of the nucleus-nucleus potential barrier
depends on the deformation of nuclei and their rel-
ative orientation [2, 10–12, 14, 18]. In work [19], the
minimum height of the barrier between nuclei was
studied in detail, but taking only their quadrupole
deformation into account. In this work, the influence
of a surface deformation in nuclei of various types on
the interaction potential in symmetric and asymmet-
ric systems consisting of a light and a heavy nucleus
will be analyzed. The minimum height of the poten-
tial barrier between two nuclei is considered in detail
with regard for quadrupole, octupole, and hexade-
capole deformations of the surfaces of both nuclei. For
this purpose, the interaction energy for systems com-
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posed of two nuclei with surface deformations char-
acterized by the multipolarities 𝑙 = 2, 3, and 4 is
calculated.

2. Interaction of Nuclei
with Dynamically Perturbed Surfaces

In order to calculate the minimum height of the bar-
rier at the collision of two nuclei, the dynamic defor-
mation of the latter has to be taken into account. The
total potential energy of interaction between the nu-
clei will be determined as a sum of the Coulomb and
nuclear potentials and the deformation energy of each
nuclei,

𝑉full(𝑅, 𝜃1, 𝜃2, 𝜑, 𝛽𝑖2, 𝛽𝑖3,𝛽𝑖4) =

= 𝑉coul(𝑅, 𝜃1, 𝜃2, 𝜑, 𝛽𝑖2, 𝛽𝑖3, 𝛽𝑖4)+

+𝑉nucl(𝑅, 𝜃1, 𝜃2, 𝜑, 𝛽𝑖2, 𝛽𝑖3,𝛽𝑖4)+

+𝑉def(𝛽𝑖2, 𝛽𝑖3, 𝛽𝑖4), (1)

where 𝑅 is the distance between the centers of mass
of nuclei; 𝜃1, 𝜃2, and 𝜑 are the angles characteriz-
ing the relative orientation of the deformed axially
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symmetric nuclei; and 𝛽𝑖2, 𝛽𝑖3, and 𝛽𝑖4 are the pa-
rameters of quadrupole, octupole, and hexadecapole
dynamic deformations of the corresponding nucleus
surface (𝑖 = 1, 2), which parametrize the radius of
the nucleus surface:

𝑅𝑖(𝜃0) = 𝑅𝑖0 [1 + 𝛽𝑖2𝑌20(𝜃0)+

+𝛽𝑖3𝑌30(𝜃0) + 𝛽𝑖4𝑌40(𝜃0)]. (2)

Here, 𝑅𝑖0 is the radius of the 𝑖-th nucleus in the
spherical approximation, and 𝑌𝑙0(𝜃) are the spheri-
cal harmonics of the multipolarity 𝑙 [20]. Multipole
dynamic deformations of the nuclei arise as a result
of the interaction between them, when they approach
each other. The angle 𝜃0 is determined in the inter-
nal coordinate frame of the 𝑖-th nucleus. The angles
𝜃1and 𝜃2 describe the orientations of the symmetry
axes of the deformed nuclei with respect to the axis
that passes through their centers of mass, and the
angle 𝜑 describes the orientation of those axes in the
plane that is perpendicular to the latter.

The potential of Coulomb interaction between two
axially deformed nuclei depends on the angles that de-
termine the relative orientation of the nuclei in space
and on the parameters of a quadrupole deformation
of nuclei. It looks like [2, 10, 11, 14, 19]

𝑉coul(𝑅, 𝜃1, 𝜃2, 𝜑, 𝛽𝑖2, 𝛽𝑖3, 𝛽𝑖4) =

=
𝑍1𝑍2𝑒

2

𝑅

{︂
1 +

∑︁
𝑙=2,3,4

[𝑓1𝑙(𝑅, 𝜃1, 𝑅10)𝛽1𝑙 +

+ 𝑓1𝑙(𝑅, 𝜃2, 𝑅20)𝛽2𝑙] + 𝑓2(𝑅, 𝜃1, 𝑅10)𝛽
2
12 +

+ 𝑓2(𝑅, 𝜃2, 𝑅20)𝛽
2
22 + 𝑓3(𝑅, 𝜃1, 𝑅10, 𝜃2, 𝑅20)𝛽12𝛽22 +

+𝑓4(𝑅, 𝜃1, 𝑅10, 𝜑, 𝜃2, 𝑅20)𝛽12𝛽22

}︂
, (3)

where 𝑍𝑖 is the number of protons in the 𝑖-th nucleus,
𝑒 the proton charge, and

𝑓1𝑙(𝑅, 𝜃𝑖, 𝑅𝑖0) =
3𝑅𝑙

𝑖0

(2𝑙 + 1)𝑅𝑙
𝑌𝑙0(𝜃𝑖), (4)

𝑓2(𝑅, 𝜃𝑖, 𝑅𝑖0) =
6
√
5𝑅2

𝑖0

35
√
𝜋𝑅2

𝑌20(𝜃𝑖)+
3𝑅4

𝑖0

7
√
𝜋𝑅4

𝑌40(𝜃𝑖), (5)

𝑓3(𝑅, 𝜃1, 𝑅10, 𝜃2, 𝑅20) =
27𝑅2

10𝑅
2
20

80𝜋𝑅4
+

+ [17 cos2(𝜃1) cos
2(𝜃2)−5 cos2(𝜃1)−5 cos2(𝜃2)+1], (6)

𝑓4(𝑅, 𝜃1, 𝑅10, 𝜑, 𝜃2, 𝑅20) =

=
27𝑅2

10𝑅
2
20

40𝜋𝑅4
[cos2(𝜑) sin2(𝜃 1) sin

2(𝜃2)−

− 2 cos(𝜑) sin(2𝜃1) sin(2𝜃2)] (7)

are the functions describing the dependence of the
potential on the orientation angles. This expression
contains all terms that are linear or quadratic in
the quadrupole deformation parameter of each nu-
cleus. As a rule, the values of octupole and hexade-
capole deformation parameters are smaller than that
of the quadrupole deformation, being related by the
equality 𝛽2

𝑖2 ≈ 𝛽𝑙>2. Hence, the expression that con-
tains simultaneously linear and quadratic terms with
respect to the quadrupole deformation parameter and
linear terms with respect to higher-multipolarity de-
formation parameters has accuracy of the order of
𝛽2
𝑖2. The next terms in the expansion will be cor-

rections of the order of 𝛽3
𝑖2 or 𝛽2𝛽𝑙>2, i.e. too small

to considerably affect the energy of interaction be-
tween the deformed nuclei. As a rule, the deforma-
tion parameters 𝛽𝑙>4 are less than the hexadecapole
one. Therefore, the deformations of those types can
be neglected.

Note that the center of mass in nuclei with the
quadrupole and octupole deformations is shifted
[2]. To avoid this, a dipole deformation, which is con-
nected with quadrupole (hexadecapole) and octupole
deformations by the relation 𝛽𝑖𝑙 ∼ −𝛽𝑖2(4)𝛽𝑖3 [2], is
introduced. Since 𝛽2

𝑖2 ≈ 𝛽𝑙>2, the magnitude of dipole
deformation is 𝛽𝑖𝑙 ∼ −𝛽𝑖2(4)𝛽𝑖3 ∼ −𝛽3

𝑖2. The terms of
the order of 𝛽3

𝑖2 were neglected; therefore, the terms
with a dipole deformation and the shift of the center
of mass of nuclei should also be neglected.

The nuclear part of the interaction energy of the
nuclei is obtained in the approximation of the so-
called proximity theorem [21]. It is proportional to
the interaction potential between the spherical nuclei
𝑉 (𝑅),

𝑉nucl(𝑅, 𝜃1, 𝜃2, 𝜑, 𝛽12, 𝛽22) =
𝐶10 + 𝐶20

𝐶def
𝑉 (𝑅), (8)

where 𝐶def =
[︁(︁

𝐶
‖
1 + 𝐶

‖
2

)︁ (︀
𝐶⊥

1 + 𝐶⊥
2

)︀]︁1/2
is the gen-

eralized curvature, 𝐶𝑖0 = 1/𝑅𝑖0 is the curvature of the
𝑖-th spherical nucleus, and 𝑉 (𝑅) is the nuclear part of
the interaction potential between the spherical nuclei,
when the distance 𝑑 between their surfaces is equal to
that between the deformed nuclei, and the distance
between the centers of mass of interacting spherical
nuclei is equal to 𝑅 = 𝑅1 +𝑅2 + 𝑑.
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The interaction potential between the spherical nu-
clei is taken from work [22]:

𝑉 (𝑅) = −1.989843𝐶𝐹 (𝑠) [1 + 0.003525139×

× (𝐴1/𝐴2 +𝐴2/𝐴1)
3/2 − 0.4113263(𝐼1 + 𝐼2)], (9)

where 𝐶 = 𝑅1𝑅2/𝑅12, 𝑠 = 𝑅−𝑅12 − 2.65 fm, 𝑅12 =
= 𝑅1 +𝑅2, and

𝑅𝑖0 = 𝑅𝑖𝑝(1− 3.413817/𝑅2
𝑖𝑝) + 1.284589×

× (𝐼𝑖 − 0.4𝐴𝑖/(𝐴𝑖 + 200)). (10)

The proton surface radius, 𝑅𝑖𝑝, in Eq. (10) equals

𝑅𝑖𝑝 = 1.24𝐴
1/3
𝑖 (1 + 1.646/𝐴𝑖 − 0.191 𝐼𝑖), (11)

where 𝐼𝑖 = (𝑁𝑖 − 𝑍𝑖) /𝐴𝑖, and 𝐴𝑖 and 𝑁𝑖 are the
numbers of nucleons and neutrons, respectively, in
the 𝑖-th nucleus. The function 𝐹 (𝑠) is approximated
by the exponential dependence

𝐹 (𝑠) =

{︂
1− 𝑠2

[︂
0.0541026𝐶 exp

(︁
− 𝑠

1.760580

)︁
−

− 0.5395420 (𝐼1 + 𝐼2) exp
(︁
− 𝑠

2.424408

)︁]︂}︂
×

× exp

(︂
−𝑠

0.7881663

)︂
, (12)

in the case 𝑠 > 0 (when the nuclei are located at a
large distance from each other), and is parametrized
by the polynomial

𝐹 (𝑠) = 1− 𝑠

0.7881663
+ 1.229218 𝑠2 −

− 0.2234277 𝑠3 − 0.1038769 𝑠4 −

−𝐶 (0.1844935 𝑠2 + 0.07570101 𝑠3)+

+ (𝐼1 + 𝐼2) (0.04470645 𝑠
2 + 0.03346870 𝑠3) (13)

in the case of short distances between the nuclei
(5.65 6 𝑠 6 0). This potential describes well the em-
pirical barriers between spherical nuclei [22].

The generalized curvature 𝐶def in Eq. (8) is con-
nected with the curvatures 𝐶‖

𝑖 and 𝐶⊥
𝑖 at the nearest

points of nuclei’s surfaces. The expressions for those
parameters look like [10]

𝐶
‖
1 = 𝑘1 + 𝑘′1, 𝐶⊥

1 = 𝑘1 − 𝑘′1, (14)

𝐶
‖
2 = 𝑘2 + 𝑘′2 cos(2𝜑), 𝐶⊥

2 = 𝑘2 − 𝑘′2 cos(2𝜑). (15)

The curvature parameters 𝑘𝑖 and 𝑘′𝑖 depend on the
deformation parameters and the angles that describe
the orientations of nuclei in space:

𝑘𝑖(𝑅𝑖0, 𝛽𝑖2, 𝜂
′, ) ≈ 𝐶𝑖0

[︂
1 +

∑︁
𝑙=2,3,4

𝑙(𝑙 + 1)− 2

2
×

×𝛽𝑖𝑙𝑌𝑙0(𝜂
′)− 5𝛽2

𝑖2(𝑌20(𝜂
′))2 +

𝛽2
𝑖2

4𝜋

]︂
, (16)

𝑘′𝑖(𝑅𝑖0, 𝛽𝑖2, 𝜂
′) ≈ −𝐶𝑖0

3

8𝜋
cos2(𝜂′)×

×
[︁
2
√
5𝜋𝛽20 + 5𝛽2

20 − 30 cos2(𝜂′)𝛽2
20 +

+15
√
𝜋𝛽40(7 cos

2(𝜂′)− 1)
]︁
, (17)

where 𝜂′ is the angle in the own coordinate frame that
determines a point on nucleus’ surface, which is the
closest to the surface of the other nucleus.

In the liquid drop model, the deformation energy in
the case of axial multipole deformation of the nuclear
surface equals [23, 24]

𝑉def(𝛽1𝑙, 𝛽2𝑙) =
1

2

∑︁
𝑙=2,3,4

[︀
𝜒2
1𝑙(𝛽1𝑙) + 𝜒2

2𝑙(𝛽2𝑙)
]︀
, (18)

where 𝜒𝑖𝑙 is the stiffness coefficient for the surface of
the 𝑖-th nucleus at its deformation. This coefficient
depends on the coefficient of surface tension 𝜎 and
the Coulomb energy. In the case of 𝑙-multipole defor-
mation, it looks like [23]

𝜒𝑖𝑙 =
1

4𝜋
(𝑙 − 1) (𝑙 + 2) 𝑏surf 𝐴

2/3
𝑖 −

− 3

2𝜋

𝑙 − 1

2𝑙 + 1

𝑒2

𝑟0
𝑍2
𝑖 𝐴

−1/3
𝑖 , (19)

where 𝑏surf = 4𝜋𝜎𝑟20 = 𝑎𝑠(1 − 𝑘𝑠𝐼
2), with the values

of 𝑎𝑠, 𝑘𝑠, and 𝑟20 taken from work [24].

3. Results of Calculations

The barrier between two nuclei has a minimum
height, if they are prolate and oriented along the axis
of their axial symmetry that connects their centers
of mass at the Euler angles 𝜃1 = 𝜑 = 0 and 𝜃2 = 𝜋
[2, 10, 11, 14, 21]. Therefore, the potential was calcu-
lated for this orientation of nuclei. Moreover, if 𝜃1 = 0
and 𝜃2 = 𝜋, both the Coulomb [Eq. (3)] and nuclear
[Eq. (8)] contributions to the total interaction energy
do not depend on 𝜑.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7 587



V.Yu. Denisov, T.O. Margitych

Fig. 1. Barrier dependences on the quadrupole deformation
parameters for the 48Ca + 48Ca nuclear system calculated with
regard for only the quadrupole deformation (a), the quadrupole
and octupole deformations (b), the quadrupole and hexade-
capole deformations (c), and the quadrupole, octupole, and
hexadecapole deformations of nuclei (d). The barrier heights
are indicated in MeV

2Fig. 2. The same as in Fig. 1, but for the symmetric nuclear
system 68Zn + 68Zn

Let us consider the interaction potential in the
following two-nuclear symmetric systems in detail:
48Ca + 48Ca, 68Zn + 68Zn, and 96Zr + 96Zr. In the
ground state, those nuclei have a spherical shape or a
shape close to it. While analyzing the potential, the
assumption is made that the shapes of nuclei change,
and the features of the interaction potential between
the nuclei – in particular, the dependence of the min-
imum barrier height on the surface deformation pa-
rameters 𝛽2, 𝛽3, and 𝛽4 – are studied.

In Fig. 1, the dependences of the barrier height on
the quadrupole deformation parameters 𝛽12 and 𝛽22

of the nuclei are shown for various multipole deforma-
tions of nuclei’s surfaces in the system 48Ca + 48Ca.
Panel 𝑎 demonstrates this dependence in the case
where only the quadrupole deformation of both nuclei
is taken into account. One can see that the account
of this deformation diminishes the barrier height. The
minimum barrier height value and the magnitudes of
quadrupole deformation are quoted in Table 1.

In order to determine the influence of the octupole
deformation of nuclear surfaces, the results obtained
for the barrier minimum with regard for both the
quadrupole and octupole deformations are demon-
strated in Fig. 1, b. For every value of quadrupole
deformation parameter, the selected value of octupole
deformation corresponded to the barrier height min-

Table 1. Minimum barrier heights and nuclear
deformation parameters at the barrier minimum
for symmetric systems 48Ca + 48Ca,
96Zr + 96Zr, and 68Zn + 68Zn

System 𝑅, fm 𝛽2 𝛽3 𝛽4 𝑉min, MeV

48Ca+ 48Ca 10.20 0 0 0 52.10
10.63 0.100 0 0 51.32
10.80 0.105 0.043 0 50,99
10.67 0.105 0 0.005 51.28
10.93 0.105 0.045 0.016 50.92

68Zn+ 68Zn 10.81 0 0 0 110.53
11.67 0.180 0 0 107.37
11.98 0.185 0.078 0 105.92
11.68 0.185 0 0.028 107.09
12.00 0.185 0.079 0.032 105.49

96Zr+ 96Zr 11.60 0 0 0 182.12
12.94 0.265 0 0 174.38
12.97 0.260 0.010 0 171.04
12.75 0.265 0 0.029 173.85
12.87 0.260 0.090 0.004 170.97
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imum. One can see that the account for a octupole
deformation slightly reduces the minimum barrier
height (see Table 1).

The influence of a hexadecapole deformation on the
barrier height is shown in Fig. 1, c. In this case, only
the quadrupole and hexadecapole deformations are
considered. It it evident that the influence of the lat-
ter on the barrier height is weaker than that of the
octupole deformation.

The simultaneous account for the quadrupole, oc-
tupole, and hexadecapole deformations brings about
the smallest value of barrier height (see Fig. 2, d
and Table 1). The values of parameters 𝛽3 and 𝛽4 in
Fig. 2 are selected to provide a barrier height min-
imum for a fixed 𝛽2 value. The minimum barrier
heights and the multipole deformations of surfaces
with regard for various combinations of multipole de-
formations are also quoted in Table 1.

In Figs. 2 and 3, the analogous results obtained
for the heavier symmetric systems 68Zn + 68Zn and
96Zr + 96Zr, respectively, are exhibited. The barrier
height minima and the corresponding values of de-
formation parameters for the symmetric systems of
nuclei are listed in Table 1. By comparing Figs. 1 to
3 and the data in Table 1, one can see that the mini-
mum value of barrier height for the heavier system of
nuclei corresponds to the larger value of quadrupole
deformation.

The corresponding plots for the asymmetric sys-
tem 62Zn + 74Zn are shown in Fig. 4. Comparing
Figs. 2 and 4, we note that the nuclei interacting in
the former (symmetric) system (Fig. 2) have identi-
cal atomic masses and identical numbers of protons
and neutrons, whereas the nuclei in the asymmet-
ric system (Fig. 4) have different numbers of neu-
trons and, accordingly, different atomic masses. The
Coulomb energy of interaction is the same in both sys-
tems. Therefore, the difference between the barriers
can follow only from different nuclear interactions in
those systems owing to different numbers of neutrons
in the interacting nuclei. The asymmetric system has
a larger deformation and a higher minimum barrier
height between the nuclei in comparison with the
symmetric system (the deformation parameters and
the minimum heights of interaction barriers between
the nuclei are quoted for both systems in Tables 1
and 2). A higher barrier in the asymmetric system
is associated with a reduction of the nuclear poten-
tial in comparison with the symmetric system. This

3Fig. 3. The same as in Fig. 1, but for the symmetric nuclear
system 96Zr + 96Zr

Table 2. Minimum barrier heights and nuclear
deformation parameters at the barrier minimum
for the asymmetric systems 62Zn+ 74Zn,
58Fe+ 78Se, 40Ar+ 96Mo, 20Ne+ 116Sn

System 𝑅, fm 𝛽12 𝛽22 𝛽13 𝛽23 𝛽14 𝛽24
𝑉min,
MeV

62Zn+ 74Zn 10.79 0 0 0 0 0 0 110.67
11.66 0.185 0.185 0 0 0 0 107.46
11.97 0.185 0.185 0.078 0.083 0 0 105.98
11.69 0.190 0.190 0 0 0.025 0.031 107.16
12.03 0.185 0.190 0.086 0.080 0.030 0.036 105.53

58Fe + 78Se 10.81 0 0 0 0 0 0 108.72
11.65 0.180 0.180 0 0 0 0 105.65
11.96 0.180 0.180 0.077 0.078 0 0 104.25
11.69 0.185 0.185 0 0 0.025 0.030 105.37
11.69 0.200 0.185 0.084 0.088 0.030 0.036 112.08

40Ar+ 96Mo 10.74 0 0 0 0 0 0 93.73
11.49 0.165 0.160 0 0 0 0 91.38
11.76 0.165 0.160 0.068 0.070 0 0 90.33
11.53 0.170 0.165 0 0 0.013 0.030 91.16
11.90 0.170 0.165 0.070 0.072 0.023 0.033 89.99

20Ne+ 116Sn 10.46 0 0 0 0 0 0 63.73
11.00 0.125 0.120 0 0 0 0 62.61
11.16 0.130 0.120 0.042 0.051 0 0 62.15
11.00 0.125 0.120 0 0 0 0.022 62.49
11.27 0.130 0.125 0.041 0.053 0 0.025 61.98
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Fig. 4. The same as in Fig. 1, but for the asymmetric nuclear
system 62Zn + 74Zn

Fig. 5. The same as in Fig. 1, but for the asymmetric nuclear
system 58Fe + 78Se

means that the number of neutrons in the nuclei af-
fects the magnitude of nucleus-nucleus interaction. In
addition, the increase in the neutron asymmetry in
nuclei gives rise to the growth of a nuclear deforma-
tion and the barrier height minimum magnitude.

6Fig. 6. The same as in Fig. 1, but for the asymmetric nuclear
system 40Ar + 96Mo

Fig. 7. The same as in Fig. 1, but for the asymmetric nuclear
system 20Ne + 116Sn

The interaction potentials for the asymmetric sys-
tems 62Zn + 74Zn, 58Fe + 78Se,40Ar + 96Mo, and
20Ne + 116Sn at various dynamic deformations of nu-
clear surfaces are depicted in Figs. 4 to 7, respec-
tively. For the sake of comparison, the data on the
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minimum barrier heights and the corresponding pa-
rameters of quadrupole, octupole, and hexadecapole
surface deformations of each nucleus are quoted in
Table 2. The interacting nuclei have different num-
bers of nucleons. Each system consists of a light and
a heavy nucleus, being a result of the division of 136Nd
nucleus, which can be formed, e.g., at the fusion of
40Ca and 96Zr nuclei.

The interaction potentials of nuclei in the case
where only the quadrupole deformation is taken into
account are shown for each asymmetric system in
panels 𝑎 of Figs. 4 to 7. In order to better esti-
mate the influence of an octupole deformation, the
dependences of the nuclear interaction potential on
only the quadrupole and octupole deformations are
shown in panels 𝑏 for each asymmetric system un-
der consideration. For every value of quadrupole de-
formation, we selected such an octupole deformation
that provided the appearance of the minimum bar-
rier height. The dependences of the minimum barrier
height on the quadrupole deformation with regard for
a hexadecapole deformation of the nuclear surfaces
are exhibited in panels 𝑐. The barrier height mini-
mum (see panels 𝑑 and Table 2) is the smallest, when
the quadrupole, octupole, and hexadecapole defor-
mations are taken into account simultaneously. The
values of 𝛽3 and 𝛽4 in panels 𝑑 correspond to the
minimum barrier height at a fixed value of 𝛽2.

From the analysis of Figs. 4–7 and the data in Ta-
ble 2, one can see that the account of deformation pa-
rameters is important, while determining the interac-
tion potential in symmetric and asymmetric systems
of nuclei. For all examined symmetric and asymmet-
ric systems, the minimum barrier height is observed
at dynamic deformations of nuclei. The obtained val-
ues of those deformation parameters are shown in
Figs. 1 to 7 and in Tables 1 and 2. The correspond-
ing analysis demonstrates that, for the symmetric and
asymmetric systems of nuclei, the difference between
the barrier heights for the spherical and deformed nu-
clei grows with the nuclear mass and charge.

The quadrupole deformation of the surface is shown
to have the largest influence on the barrier height
minimum for all examined systems, whereas the oc-
tupole deformation gave a smaller effect. The in-
fluence of a hexadecapole deformation is insignifi-
cant. The effect of octupole and hexadecapole de-
formations of the nuclear surfaces decreases, as the
masses and charges of nuclei increase, provided the

minimum potential value, which is responsible for the
increase of the stiffness 𝜒𝑖𝑙 for larger 𝑙 and 𝐴 (see
Eq. (18)).

Note that the values of quadrupole nuclear de-
formation parameter corresponding to the barrier
height minimum weakly depend on whether the de-
formations of higher multipolarities are taken into
account or not, both for symmetric and asymmetric
systems. The parameters of quadrupole deformation
that correspond to the minimum of a barrier height
for deformed nuclei grow with the mass and charge of
interacting nuclei. In the case of asymmetric nuclear
systems, the magnitude of quadrupole deformation
for heavy nuclei exceeds that for light nuclei (see Ta-
bles 1 and 2).

The values of octupole and hexadecapole deforma-
tion parameters corresponding to the minimum bar-
rier height for deformed nuclei also grow with the
mass and charge of interacting nuclei. For the asym-
metric systems of nuclei, the octupole and hexade-
capole deformation parameters for a heavy nucleus
exceed the corresponding value for a light nucleus (see
Tables 1 and 2).

The number of neutrons in nuclei with identical
numbers of protons affects the magnitudes of nu-
clear surface deformation parameters and the barrier
height minimum. The barrier height is the smallest
for the symmetric systems.

Hence, a nuclear deformation substantially reduces
the height of the barrier between the nuclei in com-
parison with the barrier between the spherical nu-
clei. This circumstance gives rise to a considerable
enhancement of a subbarrier fusion, which was ob-
served experimentally [2,4–6,12,14]. Therefore, while
researching the process of fusion in various dinuclear
systems and analyzing various near-barrier binary re-
actions, the account for dynamic deformations of nu-
clei is mandatory.
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МIНIМАЛЬНА ВИСОТА
БАР’ЄРУ ДЛЯ СИМЕТРИЧНИХ
ТА НЕСИМЕТРИЧНИХ СИСТЕМ ЯДЕР

Р е з ю м е

Дослiджено потенцiал взаємодiї симетричних та несиметри-
чних систем двох ядер з урахуванням параметрiв квадру-
польної, октупольної та гексадекапольної динамiчних де-
формацiй ядер. Розглянуто вплив динамiчних деформацiй
поверхнi ядра з рiзною мультипольнiстю на висоту бар’єра
та енергiю взаємодiї двох ядер, а також знайдено значен-
ня параметрiв таких деформацiй для бар’єрiв з найменшою
висотою.

592 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7


