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CONCERNING A CALCULATION
OF THE GRAND PARTITION FUNCTION
OF A FLUID MODELPACS 51.30.+i, 64.60.fd

The calculation method of the grand partition function of a simple fluid model in the frame
of a generalized lattice model, where each cell may contain a random number of particles,
is proposed. As an interaction potential between particles, the Morse potential is chosen. In
vcourse of calculations, the summation over the number of particles and the integration over
their coordinates are performed. Using the simplest approximation, the equation of state valid
in a wide temperature range is obtained. At temperatures lower than the critical one, the
presence of horizontal plots on the pressure vs density curve is found.
K e yw o r d s: coexistence curve, collective variables, reference system, simple fluid, equation
of state.

1. Introduction

The behavior of many-particle systems in both
gaseous and liquid phases has been attracting atten-
tion of scientists for over a century. The task of the
microscopic description of such a behavior remains
vital even today. Especially urgent is the problem of
describing a fluid in a vicinity of and below the critical
temperature 𝑇𝑐. Below 𝑇𝑐, two phases – gas at small
density and liquid at large density – can coexist. The
phenomenon of the transition of a system from the
state in one phase to that in another one is called the
first-order phase transition.

The significant contribution both to theoretical and
experimental researches of the critical behavior of liq-
uids was made by Leonid Bulavin. Particularly im-
portant results were received in experimental works,
for example in observing the influence of an ionic
admixture on the critical behavior of a binary mix-
ture [1], applying SANS (small-angle neutron scat-
tering) to explore the influence of a confinement on
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the critical behavior of an individual fluid [2]. The
outcomes of these investigations are presented in
books [3, 4]. The critical properties of fluids are in
the sphere of L. Bulavin’s interests [5], especially
the stratification processes in monotectic and eutectic
metal fusions [6]. His works devoted to the develop-
ment of the global isomorphism approach between the
Lennard-Jones fluids and the lattice gas (LG) model
for calculating the loci of critical points for such flu-
ids [7] and deriving the explicit relations between the
basic thermodynamic functions of the LG model and
the continuum fluid [8] are well-known.

Nowadays, most approaches to the description of
phase transitions and critical phenomena in fluids are
based on scaling ideas, universality hypothesis, and
renormalization group methods. The following theo-
ries are worth mentioning: methods taking into ac-
count the fluctuations within the van der Waals the-
ory [9], field-theoretical approach, which appeared to
be very powerful in describing the magnetic systems;
complete scaling approach [10, 11], which is essen-
tially a phenomenological theory; methods of inte-
gral equations, and, in particular, the self-consistent
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Ornstein–Zernike approximation (SCOZA) [12, 13];
perturbation series expansion, for example, the hi-
erarchic reference theory [14, 15]; non-perturbative
renormalization group approach [16]; collective vari-
ables method [17, 18], numerical methods, and com-
puter simulations.

The investigation of simple fluids is frequently car-
ried out, by using the concept of a reference sys-
tem. The system of hard spheres is often taken as
a reference system. The full pair-interaction poten-
tial is usually chosen in the form of a function that
does not possess the Fourier transform. The hard-
sphere potentia itselfl is such a function, as well as
the widely considered Lennard-Jones potential or the
more general Mie potential. However, the results can
be found in the literature for the systems of many par-
ticles interacting via a pair potential possessing the
Fourier transform. For instance, the Morse fluid has
already been studied: within the integral equation
approach [19] and by Monte Carlo simulations using
both the 𝑁𝑝𝑇 plus test particle method [20] and the
grand-canonical transition matrix method [21]. The
usage of such potentials may be sufficient for some
purposes, for example, to describe the liquid-vapor
coexistence in liquid metals [19, 21]. The descrip-
tion of such systems does not need the hard-sphere
reference system. Consequently, all the interaction –
short- and long-ranged – can be accounted in the
framework of a unified approach within the collective
variables method.

The objective of this paper is to propose a new
method for calculating the grand partition func-
tion with interacting potential possessing the Fourier
transform.

2. Problem Statement

Consider a classical system of identical particles inter-
acting via a pairwise additive potential 𝑈(|R|), where
R is the distance in a three-dimensional space. It is
assumed that, first, the interaction can be decom-
posed into two parts

𝑈(𝑅) = Ψ(𝑅)− 𝑈1(𝑅), (2.1)

where 𝑈1(𝑅) is the attractive part, and Ψ(𝑅) is the
repulsive one, and second, the full potential possesses
a well-behaved Fourier transform.

A physical observable dependent on the particle
coordinates is, in general, a functional of the micro-

scopic particle density defined as [17, 18]

�̂�(R) =

𝑁∑︁
𝑗=1

𝛿(R−R𝑗), (2.2)

where R𝑗 is the coordinate of the 𝑗-th particle, 𝑁 the
number of particles in the system. Imposing bound-
ary periodic conditions, one can represent �̂�(R) in the
form of a Fourier series

�̂�(R) =
1

𝑉

∑︁
k

𝜌ke
ikR, (2.3)

where
∑︀

k =
∑︀

𝑘𝑥

∑︀
𝑘𝑦

∑︀
𝑘𝑧

, 𝑘𝑖 = 2𝜋
𝐿 𝑛𝑖, 𝑖 = 𝑥, 𝑦, 𝑧;

𝑛𝑖 is an integer, 𝑉 = 𝐿3 is the periodicity volume
of all system’s properties, and

∫︀
𝑉
�̂�(R)dR = 𝑁 . The

Fourier transform 𝜌k has the form

𝜌k =

𝑁∑︁
𝑗=1

exp(−ikR𝑗), and 𝜌k=0 = 𝑁. (2.4)

Let the system be open. The grand partition function
(GPF) of the system with the interaction potential �̃�𝑘

has the form

Ξ =

∞∑︁
𝑁≥0

𝑧𝑁

𝑁 !

∫︁
(dR) exp

(︃
− 𝛽

2𝑉

∑︁
k

�̃�𝑘𝜌k𝜌k

)︃
. (2.5)

Here, �̃�𝑘 =
∫︀
𝑈(𝑅)eikRdR is the Fourier transform

of the interaction potential 𝑈(𝑅), 𝑧 = exp(𝛽𝜇′)
is the activity, 𝛽 is the inverse temperature, 𝜇′ =
= 𝜇+𝛽−1 ln[(2𝜋𝑚𝛽−1)3/2/ℎ3]+ 1

2𝑉

∑︀
k �̃�𝑘, where we

have used the equality 𝑈(0) =
∑︀

k �̃�𝑘/𝑉.
To perform further calculations, let us consider the

volume 𝑉 to be conditionally split into 𝑁𝐵 cells with
volume 𝑣 = 𝑉/𝑁𝐵 . Moreover, 𝑣 = 𝑐3, where 𝑐 is the
linear size of an elementary cell. Note that, in con-
trast to the lattice gas model (where it is assumed
that a cell can contain one particle or doesn’t con-
tain any particle), a cell can contain a random num-
ber of particles within this approach. The problem
of description of continuous systems (unlike lattice
systems) is related to the fact that the values of a
wave vector are not bounded from above, although
they change discretely. The latter fact is connected
with the restriction of a system to the space of coor-
dinates in the volume 𝑉 . In much the same way as
in lattice systems (where the wave vector is discrete
and bounded), some restrictions to the values of a
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wave vector 𝑘 < 𝐵 are introduced in the majority of
works on the description of fluid systems at a certain
stage of calculations [25]. Herewith, the procedure of
selecting 𝐵 is ambiguous, and different authors use
to choose 𝐵 in different ways [18, 26].

The behavior of a system near the point of the
first-order phase transition (PT) is determined by
the interaction potential. When the latter tends to
zero, one has a non-interactive gas, where the PT is
absent. The Fourier transform of potential (2.1) has
to decrease with increase in the wave vector as 𝑘−𝑛,
where 𝑛 ≥ 4. That is why the value �̃�(𝑘) = Ψ̃(𝑘)−
− �̃�1(𝑘) is small enough for sufficiently large values
of 𝑘. So, let us consider the behavior of a system con-
taining 𝑁 particles for some model potential �̃�𝐵(𝑘),
which coincides with �̃�(𝑘) for 𝑘 ∈ [0, 𝐵) and equal
to zero for each 𝑘 ≥ 𝐵. The value of 𝐵 will be de-
fined subsequently. At this stage of calculations, let
us assume that 𝐵 takes on a finite value.

The grand partition function with the interaction
potential �̃�𝐵(𝑘) has the form

Ξ =

∞∑︁
𝑁≥0

𝑧𝑁

𝑁 !

∫︁
(𝑑R) exp

(︃
− 𝛽

2𝑉

∑︁
k∈ℬΛ

�̃�𝐵(𝑘)𝜌k𝜌−k

)︃
.

(2.6)
The wave vector k takes on the values

𝐵Λ =

{︃
k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧)

⃒⃒⃒
𝑘𝑖 = −𝜋

𝑐
+

2𝜋

𝑐

𝑛𝑖

𝑁𝐵𝑖

,

𝑛𝑖=1, 2, ..., 𝑁𝐵𝑖
; 𝑖 = 𝑥, 𝑦, 𝑧; 𝑁𝐵=𝑁𝐵𝑥

𝑁𝐵𝑦
𝑁𝐵𝑧

}︃
.

(2.7)

In the collective variables (CV) representation [23],
relation (2.6) can be written as

Ξ =

∞∑︁
𝑁≥0

𝑧𝑁

𝑁 !

∫︁
(𝑑R)×

× (𝑑𝜌)𝑁𝐵𝑒
− 𝛽

2𝑉

∑︀
k∈ℬΛ

�̃�𝐵(𝑘)𝜌k𝜌−k

𝐽(𝜌− 𝜌), (2.8)

where the function of transition to the CV 𝜌k is es-
sentially a product of delta-functions

𝐽(𝜌− 𝜌) =
∏︁

𝑘∈ℬΛ

𝛿(𝜌k − 𝜌k) =

=

∫︁
(𝑑𝜈)𝑁𝐵𝑒

2𝜋𝑖
∑︀

𝑘∈ℬΛ

𝜈k(𝜌k−𝜌k)

. (2.9)

The GPF in the form of (2.8) was originally
proposed in [24] for a many-particle system with
Coulomb interaction, but has not got enough atten-
tion since then. The calculation of (2.8) was made in
works [17, 27], by using hard-spheres as a reference
system. For this purpose, the hard-sphere repulsive
interaction potential was added to the interaction po-
tential (2.1). In the current work, any additional po-
tential of interaction is used.

Before proceeding the calculation of (2.8), let us
perform two identity transformations. The former is

𝑒𝛽𝜇
′𝑁 = 𝑒𝛽𝑐𝜇

⋆𝑁 exp [𝛽(𝜇′ − 𝜇⋆(1 + 𝜏))𝜌0]. (2.10)

Here, 𝜇⋆ is some fixed value of chemical potential,
𝛽𝑐 = (𝑘B𝑇𝑐)

−1 is some inverse temperature, for which
the identity 𝛽𝑐 = 𝛽(1 + 𝜏) is valid, where

𝜏 =
𝑇 − 𝑇𝑐

𝑇𝑐
. (2.11)

In further calculations, the quantity 𝜌0 in (2.10) will
be substituted for 𝜌0, since expression (2.8) contains
the function 𝐽(𝜌 − 𝜌), which allows one to perform
this procedure.

The latter identity transformation consists in se-
lecting some part from the repulsive component of the
interaction potential by means of introducing some
parameter 𝑓 ∈ [0,1]:

�̃�𝐵(𝑘) = −�̃�1(𝑘) + 𝑓Ψ̃(𝑘) + (1− 𝑓)Ψ̃(𝑘). (2.12)

Let us consider the term

− 𝛽

2𝑉

∑︁
𝑘∈ℬΛ

�̃�𝐵(𝑘)𝜌k𝜌−k =
𝛽

2𝑉

∑︁
𝑘∈ℬΛ

𝑉𝐵(𝑘)𝜌k𝜌−k −

− 𝛽𝑐

2𝑉
(1− 𝑓)

∑︁
𝑘∈ℬΛ

Ψ̃(𝑘)𝜌k𝜌−k, (2.13)

where the effective potential 𝑉 (𝑘) takes the form

𝑉 (𝑘) = �̃�1(𝑘)− 𝑓Ψ̃(𝑘) + 𝜏(1− 𝑓)Ψ̃(𝑘), (2.14)

and the value Ψ̃(𝑘) > 0. As in the case of the former
transformation, let us replace 𝜌k by 𝜌k in the last
term of (2.13) and use the transformation

exp

[︃
− 𝛽𝑐

2𝑉

∑︁
k∈ℬΛ

(1− 𝑓)Ψ̃(𝑘)𝜌k𝜌−k

]︃
=

= 𝑔Ψ

∫︁
(𝑑𝜙)𝑁𝐵𝑒

− 𝑉
2𝛽𝑐

∑︀
k∈ℬΛ

𝜙k𝜙−k

(1−𝑓)Ψ̃(𝑘)
+𝑖

∑︀
k∈ℬΛ

𝜙k𝜌k

. (2.15)
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Here,

𝑔Ψ =
∏︁

k∈ℬΛ

(︂
2𝜋

𝛽𝑐

𝑉
(1− 𝑓)Ψ̃(𝑘)

)︂−1/2

. (2.16)

As a result of the identity transformations described
above, the grand partition function (2.8) takes on the
form

Ξ = 𝑔Ψ

∞∑︁
𝑁=0

𝑒𝛽𝑐𝜇
*𝑁

𝑁 !

∫︁
(𝑑𝜌)𝑁𝐵𝑒

𝛽
2𝑉

∑︀
k∈ℬΛ

𝑉 (𝑘)𝜌k𝜌−k

×

×
∫︁
(𝑑𝜙)𝑁𝐵𝑒

− 𝑉
2𝛽𝑐

∑︀
k∈ℬΛ

𝜙k𝜙−k

(1−𝑓)Ψ̃(𝑘)

∫︁
(𝑑R)𝑒

𝑖
∑︀

𝑘∈ℬΛ

𝜙k𝜌k

×

×
∫︁
(𝑑𝜈)𝑁𝐵𝑒

2𝜋𝑖
∑︀

k∈ℬΛ

𝜈k(𝜌k𝜌−k)

𝑒𝛽(𝜇
′−𝜇*(1+𝜏))𝜌0 . (2.17)

To perform further calculations, it is convenient to
change variables

𝜌k =
√︀

𝑁𝐵𝜌
′
k; 𝜈k = 𝜈′k/

√︀
𝑁𝐵 ; 𝜙k = 𝜙′

k/
√︀
𝑁𝐵 .

As a result, the representation of the grand partition
function in the space of collective variables can be
obtained in the form

Ξ = 𝑔Ψ

∫︁
(𝑑𝜌)𝑁𝐵×

× 𝑒
𝛽[𝜇′−𝜇*(1+𝜏)]𝜌0+

𝛽
2

∑︀
k∈ℬΛ

𝑉 (𝑘)𝜌k𝜌−k
∫︁
(𝑑𝜈)𝑁𝐵×

×
∫︁
(𝑑𝜙)𝑁𝐵𝑒

− 1
2𝛽𝑐

∑︀
k∈ℬΛ

𝜙k𝜙−k
(1−𝑓)Ψ(𝑘)

+2𝜋𝑖
∑︀

k∈ℬΛ

𝜈k𝜌k

𝐺(𝜈),

(2.18)

where the “stresses” of new variables are omitted, and
the following notation is introduced:

𝑉 (𝑘) = 𝑉 (𝑘)/𝑣, Ψ(𝑘) = Ψ̃(𝑘)/𝑣. (2.19)

The quantity 𝑔Ψ has the form

𝑔Ψ=𝑔Ψ/
√︀

𝑁𝐵=
∏︁

𝑘∈ℬΛ

(︂
2𝜋

𝛽𝑐

𝑣
(1− 𝑓)Ψ(𝑘)

)︂−1/2

. (2.20)

The value of 𝐺(𝜈) is a result of the integration over
coordinates and the summation over the number of
particles in the expression

𝐺(𝜈)=

∞∑︁
𝑁=0

(𝑧*)𝑁

𝑁 !

∫︁
(𝑑R) exp

[︃
−2𝜋𝑖

∑︁
𝑘∈ℬΛ

𝜈k𝜌k

]︃
, (2.21)

where the operator 𝜌k is given in (2.4). For 𝜈k, we
have

𝜈k = 𝜈k − 𝜙k/2𝜋. (2.22)

It is possible to perform the precise calculation of ex-
pression (2.21), as we have already presented in [25].
For this purpose, one should use an evident form of
the operator 𝜌k expressed by (2.4). As a result, one
obtains the expression

𝐺(𝜈)=exp

[︃ ∞∑︁
𝑛=0

(−2𝜋𝑖)𝑛

𝑛!
𝑧*𝑉

∑︁
𝑘1...𝑘𝑛

𝜈k1 ...𝜈k𝑛𝛿k1+...+k𝑛

]︃
.

It can be rewritten, by using the site representation
in the form

𝐺(𝜈) = 𝑒

∞∑︀
𝑛=0

(2𝜋𝑖)𝑛

𝑛! 𝛼* ∑︀
𝑙

𝜈𝑛
𝑙

= exp

[︃
𝛼*
∑︁
𝑙

𝑒2𝜋𝑖𝜈𝑙

]︃
, (2.23)

where

𝛼* = 𝑣𝑒𝛽𝑐𝜇
*
= 𝑣𝑧*. (2.24)

For 𝜈𝑙, we have

𝜈𝑙 = 𝜈𝑙 − 𝜙𝑙/2𝜋, (2.25)

where

𝜈𝑙 =
1√
𝑁𝐵

∑︁
k∈ℬΛ

𝜈k𝑒
−𝑖kl, 𝜙𝑙 =

1√
𝑁𝐵

∑︁
k∈ℬΛ

𝜙k𝑒
−𝑖kl.

(2.26)

Taking (2.23) into account, relation (2.18) yields

Ξ = 𝑔Ψ

∫︁
(𝑑𝜌)𝑁𝐵𝑒𝛽[𝜇

′−𝜇*(1+𝜏)]𝜌0 ×

× 𝑒

𝛽
2

∑︀
k∈ℬΛ

𝑉 (𝑘)𝜌k𝜌−k

𝐽(𝜌), (2.27)

where the expression for the Jacobian of the transi-
tion is

𝐽(𝜌) =

∫︁
(𝑑𝜈)𝑁𝐵𝑒

2𝜋𝑖
∑︀

k∈ℬΛ

𝜈k𝜌k

𝐹 (𝜈), (2.28)

where

𝐹 (𝜈)=

∫︁
(𝑑𝜙)𝑁𝐵𝑒

− 1
2𝛽𝑐

∑︀
k∈ℬΛ

𝜙k𝜙−k
(1−𝑓)Ψ(𝑘)

𝑒
𝛼* ∑︀

𝑙

𝑒
−2𝜋𝑖(𝜈𝑙−

𝜙𝑙
2𝜋)
.

(2.29)
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The notation of expression (2.29) is symbolic, since
𝜙k and 𝜈k must be understood as functions of the
variables 𝜙l and 𝜈l according to the equalities (2.26).

It is worth to say that the expressions given below
are precise, since the integration over the particle co-
ordinates 𝑅𝑖 and the summation over the number of
particles 𝑁 are performed without using any interac-
tion potentials and don’t need any approximations.

3. Calculation
of the Jacobian of the Transition

To perform further calculations, the interaction po-
tential is to be specified. Let us choose (2.1) as the
Morse potential, where 𝑈1(𝑟) is the attractive part,

𝑈1(𝑟) = 2𝜖𝑒−(𝑟−𝑅0)/𝛼, (3.1)

and Ψ(𝑟) is the repulsive component:

Ψ(𝑟) = 𝜖𝑒−2(𝑟−𝑅0)/𝛼. (3.2)

Here, the value of 𝜖 determines the interaction at
a distance 𝑅0 between particles, where the mini-
mal value of Φ(𝑟) can be reached, and the parame-
ter 𝛼 describes the effective radius of attraction. The
widespread use and a large number of the results of
numerical calculations [19–21] became the reason for
the choice of 𝑈(𝑟) exactly in such form. The Fourier
transform of this potential has the form

𝑈1(𝑘) =
𝑈1(0)

(1 + 𝛼2𝑘2)2
, Ψ(𝑘) =

Ψ(0)

(1 + 𝛼2𝑘2/4)2
, (3.3)

where

𝑈1(0) = 16𝜋𝜖
(︁𝛼
𝑐

)︁3
𝑒𝑅0/𝛼, Ψ(0) = 𝜖𝜋

(︁𝛼
𝑐

)︁3
𝑒2𝑅0/𝛼.

(3.4)

It should be noted that the sign of 𝑈(0) = Ψ(0)−
−𝑈1(0) depends on the parameter 𝑅0/𝛼. For each
ln 2 < 𝑅0/𝛼 < 4 ln 2, one has 𝑈(0) < 0, and, for
larger 𝑅0/𝛼, 𝑈(0) > 0.

One can find the Jacobian 𝐽(𝜌) of the transition to
the collective variables from (2.28) after calculating
𝐹 (𝜈). This can be performed approximately by sub-
stituting Ψ(𝑘) in (2.33) by its average value Ψ̄(𝑘), for
example, by the integral average

Ψ(𝑘) → Ψ̄ ≡ ⟨Ψ(𝑘)⟩ =

𝐵∫︀
0

𝑑𝑘𝑘2Ψ(𝑘)

𝐵∫︀
0

𝑑𝑘𝑘2
. (3.5)

In principle, another averaging can be used. After this
operation, the expression for 𝐹 (𝜈) becomes factorized

𝐹 (𝜈) =
∏︁
𝑙

𝐹𝑙(𝜈), (3.6)

where

𝐹𝑙(𝜈) =

∞∫︁
−∞

𝑑𝜙𝑙 exp

[︂
−𝜙2

𝑙

2𝛽𝑐(1− 𝑓)Ψ̄

]︂
×

× exp
[︁
𝛼*𝑒−2𝜋𝑖(𝜈𝑙−

𝜙𝑙
2𝜋)
]︁
. (3.7)

Expression (3.7) can be represented in the form

𝐹𝑙(𝜈) =

∞∫︁
−∞

𝑑𝜙𝑙𝑒
−𝜙2

𝑙
2𝛽𝑐(1−𝑓)Ψ̄

∞∑︁
𝑚=0

(𝛼*)𝑚

𝑚!
𝑒−2𝜋𝑖𝑚(𝜈𝑙−

𝜙𝑙
2𝜋),

(3.8)

where the representation 𝑒𝑥 =
∑︀∞

𝑚=0
𝑥𝑚

𝑚! is
used. Obviously, the integration over 𝜙𝑙 in (3.8) can
be performed:
∞∫︁

−∞

𝑑𝜙𝑙𝑒
−𝑎𝜙2

𝑙 𝑒𝑖𝑚𝜙𝑙 = (𝜋/𝑎)
1/2

exp
[︀
−𝑝𝑚2

]︀
, (3.9)

where

𝑝 = 𝛽𝑐Ψ̄(1− 𝑓)/2, (3.10)

and

𝑎 =
(︀
2𝛽𝑐(1− 𝑓)Ψ̄

)︀−1
.

As a result, we have

𝐹𝑙(𝜈) =

∞∑︁
𝑚=0

(𝛼*)𝑚

𝑚!
𝑒−𝑝𝑚2

𝑒−2𝜋𝑖𝑚𝜈𝑙 (4𝜋𝑝)
1/2

, (3.11)

where the relation (𝜋/𝑎)1/2 = (4𝜋𝑝)1/2 is used.
Expression (3.11) can be represented in the form of

a cumulant expansion

𝐹𝑙(𝜈) = exp

[︃ ∞∑︁
𝑛=0

(−2𝜋𝑖)𝑛

𝑛!
ℳ𝑛𝜈

𝑛
l

]︃
, (3.12)

and the cumulants ℳ𝑛 can be found as functions
of 𝛼* and the parameter 𝑝. This calculation is to be
performed for each ℳ𝑛 according to the equalities

𝜕𝑛𝐹𝑙(𝜈)

𝜕𝜈𝑛𝑙

⃒⃒⃒⃒
⃒
𝜈𝑙=0

=
𝜕𝑛𝐹𝑙(𝜈)

𝜕𝜈𝑛𝑙

⃒⃒⃒⃒
⃒
𝜈𝑙=0

. (3.13)
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As a result, one obtains

𝑒ℳ0 = (4𝜋𝑝)1/2𝑇0(𝛼
*, 𝑝);

ℳ0 =
1

2
ln(4𝜋𝑝) + ln𝑇0(𝛼

*, 𝑝),

ℳ1 = 𝑇1/𝑇0, ℳ2 = 𝑇2/𝑇0 −ℳ2
1,

ℳ3 = 𝑇3/𝑇0 −ℳ3
1 − 3ℳ1ℳ2,

ℳ4 = 𝑇4/𝑇0 −ℳ4
1 − 6ℳ2

1ℳ2 − 4ℳ1ℳ3 − 3ℳ2
2,

ℳ5 = 𝑇5/𝑇0 −ℳ5
1 − 10ℳ2

1ℳ3 − 10ℳ3
1ℳ2 −

− 15ℳ1ℳ2
2 − 5ℳ1ℳ4 − 10ℳ2ℳ3,

ℳ6 = 𝑇6/𝑇0 −ℳ6
1 − 15ℳ4

1ℳ2 − 20ℳ3
1ℳ3 −

− 15ℳ2
1ℳ4 − 45ℳ2

1ℳ2
2 − 60ℳ1ℳ2ℳ3 −

− 6ℳ1ℳ5 − 15ℳ3
2 − 15ℳ2ℳ4 − 10ℳ2

3. (3.14)

Here, we used the special functions

𝑇𝑛(𝛼
*, 𝑝) =

∞∑︁
𝑚=0

(𝛼*)𝑚

𝑚!
𝑚𝑛𝑒−𝑝𝑚2

. (3.15)

They have form of a rapidly convergent series, since
the parameter 𝑝 from (3.10) takes on only positive
values, and 𝛼* = 𝑣 exp(𝛽𝑐𝜇

*).
In view of (3.12), one can obtain the following ex-

pression for the Jacobian:

𝐽(𝜌) =
∏︁
𝑙

𝐽𝑙(𝜌𝑙), (3.16)

where

𝐽𝑙(𝜌𝑙)=

∞∫︁
−∞

𝑑𝜈𝑙𝑒
2𝜋𝑖𝜈𝑙𝜌𝑙 exp

[︃
𝑛0∑︁
𝑛=0

(−2𝜋𝑖)𝑛

𝑛!
ℳ𝑛𝜈

𝑛
𝑙

]︃
ℎ.

(3.17)

There is a polynomial in degrees of a real variable 𝜈𝑙
in the index of the exponent. The convergence of the
integral in this variable is provided by even powers. It
is easy to see, by representing (3.17) in the form

𝐽𝑙(𝜌𝑙)=

∞∫︁
−∞

𝑑𝜈𝑙𝑒
2𝜋𝑖𝜈𝑙𝜌𝑙𝑒𝑓(𝑥) (cos[𝑓1(𝑥)]− 𝑖 sin[𝑓1(𝑥)]),

(3.18)

where

𝑓(𝑥) = − (2𝜋)2

2
ℳ2𝑥

2 +
(2𝜋)4

4!
ℳ4𝑥

4 − (2𝜋)6

6!
ℳ6𝑥

6,

𝑓1(𝑥) = 2𝜋ℳ1𝑥− (2𝜋)3

3!
ℳ3𝑥

3 +
(2𝜋)5

5!
ℳ5𝑥

5. (3.19)

Here, 𝑛0 = 6 is assigned to provide the definite-
ness. So, the approximation used in [27] is applied.

Expression (3.18) can be represented in the form

𝐽𝑙(𝜌𝑙) = exp

[︃
−

𝑛0∑︁
𝑛=0

𝑎𝑛
𝑛!

𝜌𝑛𝑙

]︃
(3.20)

as a result of the integration over vvariables
𝜈𝑙. Herewith, the coefficients 𝑎𝑛 are real values and
have form

𝑎0 = ln(2𝜋)− ln 𝐼0, 𝑎1 = −𝐽1/𝐼0, 𝑎2 = 𝐼2/𝐼0 + 𝑎21,

𝑎3 = 𝐽3/𝐼0 − 𝑎31 + 3𝑎1𝑎2, (3.21)

𝑎4 = −𝐼4/𝐼0 + 𝑎41 − 6𝑎21𝑎2 + 4𝑎1𝑎3 + 3𝑎22.

Here, the following notations are used:

𝐼𝑛 =

∞∫︁
−∞

𝑑𝑥𝑥𝑛 cos[𝑓1(𝑥)]𝑒
𝑓(𝑥),

𝐽𝑛 =

∞∫︁
−∞

𝑑𝑥𝑥𝑛 sin[𝑓1(𝑥)]𝑒
𝑓(𝑥).

(3.22)

As was said above, the convergence of the integrals
in (3.22) occurs for all values of

ℳ2 > 0, ℳ4 < 0, ℳ6 > 0. (3.23)

The condition ℳ6 > 0 is sufficient for the existence
of the quantities 𝐼𝑛(𝛼⋆, 𝑝) and 𝐽𝑛(𝛼

⋆, 𝑝). The results
of calculations show that ℳ2 > 0 for any values of 𝛼⋆

and 𝑝. Note that 𝛼⋆ = 𝑣𝑒𝛽𝑐𝜇
⋆

and 𝑝 from expression
(3.10) take on real positive values.

The cumulants ℳ4 and ℳ6 are real, but they may
take on both positive and negative values. The depen-
dence of these cumulants on 𝛼⋆ and 𝑝 is presented
in Fig. 1. It is easy to see that there exists the re-
gion of the values of parameters 0 < 𝛼⋆ < 25 and
0.1 < 𝑝 < 3, which satisfy condition (3.23). Here,
ℳ4 < 0 and ℳ6 > 0, which allows one to find the
corresponding values of 𝑎𝑛.

An example of the values of cumulants ℳ𝑛 and
the corresponding coefficients 𝑎𝑛 for 𝑅0/𝛼 = 3.7 ln 2,
𝛼⋆ = 11, and 𝑝 = 0.11 is given below. The choice of
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such values of parameters is associated with the pro-
cedure of self-consistency described in Appendix. We
take

ℳ0 = 6.1362, ℳ1 = 4.1588, ℳ2 = 2.2040,

ℳ3 = 0.6023, ℳ4 = −0.1498, ℳ5 = −0.0529,

ℳ6 = 0.1523, (3.24)

𝑎0 = −0.1640, 𝑎1 = −2.9664, 𝑎2 = 1.8402,

𝑎3 = −2.3378, 𝑎4 = 6.2845.

It should be noted that the obtained values of
coefficients (3.24) correspond to a pair of parame-
ters. One of them, namely the parameter 𝑝, is de-
fined by expression (3.10) and the value of 𝑓 , which
determines the reference system, and by the criti-
cal temperature 𝛽𝑐 = 1/𝑘𝑇𝑐. So, if some value of 𝑓
(𝑓 = 0.1488) is set, and if 𝑇𝑐 is determined, one can
obtain only one fixed value of 𝑝 (Appendix).

Summing up the calculations performed above, we
can write a functional representation of the grand par-
tition function of a fluid model. The substitution of
(3.20) in (2.27) gives

Ξ = 𝑔Ψ𝑒
𝑁𝐵ℳ0

∫︁
(𝑑𝜌)𝑁𝐵𝑒

√
𝑁𝐵𝛽[𝜇′−𝜇*(1+𝜏)]𝜌0 ×

× exp

[︃
𝛽

2

∑︁
𝑘

𝑉 (𝑘)𝜌k𝜌−k

]︃∏︁
𝑙

(︃
𝑒
−

𝑛0∑︀
𝑛=0

𝑎𝑛
𝑛! 𝜌

𝑛
𝑙

)︃
. (3.25)

Since 𝜌𝑙 =
1√
𝑁𝐵

∑︀
𝑘

𝜌k𝑒
𝑖kl is the site representation

of the collective variable 𝜌k, one has

Ξ = 𝑔Ψ𝑒
(ℳ0−𝑎0)𝑁𝐵

∫︁
(𝑑𝜌)𝑁𝐵 ×

× exp

[︃√︀
𝑁𝐵(𝛽[𝜇

′ − 𝜇*(1 + 𝜏)]− 𝑎1)𝜌0 −

− 1

2

∑︁
𝑘

𝑑(𝑘)𝜌k𝜌−k − 1

3!

𝑎3√
𝑁𝐵

×

×
∑︁

𝑘1,..., 𝑘3

𝜌𝑘1,..., 𝑘3
𝛿𝑘1+...+𝑘3

−

− 1

4!

𝑎4
𝑁𝐵

∑︁
𝑘1,..., 𝑘4

𝜌𝑘1,..., 𝑘4
𝛿𝑘1+...+𝑘4

]︃
. (3.26)

Fig. 1. Regions of the cumulant values ℳ6 > 0 (white colour)
depending on 𝛼⋆ and 𝑝

Here, 𝑑(𝑘) = 𝑎2 − 𝛽𝑉 (𝑘), (3.27)

where 𝑉 (𝑘) expressed by (2.19) is the Fourier trans-
form of some effective interaction potential.

The further calculation of (3.26) can be performed,
by using the method of calculation of the grand par-
tition function of the Ising model in an external field
proposed in [28]. Herewith, the role of an external
field is played by

ℎ = 𝛽𝜇′ − 𝛽𝜇*(1 + 𝜏)− 𝑎1. (3.28)

4. The Grand Partition Function
and the Thermodynamic Characteristics

Expression (3.26) allows one to calculate the depen-
dence of the pressure 𝑃 on the temperature 𝑇 and
the chemical potential 𝜇′, by applying the relation

𝑃𝑉 = 𝑘𝑇 ln Ξ. (4.1)

The average number of particles �̄� can be found, if
the grand partition function is known:

�̄� =
𝜕 ln Ξ

𝜕𝛽𝜇
. (4.2)

The latter expression allows one to express the chem-
ical potential in terms of the number of particles or
relative density

�̄� =
�̄�

𝑁𝐵
=

(︂
�̄�

𝑉

)︂
𝑣, (4.3)
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where 𝑣 is the volume of an elementary cell and a
parameter of the model in use.

Uniting equalities (4.1) and (4.2), one can find the
dependence of the pressure on the temperature 𝑇 and
the relative density �̄�, which is to be the equation of
state of the model under study.

One of the methods of calculation of Ξ consists in
the substitution of variables in (3.26):

𝜌k = 𝜂k + 𝑛𝑐

√︀
𝑁𝐵𝛿k. (4.4)

As a result, one obtains

Ξ = 𝑔Ψ𝑒
𝑁𝐵(ℳ0−𝑎0+𝐸0(𝜇))×

×
∫︁

exp

[︃
𝑀
√︀
𝑁𝐵𝜂0 −

1

2

∑︁
𝑘

𝑑(𝑘)𝜂k𝜂−k −

− 𝑎4
4!

1√
𝑁𝐵

∑︁
𝑘1,..., 𝑘4

𝜂𝑘1
...𝜂𝑘4

𝛿𝑘1+...+𝑘4

]︃
(𝑑𝜂)𝑁𝐵 . (4.5)

Here, we introduced the notations

𝑀 = 𝛽𝜇′ − 𝛽𝜇*(1 + 𝜏)− �̃�1,

�̃�1 = 𝑎1 + 𝑛𝑐𝑑(0)− 𝑛3
𝑐

𝑎4
3
,

𝑑(𝑘) = �̃�′2 − 𝛽𝑉 (𝑘), (4.6)

�̃�′2 = 𝑎2 − 𝑛2
𝑐

𝑎4
2
.

The value of shift

𝑛𝑐 = −𝑎3/𝑎4. (4.7)

For 𝐸0(𝜇), one obtains the expression

𝐸0(𝜇) = 𝑀𝑛𝑐 +
1

2
𝑑(0)𝑛2

𝑐 +
𝑎4
24

𝑛4
𝑐 . (4.8)

In common with the former expression, we have

�̃�1 = 𝑎1 + 𝑑(0)𝑛𝑐 +
𝑎4
6
𝑛3
𝑐 . (4.9)

Let us consider the simplest approximation in the
calculation of Ξ expressed by (3.26), the so-called
zero-mode approximation (𝜌𝑘 = 0 for 𝑘 ̸= 0; 𝜌0 ̸= 0):

ln Ξ0 = ln 𝑔Ψ+𝑁𝐵

(︀
ℳ0−𝑎0+𝐸0(𝜇)

)︀
+𝐸(𝜌0), (4.10)

where Ξ0 denotes the grand partition function (4.5)
in the approximation mentioned above, and

𝐸(𝜌0) = 𝑀𝜌0 −
1

2
𝑑(0)𝜌20 −

𝑎4
24

𝜌40, (4.11)

where 𝜌0 is a solution of the equation

𝑀 − 𝑑(0)𝜌0 −
𝑎4
6
𝜌30 = 0. (4.12)

If several solutions 𝜌0 exist, the one leading to the
maximal value of 𝐸(𝜌0) in (4.11) should be chosen.

The method of steepest descent is used for the cal-
culation of (4.10). That is why the second derivative
of 𝐸(𝜌0) has to be negative, and, consequently, every
solution 𝜌0 has to satisfy the condition

𝜌0 > 𝜌00, 𝜌00 =

(︃
−2𝑑(0)

𝑎4

)︃1/2

. (4.13)

Such situation takes place barely if 𝑇 < 𝑇𝑐, where 𝜌00
is a real value. For all 𝑇 > 𝑇𝑐, Eq. (4.12) has only one
solution.

5. Thermodynamic Potential
of a Simple Fluid in Frames
of the Simplest Approximation

All further calculations concern the case where the
fluctuation effects are not considered. So, the zero
model approximation is in use. In view of equality
(4.12), it should be noted that, in case of 𝑀 =0, the
critical temperature 𝑇𝑐 is determined from the condi-
tion

𝑑(0)
⃒⃒⃒
𝑇=𝑇𝑐

= 0. (5.1)

Using (4.6), one can find

𝛽𝑐 =
�̃�′2

𝑉 (0, 𝑇𝑐)
, 𝑘𝑇𝑐 =

𝑉 (0, 𝑇𝑐)

�̃�′2
. (5.2)

For 𝑇 ̸= 𝑇𝑐, one obtains

𝑑(0) = �̃�2
𝜏

1 + 𝜏
, where �̃�2 = �̃�′2

16𝑒−𝑅0/𝛼 − 1

16𝑒−𝑅0/𝛼 − 𝑓
. (5.3)

5.1. The case 𝑇 = 𝑇𝑐

It should be noted at once that the correct inves-
tigation of the behavior of a simple fluid at 𝜏 = 0
should be carried out, by considering the fluctuation
effects, which cause the emergence of the renormal-
ization group symmetry. But even in frames of a sim-
plified consideration, the value 𝑇𝑐 should be fixed (at
least approximately), and then, only, the behavior of
the system at temperatures different from 𝑇𝑐 should
be examined.
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Assigning 𝑑(0) = 0 and using (4.1), one obtains

𝑃𝑉 = 𝑘𝑇𝑐 ln Ξ𝑐, (5.4)

where

ln Ξ𝑐=ln 𝑔
(𝑐)
Ψ +𝑁𝐵

(︀
ℳ0− 𝑎0+𝐸0𝑐(𝜇)+𝐸𝑐(𝜌0𝑐)

)︀
. (5.5)

Here,

𝐸0𝑐(𝜇) = 𝑀𝑐𝑛𝑐 +
𝑎4
24

𝑛4
𝑐 ; 𝐸𝑐(𝜌0) = 𝑀𝑐𝜌0𝑐 −

𝑎4
24

𝜌40𝑐.

The value 𝜌0𝑐 is determined, by using (4.12). In the
case of 𝜏 = 0, one can find

𝜌0𝑐 =

(︂
6𝑀𝑐

𝑎4

)︂1/3
. (5.6)

The average number of particles in the case of 𝜏 = 0
can be found, by using (4.2) and (4.3), where expres-
sion (5.5) is used as Ξ𝑐. One has

�̄� = 𝑛𝑐 + 𝜌0𝑐. (5.7)

So, one can find an evident dependence of the chemi-
cal potential 𝑀𝑐 on the density at 𝑇 = 𝑇𝑐 from equal-
ities (5.6) and (5.7):

𝑀𝑐 =
𝑎4
6
(�̄�− 𝑛𝑐)

3. (5.8)

Let us find the grand thermodynamic potential
Ω(𝑇0, 𝜇) of a fluid:

Ω = −𝑘𝑇 ln Ξ. (5.9)

In the case of 𝑇 = 𝑇𝑐, one has the expression

Ω = −𝑘𝑇𝑁𝐵

[︁
𝑓𝑐 + �̄�𝑀𝑐 −

𝑎4
24

(�̄�− 𝑛𝑐)
4
]︁
, (5.10)

where

𝑓𝑐 =
1

𝑁𝐵
ln 𝑔Ψ +ℳ0 − 𝑎0 +

𝑎4
4!
𝑛4
𝑐 . (5.11)

The chemical potential 𝑀𝑐 can be excluded from ex-
pression (5.10), by using equality (5.8). In this case,

Ω=−𝑘𝑇𝑁𝐵

[︁
𝑓𝑐+

𝑎4
6
�̄�(�̄�−𝑛𝑐)

3− 𝑎4
24

(�̄�−𝑛𝑐)
4
]︁
. (5.12)

The equation of state at 𝑇 = 𝑇𝑐 can be found, by
using (5.4) and excluding the chemical potential 𝑀𝑐:

𝑃𝑣

𝑘𝑇𝑐
= 𝑓𝑐 +

𝑎4
24

�̄�(�̄�− 𝑛𝑐)
3 − 𝑎4

24
(�̄�− 𝑛𝑐)

4. (5.13)

Let us find the free energy 𝐹 = Ω+𝜇�̄� of a fluid. The
grand thermodynamic potential is a function of the
temperature, volume, and chemical potential:

𝑑Ω = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 −𝑁𝑑𝜇. (5.14)

The pressure calculated in frames of this representa-
tion has the form

𝑃 = −
(︂
𝜕Ω

𝜕𝑉

)︂
𝑇, 𝜇

. (5.15)

The free energy is a function of the temperature, vol-
ume, and average number of particles:

𝑑𝐹 = −𝑆𝑑𝜏 − 𝑃𝑑𝑉 + 𝜇𝑑�̄�. (5.16)

That is why the pressure is given by the expression

𝑃 = −
(︂
𝜕𝐹

𝜕𝑉

)︂
𝑇, �̄�

. (5.17)

According to (4.6), one has

𝛽𝜇′ = 𝑀 + 𝛽𝜇⋆(1 + 𝜏)− �̃�1. (5.18)

So, at 𝑇 = 𝑇𝑐, one can find 𝐹 = Ω+𝑁𝐵�̄�𝜇 or

𝐹 = −𝑘𝑇𝑐
𝑉

𝑣

[︁
𝑓𝑐 + 𝑓2𝑐�̄�− 𝑎4

24
(�̄�− 𝑛𝑐)

4
]︁
, (5.19)

where

𝑓2𝑐 = �̃�1 − 𝛽𝑐𝜇
⋆. (5.20)

The calculation of the pressure 𝑃 with regard for
(5.17) and (5.19) results in (5.13). As should be ex-
pected, the calculation of the equation of state at
𝑇 = 𝑇𝑐 is not dependent on the way it was deduced
(formulas (5.15) and (5.17)) and has the form (5.13).

The critical value of pressure can be found, by using
(5.13) and the relation �̄� = 𝑛𝑐. So, one has

𝑃𝑐 =
𝑘𝑇𝑐𝑓𝑐
𝑣

, (5.21)

where the value of 𝑓𝑐 is given in (5.11).

5.2. The case 𝑇 > 𝑇𝑐

According to (4.10), the expression for the simplest
approximation of the grand partition function at 𝑇 >
> 𝑇𝑐 has the form

ln Ξ0=ln 𝑔Ψ+𝑁𝐵

(︀
ℳ0 − 𝑎0 + 𝐸0(𝜇)+𝐸(𝜌0)

)︀
, (5.22)
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Fig. 2. Dependence of the solution 𝜌0 on the chemical poten-
tial 𝑀 at 𝑇 > 𝑇𝑐 in the case where 𝑅0/𝛼 = 3.7 ln 2, 𝛼⋆ = 11,

and 𝑝 = 0.11
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Fig. 3. Dependence of 𝑀 on the density �̄� at 𝑇 > 𝑇𝑐 for
temperatures 𝜏1 = 0.01 (curve 1), 𝜏2 = 0.1 (curve 2), 𝜏3 = 1

(curve 3)

where

𝐸(𝜌0) = 𝑀𝜌0 −
1

2
𝑑(0)𝜌20 −

𝑎4
24

𝜌40, (5.23)

𝐸0(𝜇) = 𝑀𝑛𝑐 +
1

2
𝑑(0)𝑛2

𝑐 +
𝑎4
24

𝑛4
𝑐 , (5.24)

and 𝜌0 is the solution of Eq. (4.12). The uniqueness
of the solution of this equation, which is written in
reduced form as

𝜌30 + 𝑝𝜌0 + 𝑞 = 0, (5.25)

where

𝑝 =
6𝑑(0)

𝑎4
, 𝑞 = −6𝑀

𝑎4
, (5.26)

is provided with the positive discriminant (here,
𝑑(0) > 0)

𝑄 =

(︃
2𝑑(0)

𝑎4

)︃3
+

(︃
3𝑀

𝑎4

)︃2
. (5.27)

It should be noted that the sign of 𝑄 doesn’t depend
on the sign of the chemical potential. Among all the
solutions, only one is real:

𝜌0 =

(︂
3𝑀

𝑎4
+
√︀
𝑄

)︂1/3
+

(︂
3𝑀

𝑎4
−
√︀

𝑄

)︂1/3
. (5.28)

This equation defines (with respect to (5.7)) the de-
pendence of the chemical potential 𝑀 on the density
and the temperature.

The diagram of the dependence of 𝜌0 on 𝑀 is pre-
sented in Fig. 2 at 𝑇 > 𝑇𝑐.

Note that the region 𝑀 > 0 is referred to the pos-
itive values of 𝜌0 = �̄� − 𝑛𝑐. At �̄� < 𝑛𝑐, one obtains
𝑀 < 0. The conversion of the chemical potential 𝑀
into zero takes place at �̄� = 𝑛𝑐.

The dependence of the chemical potential 𝑀 on the
density at 𝑇 > 𝑇𝑐 can be defined directly from (5.25),
taking into account that 𝜌0 = �̄�− 𝑛𝑐. Then

𝑀 = 𝑑(0)(�̄�− 𝑛𝑐) +
𝑎4
6
(�̄�− 𝑛𝑐)

3. (5.29)

In contrast to (5.8), the linear term in the density
is present here, and it becomes a main one in the
high-temperature region. As 𝑇 → 𝑇𝑐, the cubic de-
pendence of 𝑀 on the density is obtained (Fig. 3).

The grand thermodynamic potential of a fluid at
𝑇 > 𝑇𝑐 has the form

Ω = −𝑘𝑇𝑁𝐵

[︃
𝑓𝑐 +

𝑑(0)

2
𝑛2
𝑐 +𝑀�̄�−

− 𝑑(0)

2
(�̄�− 𝑛𝑐)

2 − 𝑎4
24

(�̄�− 𝑛𝑐)
4

]︃
, (5.30)

where

𝑓𝑐 =
1

𝑁𝐵
ln 𝑔Ψ +ℳ0 − 𝑎0 +

𝑎4
24

𝑛4
𝑐 +

1

2
𝑑(0)𝑛2

𝑐 . (5.31)

Corresponding to (5.30), the free energy doesn’t
contain the chemical potential and has the form

𝐹 = −𝑘𝑇
𝑉

𝑣

[︃
𝑓𝑐 + 𝑓2�̄�− 𝑑(0)

2
𝑛2
𝑐−
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−𝑑(0)

2
(�̄�− 𝑛𝑐)

2 − 𝑎4
24

(�̄�− 𝑛𝑐)
4

]︃
, (5.32)

where

𝑓2 = �̃�1 − 𝛽𝜇*(1 + 𝜏). (5.33)

The equation of state at 𝑇 > 𝑇𝑐 can be found, by
using (5.30) and substituting the value 𝑀 expressed
by (5.29):

𝑃𝑣

𝑘𝑇
= 𝑓𝑐 +

�̃�2
2

𝜏

1 + 𝜏
�̄�2 +

+
𝑎4
6
(�̄�− 𝑛𝑐)

3 − 𝑎4
24

(�̄�− 𝑛𝑐)
4. (5.34)

The dependence of the pressure on the density �̄� at
temperatures 𝑇 ≥ 𝑇𝑐 is presented in Fig. 4.

Expression (5.34) allows one to depict a 3-
dimensional diagram of the pressure as a function of
the average density and the reduced temperature 𝜏
in the region 𝑇 ≥ 𝑇𝑐 (Fig. 5).

The equation of state expressed by (5.34) can be
represented in a reduced form. For this purpose, the
following values are introduced:

𝑃 =
𝑃

𝑃𝑐
, 𝑡 =

𝑇

𝑇𝑐
, 𝜂 =

�̄�

𝑛𝑐
. (5.35)

Then (5.34) takes on the form

𝑃 = 1 + 𝑃1(𝑡− 1)𝜂2 + 𝑃2(1 + 3𝜂)(𝜂 − 1)3, (5.36)

where the following notations are used:

𝑃1 =
�̃�2𝑛

2
𝑐

2𝑓𝑐
, 𝑃2 =

�̃�2𝑛
4
𝑐

24𝑓𝑐
. (5.37)

The curve of dependence (5.36) of the pressure on the
density 𝜂 has the inflexion point at 𝜂 = 1 and 𝑇 = 𝑇𝑐

and reaches its minimum at 𝜂=0, which follows from
the relations

𝜕𝑃

𝜕𝜂
= 2𝜂

(︀
𝑃1(𝑡− 1) + 6𝑃2(𝜂 − 1)2

)︀
, (5.38)

𝜕2𝑃

𝜕𝜂2
= 2𝑃1(𝑡− 1) + 12𝑃2(1− 4𝜂 + 3𝜂2). (5.39)

It is easy to see that, for all 𝑡 > 1, the first derivative
turns into zero at 𝜂 = 0 only. In the case of 𝑡 = 1,
there is an additional inflexion point 𝜂 = 1. Indeed,
at 𝑡 = 1 and 𝜂 = 1, the second derivative also turns
into zero.

6. Equation of State at 𝑇 < 𝑇𝑐

As was shown above, the pressure 𝑃 expressed in
(5.36) is a gradually increasing function of the density
𝜂 in the temperature region 𝑇 > 𝑇𝑐. It is expected to
observe the first-order phase transition at tempera-
tures 𝑇 < 𝑇𝑐, that must show to turn the susceptibil-
ity into infinity for the certain values of density.

Let us calculate the grand partition function (4.5)
in the simplest approximation at 𝑇 < 𝑇𝑐. The follow-
ing expression is valid:

ln Ξ0=ln 𝑔′Ψ𝑁𝐵

(︀
ℳ0−𝑎0+𝐸0(𝜇)

)︀
+𝑁𝐵𝐸(𝜌0𝑖). (6.1)

Here,

𝐸0(𝜌0𝑖) = 𝑀𝜌0𝑖 −
�̃�2
2

𝜏

𝜏 + 1
𝜌20𝑖 −

𝑎4
24

𝜌40𝑖, (6.2)
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Fig. 4. Dependence of the pressure 𝑃 on the density �̄� at
𝜏 = 0 (curve 1), 𝜏 = 0.01 (curve 2), 𝜏 = 0.1 (curve 3), and
𝜏 = 1.5 (curve 4)

Fig. 5. Dependence of the pressure 𝑃 on the average density
�̄� and the reduced temperature 𝜏 in the region 𝑇 > 𝑇𝑐

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 8 815



M.P. Kozlovskii, O.A. Dobush, R.V. Romanik

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.2 –0.1 0.1 0.2

M

ρ
0

1

3

2

2

Fig. 6. Accordance between the density of a fluid and the
values of chemical potential 𝑀 ; the gaseous phase – solid line
1; the liquid phase – 2

herewith 𝜌0𝑖 are solutions of the equation

𝑀 − �̃�2
𝜏

1 + 𝜏
𝜌0𝑖 −

𝑎4
6
𝜌30𝑖 = 0. (6.3)

Unlike the case of 𝑇 > 𝑇𝑐, Eq. (6.3) can possess more
than one real root. In this case for 𝐸(𝜌0𝑖) in expres-
sion (6.2), one should choose 𝜌0𝑖 corresponding to the
maximal value of 𝐸(𝜌0𝑖), since the calculation of (6.1)
is performed, by using the method of steepest descent,
which foresees such a condition.

Equation (6.3) can be written in a reduced form:

𝜌30𝑖 + 𝑝𝜌0𝑖 + 𝑞 = 0, (6.4)

where the coefficients 𝑝 and 𝑞 are defined in (5.26).
Let us find the marginal value of the chemical po-

tential |𝑀𝑞|, at which the equality 𝑄 = 0 is fulfilled.
According to (5.27), one has

𝑀𝑞 =
𝑎4
3

(︃
−2𝑑(0)

𝑎4

)︃3/2
. (6.5)

For all values of |𝑀 | > 𝑀𝑞, the discriminant 𝑄 > 0,
and Eq. (6.4) has the single real root. In the case of
|𝑀 | < 𝑀𝑞 (𝑄 < 0), there are three real solutions.

Let us consider the case of 𝑄 ≥ 0 at 𝑇 < 𝑇𝑐, where
the single root exists, in detail. Using (5.28) at |𝑀 | =
= 𝑀𝑞, one can find

𝜌0𝑟 =

(︂
24

𝑎4
𝑀𝑞

)︂1/3
. (6.6)

Since 𝜌0𝑖 = �̄� − 𝑛𝑐, the value of density 𝑛𝑐, which
realizes at the value of the chemical potential |𝑀 | =
= 𝑀𝑞, can be found as

𝑛2 = 𝑛𝑐 + 𝑛𝑔, (6.7)

where

𝑛𝑔 =

(︂
−8�̃�2

𝑎4

𝜏

𝜏 + 1

)︂1/2
. (6.8)

In the course of a further increase in the chemical
potential 𝑀 (|𝑀 | > 𝑀𝑞) at 𝑇 < 𝑇𝑐, the density can
be defined from the relation

�̄� = 𝑛𝑐 +

(︂
3𝑀

𝑎4
+𝑄

1
2

)︂1/3
+

(︂
3𝑀

𝑎4
−𝑄

1
2

)︂1/3
. (6.9)

The equation of state of a fluid at 𝑇 < 𝑇𝑐 for all
𝑀 > 𝑀𝑞 has the form (5.34), where the value 𝜏 <
< 0. Under such conditions, the fluid exists in a liquid
state (at 𝑇 < 𝑇𝑐), where the following dependence
of the chemical potential 𝑀 = 𝑀2 on the density
(�̄� ≥ 𝑛2) occurs (see Fig. 6, solid line 2):

𝑀2 =
�̃�2𝜏

1 + 𝜏
(�̄�− 𝑛𝑐) +

𝑎4
6
(�̄�− 𝑛𝑐)

3. (6.10)

In the case of the large negative values of chemical
potential 𝑀 (𝑀 ≤ −𝑀𝑞), the average density 𝑛1,
expressed below, corresponds to the value 𝑀 = −𝑀𝑞:

𝑛1 = 𝑛𝑐 − 𝑛𝑔. (6.11)

For all �̄� < 𝑛1, the gaseous phase of a fluid occurs
and realizes for all 𝑀 < −𝑀𝑞 (Fig. 6, solid line 1).

The region 𝑛1 < �̄� < 𝑛2 corresponds to the chem-
ical potential |𝑀 | < 𝑀𝑞, where 𝑄 < 0. Equation
(5.25) has three real roots in this case:

𝜌01 = 2𝜌0𝑟 cos
𝛼

3
,

𝜌02 = −2𝜌0𝑟 cos
(︁𝛼
3
+

𝜋

3

)︁
, (6.12)

𝜌03 = −2𝜌0𝑟 cos
(︁𝛼
3
− 𝜋

3

)︁
,

where

𝜌0𝑟 =

(︃
−2𝑑(0)

𝑎4

)︃1/2
, (6.13)
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and the angle 𝛼 is defined from the condition cos𝛼 =
= 𝑀

𝑀𝑞
and is equal to

𝛼 = arccos
𝑀

𝑀𝑞
. (6.14)

In the case of 𝑀 = 𝑀𝑞, one has 𝛼 = 0. So,

lim
𝑀→−𝑀𝑞

𝜌01 = 𝜌
(+)
1 =

(︂
− 8�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
≡ 𝑛𝑔,

lim
𝑀→−𝑀𝑞

𝜌02 = lim
𝑀→−𝑀𝑞

𝜌03 = (6.15)

= 𝜌
(+)
2 = −

(︂
− 6�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
.

Comparing (6.15) with (6.8), one can find that the
solution 𝜌

(+)
1 coincides with 𝑛𝑔 and corresponds to

the density of a liquid phase 𝑛2.
The case where 𝑀 = −𝑀𝑞 gives 𝛼 = 𝜋. Herewith,

𝜌
(−)
1 = 𝜌

(−)
2 = 𝜌𝑠 =

(︂
− 2�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
,

𝜌
(−)
3 = lim

𝑀→−𝑀𝑞

𝜌03 = −𝜌
(+)
1 = −𝑛𝑔.

(6.16)

At 𝑀 = −𝑀𝑞, the solution 𝜌03 results in the density

𝑛1 = 𝑛𝑐 − 𝑛𝑔. (6.17)

In the general case, the dependence of roots 𝜌0𝑖 from
(6.12) on the values of chemical potential in the re-
gion |𝑀 | < 𝑀𝑞 is depicted in Fig. 7. Herewith, the
solutions 𝜌01 and 𝜌03 have both positive and negative
branches and coincide at 𝑀 = 0. The root 𝜌02 takes
on negative values only.

The dependences 𝜌0𝑖 = 𝜌𝑜𝑖(𝑀) are presented in
Fig. 8. It is easy to see that the root 𝜌01 corresponds
to the maximum of 𝐸(𝜌0𝑖), as far as the chemical po-
tential decreases from 𝑀𝑞 to zero. When 𝑀 changes
from zero to −𝑀𝑞, the maximal value of 𝐸(𝜌0𝑖) occurs
at 𝜌03.

So, the equation of state in the temperature range
𝑇 < 𝑇𝑐 has to be written in the form

�̄� = 𝑛𝑐 + 𝜌01Θ(𝑀) + 𝜌03Θ(−𝑀), (6.18)

where Θ(𝑀) is the Heaviside function. It should be
noted that equality (6.12) foresees the existence of
two marginal values of roots 𝜌0𝑖, when the chemical
potential 𝑀 approaches zero. We have

𝑛(+) = lim
𝑀→0

�̄� = 𝑛𝑐 + lim
𝑀→0

𝜌01 = 𝑛𝑐 + 𝑛𝑡, (6.19)
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Fig. 7. Dependence of roots (6.12) on the chemical potential
|𝑀 | < 𝑀𝑞 , curve 1 corresponds to the solution 𝜌01, curve 2 –
𝜌02, curve 3 – 𝜌03
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Fig. 8. Dependence of the function 𝐸(𝜌0𝑖) on the chemical
potential 𝑀

where

𝑛𝑡 =

(︂
− 6�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
. (6.20)

When the chemical potential approaches zero from
below, one has

𝑛(−) = lim
𝑀→−0

�̄� = 𝑛𝑐 + lim
𝑀→−0

𝜌03 = 𝑛𝑐 − 𝑛𝑡. (6.21)

So, the change of the sign of the chemical potential
𝑀 in the temperature range 𝑇 < 𝑇𝑐 tends to the fluid
density leap, which has a size

Δ�̄� = 𝑛(+) − 𝑛(−) = 2𝑛𝑡. (6.22)

It should be noted that at temperatures 𝑇 > 𝑇𝑐,
such leap is absent, since there exists only the sin-
gle root 𝜌0, at which the value of 𝐸(𝜌0) reaches its
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Fig. 9. Relation between the density ranges of a simple fluid
at 𝑇 < 𝑇𝑐 and the values of chemical potential 𝑀 = 𝛽𝜇− 𝛽𝜇𝑐
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Fig. 10. Dependence of the pressure 𝑃 on the density �̄� at
𝜏 = 0 (curve 1), 𝜏 = −0.01 (curve 2), 𝜏 = −0.05 (curve 3),
𝜏 = −0.1 (curve 4), 𝜏 = −0.15 (curve 5), 𝜏 = −0.2 (curve 6)

maximum. The change of the sign of the chemical po-
tential 𝑀 converts the value of 𝜌0 into itself.

The expression for the grand thermodynamic po-
tential at temperatures 𝑇 < 𝑇𝑐, where the first-order
phase transition occurs, has the form

Ω=−𝑘𝑇𝑁𝐵

[︂
𝑓𝑐+

𝑛2
𝑐

2

�̃�2𝜏

1− 𝜏
+𝑛𝑐𝑀+𝐷13(𝑀)

]︂
. (6.23)

Here, the chemical potential |𝑀 | < 𝑀𝑞, and the fol-
lowing expression holds:

𝐷13(𝑀) =

(︂
− �̃�2

2

𝜏

1 + 𝜏
𝜌201 −

𝑎4
24

𝜌401

)︂
Θ(𝑀−)−

−
(︂
− �̃�2

2

𝜏

1 + 𝜏
𝜌203 −

𝑎4
24

𝜌403

)︂
Θ(−𝑀). (6.24)

Using the Laplace transformation 𝐹 = Ω+𝜇�̄� , it is
possible to find the free energy of a fluid in the region

of the first-order phase transition, which corresponds
to (6.8):

𝐹 = −𝑘𝑇
𝑉

𝑣

[︃
𝑓𝑐 +

𝑛2
𝑐

2

�̃�2𝜏

1 + 𝜏
+

+ �̄�

(︂
𝑓2 − 𝑛𝑐

�̃�2𝜏

1 + 𝜏

)︂
+𝐷13(�̄�)

]︃
, (6.25)

where

𝑓2 = �̃�1 − 𝛽𝑐𝜇
*(1 + 𝜏). (6.26)

For 𝐷13(�̄�), one has

𝐷13(�̄�)=−
(︂
�̃�2
2

𝜏

1+𝜏
(�̄�−𝑛𝑐)

2+
𝑎4
4!
(�̄�−𝑛𝑐)

4

)︂
Θ(𝑛(−)−�̄�)−

−
(︂
�̃�2
2

𝜏

1+𝜏
(�̄�−𝑛𝑐)

2+
𝑎4
4!
(�̄�−𝑛𝑐)

4

)︂
Θ(�̄�−𝑛(+)). (6.27)

In such a way, a simple fluid stays in the gaseous
or liquid state, as far as the chemical potential in-
creases. This depends on its value. As was shown
above, at 𝑇 < 𝑇𝑐 and the negative values of 𝑀 <
< −𝑀𝑞, only the single root of Eq. (6.4) occurs. This
situation corresponds to the densities �̄� < 𝑛1 (𝑛1 =
= 𝑛𝑐 − 𝑛𝑔, and 𝑛𝑔 is expressed by (6.8)). This range
of densities corresponds to the pure gaseous phase
(Fig. 9). As far as the chemical potential increases
−𝑀𝑞 < 𝑀 ≤ 0, Eq. (6.4) has three real solu-
tions. However, only one of them 𝜌03 realizes. This
can be seen from the inequalities

𝐸(𝜌03) > 𝐸(𝜌02), 𝜌03 > 𝜌02. (6.28)

This situation is just for all 𝑛1 < �̄� < 𝑛(−).
The density 𝑛(−) is the largest value for a fluid at

𝑀 < 0 and temperatures 𝑇 < 𝑇𝑐.
The transition of 𝑀 from −0 to +0 causes the den-

sity leap from 𝑛(−) to 𝑛(+). For all 𝑛(+) ≤ �̄� < 𝑛2,
the chemical potential takes on the values 0 ≤ 𝑀 <
< 𝑀𝑞. There are three real roots of Eq. (6.4) for these
values of 𝑀 , with 𝜌01 expressed in (6.12). We have

𝐸(𝜌01) > 𝐸(𝜌02); 𝐸(𝜌01) > 𝐸(𝜌03). (6.29)

This situation takes place for all 𝑛(+) < �̄� < 𝑛2. The
stable liquid phase with densities �̄� > 𝑛2 corresponds
to the case of 𝑀 > 𝑀𝑞.

The generalized equation of state of a fluid has the
form

𝑃𝑣

𝑘𝑇
=

[︃
𝑓𝑐 +

�̃�2
2

𝜏

1 + 𝜏
𝑛2
𝑐 +
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+
𝑎4
6
�̄�(�̄�− 𝑛𝑐)

3 − 𝑎4
24

(�̄�− 𝑛𝑐)
4

]︃
×

×
[︁
Θ(𝑛(−) − �̄�) + Θ(�̄�− 𝑛(+))

]︁
, (6.30)

where

𝑛(−) = 𝑛𝑐 − 𝑛𝑡, 𝑛(+) = 𝑛𝑐 + 𝑛𝑡. (6.31)

At 𝑇 > 𝑇𝑐, 𝑛𝑡 = 0, whereas, at 𝑇 < 𝑇𝑐, one has

𝑛𝑡 =

(︂
− 6�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
. (6.32)

It should be noted that, in the case of 𝑛𝑡 = 0, the
sum of theta-functions in (6.15) turns into unity:

Θ(𝑛𝑐 − �̄�) + Θ(�̄�− 𝑛𝑐) = 1. (6.33)

The transition occurs between the gaseous and liq-
uid phases characterized by densities that maximize
expression (6.30). Their values can be found from the
condition

𝜕(𝑃𝑣/𝑘𝑇 )

𝜕�̄�

⃒⃒⃒⃒
⃒
𝑀=0,𝑇

= 0, (6.34)

which leads to the equation

�̃�2𝜏

1 + 𝜏
(�̄�− 𝑛𝑐) +

𝑎4
6
(�̄�− 𝑛𝑐)

3 = 0. (6.35)

The solutions

�̄� = 𝑛𝑐 ±
(︂
− 6�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
(6.36)

satisfy the condition of maximum of expression
(6.30). Solving Eq. (6.36) with respect to the temper-
ature allows one to obtain the expression

𝑇𝑏

𝑇𝑐
=

6�̃�2
6�̃�2 + 𝑎4𝑛2

𝑐(�̄�/𝑛𝑐 − 1)2
, (6.37)

which can serve as the base for the binodal construc-
tion (the coexistence curve) in the temperature-den-
sity coordinates, which is presented in Fig. 11. The
equation for the spinodal or the curve of marginal
states of the system, defining the boundaries of the
instability region, can be found from the extremum
condition for the equation of state (6.30):

𝜕(𝑃𝑣/𝑘𝑇 )

𝜕�̄�

⃒⃒⃒⃒
⃒
𝑇

= 0, (6.38)
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Fig. 11. Binodal (1) and spinodal (2) in the reduced tempe-
rature-density coordinates

which leads to the equation

�̄� = 𝑛𝑐 ±
(︂
− 2�̃�2𝜏

𝑎4(1 + 𝜏)

)︂1/2
(6.39)

or

𝑇𝑠

𝑇𝑐
=

2�̃�2
2�̃�2 + 𝑎4𝑛𝑐(�̄�/𝑛𝑐 − 1)2

. (6.40)

From whence, the spinodal curve can be obtained. It
is presented in Fig. 11.

7. Conclusions

Using the general principles of statistical mechanics
in frames of the grand canonical ensemble, the cal-
culation method of the grand partition function of a
simple fluid is proposed. A system of 𝑁 particles in a
volume 𝑉 with periodic boundary conditions is con-
cerned. As an interaction potential between particles,
the Morse potential was chosen.

In the course of calculating the grand partition
function, the reference system formed from a part of
the repulsive component of the interaction potential
was used. It is established that, due to the selection of
the reference system, one can perform the summation
over the number of particles 𝑁 and the integration
over their coordinates. As a result, the evident form
of the Jacobian of the transition from a set of vari-
ables, characterizing individual particles, to the col-
lective variables, whose average values are connected
with the order parameter of the first-order phase tran-
sition, is obtained. Coefficients of the Jacobian of the
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transition, which is a polynomial over a series of col-
lective variables in the exponent expressed via the
special functions 𝑇𝑛(𝛼

*, 𝑝), are introduced. The lat-
ter are represented in the form of rapidly convergent
series. The arguments of special functions 𝛼* and 𝑝
are real positive values. The former 𝛼* is related to
some fixed value of chemical potential 𝜇*, the latter
argument 𝑝 is proportional to the reference system
potential.

We have obtained a representation of the grand
partition function corresponding to some lattice
model. But, in contrast to the lattice gas model, it
foresees that a cell can contain a random number
of particles. The representation is general and valid
both far from the critical point and directly in its
vicinity.

We have considered the simplest approximation,
which is valid out of a vicinity of the critical
point. The equation of state obtained in this work
describes a behavior of a simple fluid system in wide
temperature ranges below and above the critical tem-
perature 𝑇𝑐. At temperatures 𝑇 < 𝑇𝑐, the presence of
rectilinear plots at the pressure vs density curve is
established. It describes a density jump at the first-
order phase transition. A curve circumflex these rec-
tilinear plots allows us to obtain the binodal line. In
addition, the spinodal curve as the instability region
of a system at temperatures lower than the critical
one is found.

The usage of higher-order approximations for the
calculation of the equation of state is the subject of
a separate research.

APPENDIX

Determination of the value of 𝐵 which characterizes the model
potential

𝑈(𝑘) =

{︂
𝑈𝐵(𝑘) = Ψ(𝑘)− 𝑈1(𝑘) at |𝑘| ≤ 𝐵,
0 at |𝑘| > 𝐵. (8.1)

Here,

Ψ(𝑟) = 𝜖𝑒−2(𝑟−𝑅0)/𝛼, 𝑈1(𝑟) = 2𝜖𝑒−(𝑟−𝑅0)/𝛼.

Let us perform the transition to a reduced form. Let 𝑟′ = 𝑟/𝑅0.
Then

Ψ(𝑟′) = 𝜖𝑒−2(𝑟′−1)/𝛼𝑅 , 𝑈1(𝑟
′) = 2𝜖𝑒−(𝑟′−1)/𝛼𝑅 , (8.2)

where

𝛼𝑅 = 𝛼/𝑅0. (8.3)

So, there are two parameters of the interaction potential: 𝜖 (as
a dimension unit) and 𝛼𝑅. The Fourier transforms

Ψ(𝑘) = Ψ(0)
(︀
1 + 𝛼2

𝑅𝑘2/4
)︀−2

, Ψ(0) = 𝜖𝜋𝛼3
𝑅𝑒2/𝛼𝑅 ,

𝑈1(𝑘) = 𝑈1(0)
(︀
1 + 𝛼2

𝑅𝑘2
)︀−2

, (8.4)

𝑈1(0) = 16𝜖𝜋𝛼3
𝑅𝑒1/𝛼𝑅 .

Herewith, the following condition is satisfied:

𝑈1(0) = Ψ(0)16𝑒−1/𝛼𝑅 . (8.5)

The condition to determine the value of 𝐵 has the form
∞∫︁

𝐵

𝑉 (𝑘)𝑘2𝑑𝑘 = 0, (8.6)

where

𝑉 (𝑘) = 𝑈1(𝑘)− 𝑓Ψ(𝑘)+

+ 𝜏(1− 𝑓)Ψ(0)

(︃
1 +

𝛼2
𝑅𝑘2

4

)︃−2

. (8.7)

This allows us to assign 𝜏 = 0.
The evident form of integral (8.5) can be calculated. So, the

following expression is obtained:

𝑓=16𝑒−1/𝛼𝑅

∞∫︁
𝐵

𝑘2𝑑𝑘

(1 + 𝛼2
𝑅𝑘2)2

⧸︃ ∞∫︁
𝐵

𝑘2𝑑𝑘(︂
1 +

𝛼2
𝑅
𝑘2

4

)︂2 . (8.8)

That is why

𝑓=
16

8
𝑒−1/𝛼𝑅

[︂
𝜋
2
+ 𝐵𝛼𝑅

1+𝐵2𝛼2
𝑅

− arctg(𝐵𝛼𝑅)

]︂
[︂
𝜋
2
+

𝐵𝛼𝑅/2

1+𝐵2𝛼2
𝑅
/4

− arctg(𝐵𝛼𝑅/2)

]︂. (8.9)

The parameter 𝑝 expressed by (3.10) has the form

𝑝 = 𝛽𝑐Ψ̄(1− 𝑓)/2 (8.10)

and is dependent on the average value of the repulsive potential
Ψ̄ = ⟨Ψ(𝑘)⟩ at ranges [0, 𝐵], where 𝐵 = 𝐵(𝛼𝑅, 𝑓). At a fixed
value of 𝛼𝑅 (the characteristic of a substance), the latter is
determined only by the parameter 𝑓 (see Fig. 12).

We will find Ψ̄ as the average value of Ψ(𝑘) at 𝑘 ∈ [0, 𝐵]:

Ψ̄ = Ψ(0)𝜒𝑅, (8.11)

where

𝜒𝑅=
3

2

(︂
2

𝛼𝑅𝐵

)︂3(︃
arctg

𝐵𝛼𝑅

2
−

1

2

𝐵𝛼𝑅

1+𝛼2
𝑅𝐵2/4

)︃
. (8.12)

It is easy to see that the value of 𝜒𝑅 is a function of 𝐵 (or 𝑓)
at fixed 𝛼𝑅.

In the case of fixed 𝑓 = 0.1488, at which 𝐵 = 1.258, one has
𝜒𝑅 = 0.932, which corresponds to

𝑃𝑅 = 0.11, (8.13)

which is calculated, by using (8.9) in the simplest approxima-
tion, where (see (5.2))

𝛽𝑐 = �̃�2/𝑉 (0, 𝑇𝑐), then

𝑃𝑅 =
𝑎2Ψ(0)𝜒𝑅

2𝑉 (0, 𝑇𝑐)
(1− 𝑓). (8.14)
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Fig. 12. Changes of the parameter 𝑝 depending on the value
𝐵 at 𝑅0/𝛼 = 3.7 ln 2
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Fig. 13. Changes of the parameter 𝑓 depending on 𝐵 at
𝑅0/𝛼 = 3.7 ln 2

Since

𝑉 (0, 𝑇𝑐) = 𝑈1(0)− 𝑓Ψ(0) = Ψ(0)
(︁
16𝑒−1/𝛼𝑅 − 𝑓

)︁
,

we have

𝑃𝑅 =
�̃�2

2

1− 𝑓

16𝑒1/𝛼𝑅 − 𝑓
𝜒𝑅. (8.15)

So, the parameter 𝑝, which defines the special functions (3.15),
depends on 𝑓 and the parameter 𝛼* = 𝑣𝑒𝛽𝜇

*
. The parameter

(𝛼*) defines the values of �̃�2.
Conclusion. One should choose a substance to be observed,

which means to fix the parameter 𝛼𝑅 (for example, 𝛼𝑅 =

= 0.3899 referring to 𝑅0/𝛼 = 3.7 ln 2). The possible values
of parameter 𝑓 defining the reference system change within
the limits 0 < 𝑓 < 0.154 (see Fig. 13). In this range, 𝑉 (0) > 0,
that is the necessary condition to apply analytical calculation
methods, specifically the method of CV. In this case, the ref-

erence system includes the main part of the repulsive potential

Ψ𝑅𝑆 = (1− 𝑓)Ψ(𝑘),

where 0.846 < (1− 𝑓) < 1.
To co-ordinate the “primeval” parameter 𝑝 which has value

(8.9), one has to choose the value

𝑓 = 0.1488, (8.16)

corresponding to 𝑝 = 0.11. The latter has to coincide with
the value of 𝑝 expressed by (8.10) at 𝛼* = 11. If the initial
value 𝑝 ̸= 0.11, any 𝛼* exist for (8.15) to coincide with the
result of calculation of 𝑝 by formula (8.10). The critical tem-
perature (5.2) 𝑘𝑇𝑐 = 3.8135 corresponds to these values of
parameters for the model.
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ДО РОЗРАХУНКУ ВЕЛИКОЇ
СТАТИСТИЧНОЇ СУМИ МОДЕЛI ПЛИНУ

Р е з ю м е

Запропоновано спосiб розрахунку великої статистичної су-
ми моделi простого плину в рамках узагальненої ґраткової
моделi, в кожному з вузлiв якої може перебувати довiльна
кiлькiсть частинок. В ролi потенцiалу взаємодiї мiж частин-
ками використано потенцiал Морзе. У процесi розрахунку
виконано пiдсумовування за числом частинок та iнтегрува-
ння за їхнiми координатами. У найпростiшому наближеннi
отримано рiвняння стану, яке справедливе для широкого
дiапазону температур. Для температур, нижчих, нiж кри-
тична, встановлено наявнiсть горизонтальних дiлянок на
кривiй залежностi тиску вiд густини.
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