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PROJECTIVE REPRESENTATIONS OF POINT GROUPS

A procedure of calculation of two-valued space group representations and two-valued projec-
tive representations of point groups is considered. A method of construction of factor systems
wa(ra, T1), which reflect the transformations of half-integer spin quantum wave functions and
are required in order to find the two-valued irreducible projective representations of the point
groups, is presented. This method is based on the introduction of an operation q, firstly used
by Bethe, as an additional symmetry element. The pathway of introducing the relations, which
permit to make a one-valued algebra of double groups and, particularly, their multiplication
tables, is shown by the examples of the 222 (D2) and 32 (D3) groups. The construction of a
standard factor-system ‘*’21)(7"% r1) of the projective class K1 for the group 222 on the base of
the discussed relations is presented for the first time. The whole role and the possibilities of
Bethe’s method and its modifications for the construction of two-valued representations of the
point and space groups are discussed.
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Finding the spinor representations of space sym-
metry groups is required for solving a wide range
of crystal spectroscopy problems, in particular, the
spectroscopy of zones-indirect or indirect semicon-
ductors, with absolute extremes of electronic bands,
i.e. absolute maximum of the valence band and abso-
lute minimum of the conduction band located at the
different points of the Brillouin zone. These represen-
tations allow fulfilling the classification of the elec-
tronic states of crystals at any points of the Brillouin
zone, which is a basis, in its turn, for the classification
of their exciton states, which are often investigated by
using spectroscopy methods.
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The irreducible representations of full space groups
Dyiy possessing the irreducible star {k} are deter-
mined through the representations of the groups of
the wave vectors Dy, which are also called the small
representations. The general method of construction
of irreducible representations Dy of the groups of the
wave vectors Gy, including spinor, in the form of the
projective representations of point groups of equiv-
alent directions Fy of the groups of the wave vec-
tors, which are isomorphic to the factor-groups of the
group Gy on the infinite invariant subgroup of trans-
lations, is presented in [1].

We recall that the projective representations or ray
representations satisfy the relations

D(ro)D(r1) = w(rz, r1)D(r2r1), (1)
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where the set of numbers w(rq, r1) named a factor-
system possesses the property

jw(re, 1)l = 1. (2)

The irreducible representations of the wave vector
group Dy contain the infinite number of members
Dy(h) for the elements h € Gk. Each element h can
be presented as h = (a + a|r), where r — “rotational”
element, the aggregate of which forms the point group
Fy, a is the vector of a nontrivial translation corre-
sponding to a rotational element r, and a is the vector
of a trivial translation on the periods of the Bravais
lattice.

The values of matrices Dy (h) and their characters
XDy () are given by the formulas

Dy(h) = =M+ (D (r) Q
and
XDy (h) = €_ik(a+a)w(T)XD(r)7 (4)

where for representations describing the state with-
out taking the spin into account (with integer spin),
w(r) = u(r) = ui(r) is the function, which brings
the factor-system w(ry, 1) = wi(re, r1), which is
determined by the properties of the crystal spatial
group, to the standard form w’(ra, 71) = wi(re, r1);
for representations, describing the states involving
the spin (with a half-integer spin), w(r) = us(r) =
= uy (r)uz(r) is the function, which brings the factor-
system w(rg, r1) = ws(re, r1) = wi(re, r1)wa(re, 1),
which is determined by the transformations of spinors
in the spatial group, to the standard form w’(r9, 1) =
= wl(ry, 1) = Wi (ra, r1)wh(re, 11); uz(r) is the func-
tion, which brings the factor-system ws (rq, r1), which
is determined by the transformations of spinors at
the operations of symmetry of groups of directions
of groups of the wave vector Fy, to the standard
form wj(re, r1); D(r) — corresponding to the standard
factor-system the irreducible projective representa-
tions of that class, which the factor-system w(rs, r1)
(as a rule, these classes are Ky and K7 ) belongs to,
and xp(r) are characters of the irreducible projective
representations D(r).

The construction of a factor-system wj(ra, r1) is
performed by the formula

wi(rz, 1) = /00N (5)
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and, for any point of the Brillouin zone, does not
cause any difficulties. It is easy to define the class, to
which this factor-system belongs [1].

The factor-system ws(ra, r1) is determined by the

condition
. 1 at 0 <9< 2m, 6
wa(ra, 11) = —1 at 27 < ¥ < 4m, (6)

where 9 is a rotation angle corresponding to the com-
position of elements rory. The class, to which it be-
longs, can be also easy set [1].

There is a particular interest in the case where
both factor-systems wy (e, r1) and wy(ra, 71) belong
to the class K7, i.e., when KM = K; and K® = K7,
where the numerical indices in brackets indicate the
types of factor-system. In this case, the factor-system
ws(re, 1), as a composition of classes determined by
the relations Kg = Ky, KoK1 = K1 Ky = Ky, and
K? = Ky, belongs to the class Ky, and the repre-
sentations describing the states taking the spin into
account (half-integer spin) are projectively equivalent
(p-equivalent) to a general vectorial, and representa-
tions describing the states without taking the spin
into account (with integer spin) are p-equivalent to
two-valued ones.

Thus, taking into account that the standard factor-
system of the class Ky completely consists of coeffi-
cients equal to 1, and matrices of representations cor-
responding to standard factor-systems, for the class
Ky, where they coincide with ordinary vectorial, and
for the class K7, where they can be easily calculated,
are known, the problem of construction of the ir-
reducible representations of complete spatial groups
and, in particular, the spinor ones, is reduced to the
tasks of construction of the factor-system wa(ra, r1),
determination of the form of standard factor-systems
of the class K1, and finding the functions us(r) lead-
ing the factor-system wy(ra, r1) to the p-equivalent
standard form.

We now describe the technique developed by us al-
lowing, in the general and particular cases, to solve
the above problems and thereby to build irreducible
two-valued representations of point groups in the
form of projective representations.

Bethe’s method of construction of double point
symmetry groups, which uses the operation ¢, is
widely used for considering the symmetry of quan-
tum systems with half-integer spin [2] (see, e.g., [3—
5]). The operation ¢ is a rotation by an angle of 27
around an arbitrary axis, which commutes with all
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other symmetry operations, acts on the wave func-
tion (spinor), determining the state of the quantum
system, and changes its sign. The unit operation e
is treated as a rotation around an arbitrary axis by
an angle of 4m. Therefore, the equation ¢ = e is
fulfilled, which is the defining relation for the opera-
tion q.

The question of how the operator ¢ is associated
with the inversion ¢, which also commutes with all the
operations of symmetry point groups, with reflection
in an arbitrary plane ¢ and mirror rotation s,, around
an axis of the n-th order, consisting of the rotation
¢, and the reflection oy, in a plane perpendicular to
the axis of rotation, remains unclear.

Indeed, the usual definition of inversion operation
is given by the formula i = sy = opce !, where ¢y
is a rotation around the second-order axis, and oj, —
reflection in a plane perpendicular to this axis. It is
assumed that the relation o, = icy is met, and the
relations i2 = e and o3 = e, which are defining for the
operations of inversion and reflection, are also met. It
is easy to see that, when considering the symmetry
properties of quantum systems with half-integer spin
within the Bethe method from the equation i = opcs
by substituting the above expression o, = icy, the
relation ¢ = icoco, i.€. i = iq, or i = qi follows, which
is apparently wrong.

The authors are unaware of any attempts in the
literature to overcome the above-mentioned difficulty,
and this attempt is made in the present publication.

The aim is to reasonably introduce the operation
q into the group containing operations i, ¢. and
s, 2. This could be achieved, in general, in two ways.

The first way is to preserve the same definition of
inversion for the double groups as for the ordinary
ones

1 = OpCo.

This way leads to a change in the definition of re-
flection operation in the double groups. Indeed, by

1 Here and further, as usual, the operation standing on the
right is performed first.

Double groups are not the direct products of the ordinary
groups, except containing only one element e of the trivial
group 1 (Cy or E), and the double group 1’(C{ or E’) con-
sisting of the elements e and g. This follows from the fact
that, otherwise, no power of the elements of the ordinary
group would not have to be equal to expanding the group
element g, which, in this case, is not so.
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multiplying the equality ¢ = opco by co on the right,
we can find that ico = opcece, ie.ica = opq or
op = qics. Thus, the following equations is noncon-
tradictory for the double groups:

t=opcy and oy = gics. (7)

The second way is to preserve the same definition of
reflection for the double groups as for the ordinary
ones:

Op = iCQ.

This way leads to a change in the definition of in-
version operation for the double groups. Indeed, by
multiplying the equality oj, = ico by c¢o on the right,
we can find that opco = icocy, ie. opcs = ig or
1 = qopcs. This means that the following equation
is also noncontradictory for double groups:

t=gqgopco and o = ico. (8)

For the certainty, we have to choose one of the con-
sidered above cases.

In our opinion, from the two options (without any
loss of generality), logically more preferable is the sec-
ond one, in which the inversion operation more com-
plex in interpretation for the double groups is over-
ridden, and the operation of reflection retains the for-
mer definition. Equations (8) can be considered thus
as postulating the definitions of the inversion and re-
flection operations in the double groups.

It should be noted that, in the above definition
of inversion preserving the conventional definition of
reflection for ordinary groups, inversion rotations,
which, along with reflections in double groups should
be chosen as the symmetry elements of the second
type, cannot be, as in the ordinary groups, replaced
by the mirror rotations, as the inversion rotations
iCp = qOpCaCy, = qC201Cn = qCasy, (here, i # so, as
So = opce, and i = qopcy = gs2) qualitatively differ
from the mirror rotations s, by the multiplication by
the operation gq.

In double groups, the defining relations (not to be
confused with definitions) for the operations of inver-
sion and reflection, which are expressed in conven-
tional groups by the equalities i = e and o2 = e, are
also changed. Here, regardless of two above-described
ways to define the inversion and the reflection for both
of these, there are two possible options.

It is easy to see that, for two above-mentioned ways
to define the inversion and the reflection in the double
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groups, the equality i* = go7 is fulfilled. This means
that the defining relations for the inversion and the
reflection can be written either in the form of

i=e

and o =q (o =e), (9)
where the defining relation for the inversion used in
the ordinary groups is preserved, either in the form

op =e and i (10)
where the defining relation for the reflection operation
is preserved.

In our opinion, easier and more convenient (with-
out loss of generality) are the defining relations ex-
pressed by the equations (9), in which the defining
relations are similar for the operations 7 and ¢, which
commute with all other elements of symmetry.

Thus, in general, there are four possibilities for
the noncontradictory introduction of the operator ¢:
1) using Egs. (7) and (9); 2) (7) and (10); 3) (8) and
(9); and 4) (8) and (10). Here, in our opinion, we
should be limited to the preferred choice defined by
Egs. (8) and (9), i.e., the relations

i = qopco (this yields oy, = icg),

(11)
i?= e [this yields 0} = ¢ (0} = ¢)].

It is convenient to have namely relations (11) as a ba-
sis of the systematics of irreducible double-valued pro-
jective representations of point symmetry groups and
the systematics of factor-systems of the classes K
and K7 and the functions u(r) bringing these factor-
systems to the p-equivalent standard form.

Let us consider the way of how the g-operator
is introduced into the groups containing several
axes. This can be conveniently done by the examples
of the groups 222 (D3) and 32 (Ds).

Let us start with the group Ds, where the con-
stituting elements are the elements a = ca(ca,) and
b = ws(coy). The group Dy contains only 4 ele-
ments: e, co, ug, and uh. It is natural that the defin-
ing relations a* = e (a®> = ¢) and b* = e (b* = q)
are valid for the constituting elements of the double
group D). Let us clarify the question of how the op-
erator ¢ is included into the commuting defining re-
lation for the constituting elements of the group and
how the element u5(ca,) is related to the elements co,
ug, and q.
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Let us find firstly the commuting defining rela-
tion for the constituting elements of the double group
Dj,. For the ordinary group Do, it has a form ab = ba.

Let us use the general relation for an infinite group
of rotations K:

Fre(@)f = cp-1(a), (12)

where ¢;(a) — rotation by angle « around the axis
£, and f — any rotation. The extension of this rela-
tion onto the elements of the double groups included
into the double rotation group K’ can obviously be
done in two ways. The first one consists in postulat-
ing the feasibility of this relation for the elements of
the double groups with the treatment of the unit op-
eration like turning by 47 angle, and the second - in
postulating, with the same interpretation of the unit
operation, the feasibility of the relation
fﬁlcg(a)f:Cf—le(Oé%’Qﬂ'). (13)
Let us take as a postulate, as easier, the first case.
This again does not lead to any loss of generality.

Considering co as ¢¢(mw) (¢ || Oz), assuming f =
= qug = gep(w) (¢ || Ox), and taking into account
that f=! = uy = cp(n), relation (12) for the dou-
ble group yields ¢y (m)ce(m)qee () = cg-14(). Con-
sidering also f~'¢ = cp(m)l = —{, we can find
qee (m)ep(m)ep (1) = c_o(m) 3. As c_p(m) = qee(T), we
obtain quacous = qco.

Multiplying this relation on the left by ue, we ob-
tain
Collp = quacy  or ab = gba, (14)
which is a commuting defining relation for constituent
elements of the double group D). It is essential that
the operation ¢ is included into the commuting defin-
ing relation for the double group D}, unlike for the
ordinary group Da.

The definition of the element u} in the double group
DY, can be also given on the basis of Eq. (12).

Indeed, the relation cjusgci = uf given in agree-
ment with relation (12) can be considered as the defi-
nition of the element u}, in the double group D). Here,

uz = c(m) (L] Ox), f = qcf = qee (37/2) (¢ || Oz),

3 Here, we could also select f = us = cp () (£ || Ozx), and as
it would follow f~1 = qua = gcy (). This would lead to the
same result, as, in this case, f~1 = qcp (1)l = —£.
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ft=cs = co(r/2), U = co(n/2)t =" (0" |
Oy), and uf = coy = cor ().

From the same relation (12), we can obtain a com-
muting relation for the elements ¢4 and us. Assuming
ca = c(m/2) (€ || Oz) and f = qug = qcp(m)
(¢" || Oz) and taking into account that f=! = uy =
= cp(m) and f710 = cp(m)l = —{, we can obtain
co(m)ee(m/2)qee (m) = c_¢(n/2). Since c_y(n/2) =
= qc(37/2) = qc}(m/2), we obtain uscaqua = qci
or quacqus = gcy. Multiplying this relation by us on
the left, we can obtain the relation cjus = quach,
which is commuting for the elements ¢4 and us.

Using the commuting relation for the elements cq4
and ug from the relation u), = qc4uQc§, which de-
fines the element u), it is easy to show that u) =
= qquacici = uach = uach = quace = gba, i.e.
uh = quacy  or  uhy = gba. (15)
It should be noted that the operation c4 = c¢(7w/2)
(£ || Oz) used for deriving the equation defining the
element uf, plays a supporting role. This operation
does not belong to the group D5, but it, as well as all
the elements of this group, is one of the operations of
the infinite group of rotations K, for all elements of
the double symmetry group K’ of which, the relation
(12) is correct.

With the defining relations for constituting ele-
ments and relations (14) and (15), it is easy to find
the factor-system ws(ra, 1), which is defined by re-
lation (12) and describes the properties of spinors in
the group Ds.

For example, the coefficient wy(ce, uhy) = —1 in
the case r; = wu), and ro = c¢g, since the prod-
uct ror; = coub = algba) = gaba = q(ab)a =

= q(gba)a = ba® = qb = qus is the element, which
differs from the element us included into the group
Dy by the factor ¢, i.e. by the additional rotation
by an angle of 27 [since the element ¢ is the rota-
tion by 27 angle around an arbitrary axis, in the
expressions of the form gcy(a) it can always be in-
terpreted as an additional rotation around the same
axis £]. For example, the coefficient ws(us, ca) = —1
in the case 71 = ¢3 and ro = wusg, since, in this case,
rory = usca = ba = q(gba) = quj. Here, of course,
for all intrinsic rotations included into the infinite
group of rotations K, the values of angle ¥ are lim-
ited by 0 < ¥ < 2m. Generally, since we can choose
either elements cy(a) or elements gcg(«) in the tran-
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sition from double to ordinary groups as their intrin-
sic rotations from the elements of double groups, the
difference between them in the ordinary groups dis-
appears, every intrinsic rotation can be interpreted
as the rotation by an angle of 9 lying within the
range determined by the inequality 0 < ¥ < 27 or
2 < ¥ < 4m. Without loss of generality, however,
for their intrinsic rotations in the ordinary groups,
we may postulate the feasibility of only one of these
inequalities. Preferring a simpler case, we postulate,
as was already noted above, that, for all intrinsic ro-
tations belonging to the infinite group of rotations
K, the whole range of rotation angles 1 is deter-
mined only by the inequality 0 < 9 < 2m. It can
be shown that this inequality holds for all nonin-
trinsic rotations, i.e. for all elements of the infinite
full orthogonal group K; = K x C;. Indeed, as fol-
lows from the introduced defining relation for the in-
version (9) o7 = ¢, which means that, for the el-
ement op in the double groups, we should ascribe
a rotation by an angle of 7 or 3w around an arbi-
trary axis (this corresponds to the existence in the
double group of two elements o; and goy). Then
the inversion operation itself, which is defined by
Eq. (8), must be, in accordance with this definition,
compared to the rotation depending on the angle of
the element oy, either by an angle equal to zero or
by an angle of 27 (this also corresponds to the ex-
istence in double groups of two elements — i and
qt). Since the difference between the elements i and
qi disappears in the ordinary group, we can pos-
tulate, without loss of generality, that the rotation
only by an angle equal to zero or 27 corresponds
to the inversion operation. Again, preferring a sim-
pler version, we postulate that the inversion opera-
tion corresponds to the rotation by an angle equal
to zero. This means that, for all the nonintrinsic ro-
tations and for all the elements of the infinite com-
plete orthogonal group Kj, the entire range of the
values of rotation angles ¢ is defined by the inequal-
ity 0 < < 2m.

It should be noted also that the possibility of
matching the inversion operation and rotation by an
angle equal to zero could be the basis for determining
the choice of the inversion operation in binary groups
and its defining relation. It is easy to see that this
feature is available, when we made, on the basis of
logical considerations, choice defined by relations (8)
and (9).
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The factor system ws(ra, 1), which was found for
the group D, in the above-mentioned way, can be
conveniently represented as a table

o, (rz, rl) r
v e c, U, U,
p’a" e 11 11
b’d ¢ 1 -1 1 -1 (16)
b'a’ u, 1 -1 -1 1
gb'd' ) 11 -1 -1

(left column shows the way, in which the elements
of symmetry in the double group D) are defined in
terms of products of constituting elements in the cor-
responding powers and g-operator)

For each pair of the commuting elements r; and
ro distinct from the unity in the group Dy (there
are three such pairs of elements in this group), for
example, for the pair of elements r; = a = ¢y and

r9 = b = us, the relation % = —1 holds. This

means that the factor system (16) belongs to the class
K1, and the group D> contains irreducible projective
representations belonging to the class Kj.

The membership of the factor system (16) to the
projective class K7 could also be established by the
value of constant o, which determines the projective
class of the factor-system w(rz, r1) and, according to
[1], can be calculated for the groups D, by the for-
mula

_ w(a, bw(a, a™ 1)

w(%"w(b, an—1)

(17)

where

2

Wan = w(a, a)w(a?, a)...w(a"*

, a).
It is easy to see that formula (17) for the factor-

system (16) and the relation (ws)c,2 = wa(ca, c2) =
wa(c2, ug)wa(cz,ca)
(w2)egawa(uz, c2)

= —1, which characterizes namely the

= —1 lead to the value o/ =
1(-1)
- (D=1
projective class K, in groups D,,.
Let us calculate the values of function ws(r) for
all r and bring the factor-system (16) to p-equivalent

standard form w)(rq, 1), thereby constructing, for
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the first time, a standard factor-system of the class
K, — the factor-system wzl)(rg, r1) for the group Do
and all groups isomorphic to it, because, for all point
groups with projective representations of the class
K1, of course, the equality w)(ra, r1) = wgl)(rg, r1)
is satisfied. Here, in the notation of factor-systems,
as well as previously, the strokes indicate that these
factor-systems are standard, and the lower numerical
index in parentheses indicates the class of a factor
system.

Let us use some formulas which are general for the
groups D,, determining the values of functions wu(r)
and lead the factor-systems w(rs, r1) to the standard
form. These formulas have a form [1]

Bl
u(ap) = Tapf‘:p,
wi/?
) = - 2 (18)
oy _ @) u(b)
u(b?aP) DR

Since o/ = et = (e2™/2)™ = (™)™ = (—1)™ and, at
the same time, o/ = —1 for the factor-system (16), m
is an odd number for this factor system (for example,
one can assume m = 1). For an odd m,

n1/2
e=i (o) (19)
w(a, a)
For the factor-system (16), therefore, e = z% =
(—1)1/2 o 1/2
= z% = 1. Taking into account that (w2)02/2 =

= wi*(ca, ¢2) = (=1)Y/2 =i and (ws)e,1 = 1, we ob-
(w2)23
("J2)021

wa'?(uz,us)

tain ’LLQ(CQ) - g = Z.v ’LLQ(UQ) = _UJ021W2(C2aC2) -

_1)1/2 . s .
= —(_7)1 = 4. Since uy = wugcy for the ordinary

u2(6(2)u2(u)2) -1
w2(uz, C2
In view of the relation us(e) = 1 and the fact that

the function uy(r) for the elements e, co, us and u)
of the group Ds takes the values of 1, 4, i and 1,
respectively, the factor system (16) is reduced to the
p-equivalent standard factor-system wj(rs, 1), using
the transformation

group Do, we have ug(ub) =

wa(ra, m1)uz(rar)
(15) (Tl )UQ (TQ)

wy(rg, 1) = (20)

This standard factor-system coincides with the stan-
dard factor-system of the class Kjof the group D,
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and groups isomorphic to it, i.e., the factor-system
w(1)(r2, r1). It was obtained for the first time and has
the form

1

U
a)(l)(rz, rl) | r

’
I"z e C, U, u,

Using the known [1] characters of the irreducible
projective representation P(1) of the class K7 of the
group Do, the corresponding standard factor-system
wzl)(rg, r1) and the values of function ws(r), which
are shown in Table 1, b), according to formula (4),
assuming k = kr = 0, we can easily find the char-
acters of the irreducible spinor representation I's(E’)
of the group D in the form of characters of its pro-
jective representation (Table 1, b). The characters
of irreducible representations of the double group D’
are given in Table 1, a) for comparison. It is easy to
see that the characters of the spinor representation
I's(E’) shown in Table 1 a) coincide with the calcu-
lated characters of the two-valued projective repre-
sentation I's(E’) of the class K7, which are given in
Table 1, b).

It should be noted that the characters of the irre-
ducible projective representation P(!) corresponding
to a standard factor-system of the class K; can be
obtained from readily calculated matrices of this rep-
resentation [1]. Furthermore, from the same matrices,
the matrices of the irreducible spinor representation
I'5(E’) can be easily found by formula (3).

It is interesting that, by applying formulas (17—
19) to the factor-system (21), we obtain the values
of function u)(r) for the elements e, ca, ug, and uj,
which are 1, —1, —1, and 1 (for the factor-system (21),
as for the factor-system (16), of course, o/ = —1 and
e = —1), correspondingly, which, as it turns out for
transformation (20), leave the factor-system (21) in-
variant. This means, that the further reduction of the
factor-system (21) using formulas (17-19) to the stan-
dard form is impossible, and the factor-system (21),
indeed, is a standard factor-system of the class K;
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of the group 222 (D3). The functions uf (r) = us(r),
or uf(r) = uz(r)ub(r) themselves become ambiguous,
as the complex values of coefficients for the reduction
of the factor-system (16) to the standard form uf(r)
can be taken with the sign “plus” or with the sign “mi-
nus” and, for the elements e, ca, ug, and u}, take the
values of 1, 4, 4 and 1 or 1, —i, —i and 1, correspond-
ingly. It is also easy to notice that the values of reduc-
tion coefficients allowable by formulas (17-19) for the

Table 1. Characters of: a — irreducible representa-
tions of the double point group (222)’(Dj) and b —
irreducible one-valued vector representations and ir-
reducible two-valued projective representations of the
point group (222)(Dz2). Upper part of table 1, b shows
the characters of irreducible projective representation
of the K class of the (222)(D2) group, which corre-
spond to the standard factor-system of the class K; of
the group (222)(Dz2) — factor system wzl)('rz, r1) of the
group 222 (Dz2) and the values of function u2(r), cor-
responding to the factor-system wz(r2, r1) of the class
K7 of this group reduce it to the p-equivalent stan-
dard factor-system w} (72, r1) of the group 222 (D2),
which, in this case, coincides with the factor-system
wzl)('rz, 1)

a)

(222)" (Dy) | e q c2,qc2 | w2, qua | uh, qub
Ty Ay 1 1 1 1 1
Ty Ao 1 1 1 -1 —1
I's B: 1 1 —1 1 —1
I'y Bso 1 1 —1 —1 1
I's E 2 -2 0 0 0

b)

222 (Ds) e e uz g

P 2 0 0 0
222 (D3) e co U2 ul

uz(r) 1 i i 1
222 (D3) e co U ul
Ty Ay 1 1 1 1
Ty Ao 1 1 —1 -1
I's By 1 -1 1 —1
I'y Ba 1 —1 —1 1
I's E 2 0 0
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elements of the group D, listed in the above order,
form two additional sets 1, —¢, i, —1 and 1, 4, —i, —1.
This also leads the factor system (16) to the standard
form (21). Without loss of generality, it is sufficient
to use only one of the above cases, and we will use, as
was done in Table 1, b), only the complex values of
the reduction coefficients with the “plus” sign for the
elements e, ca, ug, and uh, i.e., the values of 1, 4, i
and 1, respectively.

Let us consider the group D3 containing 6 ele-
ments: e, c3, 2, (u2)1, (u2)2, and (u2)3. The con-
stituting elements in this group are a = ¢3(c3,) and
b = (u2)1(c2z). The obvious defining relations a® = e
(a® = q) and b* = e (b? = q) for the constituting
element are fulfilled in the double group Dj.

Let us find a commuting defining relation for the
constituting elements of the double group Dj. For
the ordinary group D3, this relation has the form
ab = ba®.

Considering c¢3 as c¢¢(27/3) (£ || Oz), assum-
ing f = qu2)1 = qep(m) (¢ || Ox), and tak-
ing into account that f=! = (us); = cp(w) and
7Y = cp(m)l = —£, relation (12) for the dou-
ble groups yields ¢y (m)ce(2m/3)gee (7) = c—¢(27/3).
Since c_,(27/3) = qco(47/3) = qc(2m/3), we find
Q(Uz)lcs(uz)l = qc%.

Multiplying this equation on the left by (us2)1, we
obtain

cs(ug) = q(u2)1c§ or ab= gba?, (22)

which is a commuting defining relation for the con-
stituting elements of the double group D’;. It is sig-
nificant that the operation ¢ is also included into the
commuting defining relation for constituting elements
of the double group D’;, as well as into the commut-
ing defining relation for constituting elements of the
double group D, (14).

In order to determine the elements (uz)s and (us2)3
in the double group Dj, in view of the definition of
the above-considered element u)}, in the double group
D}, Eq. (12) also can be used.

Indeed, the relations cz(uz)igcd = (u2)2 and
c3(uz)1qc3 = (ug)3 obtained on the basis of this equal-
ity can be considered as the definition of elements
(u2)2 and (uz2)s in the double group Dj. Using rela-
tion (22), it is easy to obtain, from these relations,
that

(u2)2 = q(uz)ics or (uz)2 = qba,
(u2)s = (u2)1c3 or (ugz)s = ba’.
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(23)

Having the defining relations for the constituting el-
ements and relations (22) and (23), it is not diffi-
cult to find the factor-system wsy(ra, r1) for the group
Dj3. This factor-system has the form

a)z(rz,rl) r,
r, e o () (), ()
b°a° e 1 1 1 1 1 1
b°d' I 1 | R e T
p’a* 1 -1 -l 1 1 1
p'a®  (u,), 1 -1 || 1 -1l
gb'a"  (u,), 1 -1 1 -1 - 1
b'a*  (uy), 1 -1 1 1 -1 -l

(24)

All factor-systems belonging to the class Ky and
all irreducible projective representations belonging
to the group D3 (group D,, with an odd n) are p-
equivalent to the ordinary vectorial groups. As was
already mentioned, the factor-systems with all the
elements equal to 1 are standard factor-systems of
the class Ky in all groups. It is easy to see that the
factor-system (24) is reduced to the p-equivalent stan-
dard factor-system w}(ra, 1) coinciding, in this case,
with the standard factor-system of the class K of
the group Ds, i.e. the factor-system wEO) (rq, 1) of the
group Dj, all elements of which are equal to 1, using
transformation (20), where the function us(r) for the
elements e, c3, c3, (u2)1, (u2)2, and (ug)s has the
values of 1, —1, 1, 4, ¢ and 4, correspondingly [1],

UQ(Cg) = 6ip7r(p = 07 13 2)7

. q
usl(ua)f] = f = (/%) =
=e™/2(1=1,2,3; 0,1).

(25)
q =

The equality wy(ra, 1) = w(g)(r2, 1), which is ful-
filled in this case, is a criterion of correctness of the
above-determined values of the function us(r).

In accordance with formula (4), let us multiply the
characters (Table 2, b) of irreducible ordinary vec-
tor representations of the group D3 by the values of
function us(r) given in the top part of Table 2, b. We
get the characters of irreducible spinor representa-
tions (Table 2, b) of the group Ds in the form of
the characters of their projective representations. The

957



V.O. Gubanov, L.N. Ovander

characters of irreducible representations of the double
group D} are given in Table 2, a for comparison. It is
easy to see that the characters of spinor representa-
tions given in Table 2, a coincide with the calculated
characters of two-valued projective representations of
the class Ky, given in Table 2, b.

In the same manner, we can obtain the factor-
systems wj(r2, r1) and w(y,(r2, r1), and the values of

coefficients uq(r) and to construct irreducible spinor
representations also in groups containing the axes of
higher orders.

Table 2. Characters of: a — the irreducible repre-
sentations of the double point group (32)/(Dj%) and
b — irreducible one-valued vector representations and
the irreducible two-valued projective representations
of the point group 32(D3). Both parts of the table
shows the way of association of the representations
(complex conjugate, in this case) with regard for the
time-reversal invariance of states. Upper part of Table
2, b shows the values of function wuz(r), which con-
vert the factor-system wz(rz2, r1) of the group 32(D3),
which belongs to the class Ko, to the p-equivalent stan-
dard factor-system w(rz2, r1) of this group, which co-
incides, in this case, with the standard factor-system
of the class Ko of the group 32(D3) — factor-system
wEO)(rz,rl) of the group 32(Ds3), all coefficients of
which are equal to 1

a)
(32)/ (D3) e| q |c3, qc3|c3, qes| Bug |3quz
Iy Aqfl) 1 1 1 1 1
To Ao|l| 1 1 1 -1 |—1
I's E |2 —1 —1 0 0
, .

Ty +T5 Iy E/1 +E/2< El 1|—1 —1 7 —1
s EL(1{—-1 | -1 1 —i i
Te Efl2[—2 | 1 | -1 | o] o0

b)
32 (D3) e c3 c3 3uz
uz(r) 1 -1 1 i
32 (D3) e c3 cg 3usg
INT Ay 1 1 1 1
o Ao 1 1 1 -1
I's E 2 —1 —1 0

!
Ny +0s¢ e B 4+ELED | 1) 1
I's E, | 1| -1 1| —i
T's By [2] 1 |21 0
958

Thus, we have presented the method of construc-
tion of the factor-systems ws(ra, 1) and the irre-
ducible spinor representations of the point groups in
the form of their projective representations, which al-
lows solving the problem of finding the irreducible
two-valued representations of wave vector groups and
full space groups. The groups 222 (D) and 32 (D3),
which were chosen as illustrations of the applicability
of the proposed method of construction of the factor
systems ws(ra, 1) and the irreducible spinor repre-
sentations, are the simplest examples of non-Abelian
groups, whose factor-systems wa(re, r1) exhausting
all possible situations belong either to the class K,
as in case of the group Ds, or to the class Ky, as
in case of the group Ds. It is also significant that
the method allowed one to find, for the first time,
the factor-system WEl)(T2v r1), which is a standard
factor-system of the class K7 for the group Dy hav-
ing irreducible projective representations, which be-
long to the class K7, and for all groups isomorphic
to it, and to find the values of function us(r) for the
group D3, bringing the factor-system ws(r2, r1) con-
structed for it to the p-equivalent standard factor-
system of the class Ky, all the coefficients of which
are equal to 1.

In conclusion, we note that the essence of Bethe’s
method, in our opinion, is the introduction of the op-
eration ¢, which correctly reflects the transformation
properties of spinors. This method seems more logi-
cal and can be more precisely mathematically used
in constructing the factor-systems wo (72, r1) and the
two-valued representations of the point and space
symmetry groups in the form of projective representa-
tions of the ordinary point group, by preserving their
systematics and hierarchy, and not in the form of true
irreducible representations of abstract double groups,
since assigning the sequence numbers for which, as a
rule, is arbitrary.
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PO3BUTOK METO/IY

BETE JIJ1d TTOBY1I0BU IBO3HAYHUX
IIPEJCTABJIEHb ITPOCTOPOBUX

TA IBO3HAYHUX IMTPOEKTUBHUX
TIPEJCTABJIEHb TOYKOBUX I'PVYII

Peszwowme

PosrisinyTo MeTomuky mobyaoBU JIBO3HAYHUX IIPEJCTABJIEHD
IIPOCTOPOBUX Ta JABO3HAYHUX IPOEKTUBHUX IPEJICTABJIEHb TO-
9KOBUX rpym. IIpencraBieHo mero nmobyaoBu (paKTOp-CUCTEM
wa(ra, r1), AKi BiIOGParKaOTh MEPETBOPEHHS XBUJIBOBUX QyH-
KIifi KBAHTOBUX CUCTEM 3 HAIBIJIMM CIIIHOM, 1 sKi € HeobXi-
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JTHUMU JJT1sI 3HAXOJI2KEHHSI [IBO3HAYHUX HE3BITHUX TPOEKTUBHUX
[peJcTaBIeHb TOYKOBUX IpyIr. Lleit MeTox IpyHTy€eThCs Ha BBE-
JEeHHI B POJIi JOIATKOBOI'O eJIeMEeHTa CUMETpii onepauil ¢, Buep-
e Bukopucranoi Bere. Ha npukiani rpyn 222 (D2) ta 32 (D3)
IIOKa3aHO, AKNUM YNHOM BBOIATHCHA Cl'[iBBi,‘ELHOH_IeHHSI7 10 103BO-
JISIIOTH 3POOUTH OJHO3HAYHUMH aJireOpy IMOABIfiHUX rpyI Ta,
30KpeMa, 1X Tabuuili MHOXKeHHs. Iloka3aHo, sIKUM YMHOM Ha
OCHOBI CITiBBiJJHOIIIEHB, 110 OOrOBOPIOIOTHCS, OY/IYETHCS BIIEP-
111e IpeCTaBJIEHA JIjisl Tpynu 222 craHapTHa (PaKTOpP-CUCTEMA
knacy K1 — daxTop-cucrema ‘*’21) (r2, 71). OBrosoproOTHCS Ta-
KOXK B IIJIOMY POJIb Ta MOXKJIMBOCTI MeToxy Bere Ta ioro mo-
mudikaliiit B mo0y/10B1 JIBO3HAYHUX MIPEICTABIEHb TOYKOBUX Ta
IPOCTOPOBUX I'PYII.
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