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The Monte Carlo simulation is applied to study the impact of the aggregation on the percolation
anisotropy on a square lattice in the elongated 𝐿𝑥×𝐿𝑦 geometry. An interactive cluster-growth
model, in which the probability of occupying a site on a lattice 𝑓𝑧 is dependent on the number
of occupied neighboring sites 𝑧 is used. The value of 𝑓𝑧 is 1/𝑟 at 𝑧 = 0 and is equal to 1
in other cases. The degree of the aggregation parameter 𝑟 ≥ 1 controls the morphology of
aggregates. The transition from 𝑟 = 1 to 𝑟 → ∞ corresponds to the transition from the ordinary
random percolation to the percolation of compact Eden clusters. The effects of the lattice aspect
ratio 𝑎 = 𝐿𝑥/𝐿𝑦 (𝐿𝑥 > 𝐿𝑦) on the finite-size scaling and the electrical conductivity are
studied. The data evidence that the percolation threshold 𝑝𝑐 goes through the minimum, and the
finite-size effects are enhanced with increase in 𝑟. The dependence of the electrical conductivity
on the measuring direction (𝑥 or 𝑦) at different values of 𝑟 and 𝑎 is discussed.

K e yw o r d s: aggregation, anisotropy, correlated percolation, elongated systems, electrical
conductivity.

1. Introduction

The percolation transition reflects changes in the ge-
ometrical connectivity of a system, and, commonly, it
is accompanied by abrupt changes of different physi-
cal characteristics [1]. Nowadays, the percolation phe-
nomena attract a great practical interest stimulated
by the necessity to predict electrophysical, thermal,
magnetic, and optical properties of various composite
systems filled with nanoparticles [2]. In the classical
random percolation problem, the filling of the system
with particles assumes no presence of correlations. In
the correlated percolation problem, the presence of
near-neighbors and the interaction between particles
are assumed [3, 4]. In the general case, the percola-
tion threshold 𝑝𝑐 can depend on the interparticle in-
teractions in a complex way. Up-to-day, the different
lattice interactive percolation models, in which the
probability of occupying a site 𝑓𝑧 is dependent on the
number of occupied the neighboring sites 𝑧, were pro-
posed [5–9]. For example, in the model of multiplica-
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tive growth on a two-dimensional (2d) square lattice,
the value of 𝑓𝑧 was defined as [5]

𝑓𝑧 = (1/𝑟)4−𝑧, (1)

where 𝑧 ≤ 4 is the number of occupied neighboring
sites, and 𝑟 ≥ 1 is a degree of aggregation. For this
model, 𝑓𝑧 = 1 at 𝑧 = 4 and 𝑓𝑧 < 1 at 𝑧 < 4.

In another percolation model of interactive cluster-
growth [7–10], it is assumed that the value of 𝑓𝑧 is
only determined by the presence of neighboring sites:

𝑓𝑧 = 1 at 𝑧 ̸= 0, and (2)
𝑓𝑧 = 1/𝑟 at 𝑧 = 0. (3)

The deposition can be considered as a combina-
tion of nucleation, growth, and possible coalescence
of clusters. For the percolation models of interactive
cluster-growth, the value of 𝑟 = 1 corresponds to the
ordinary random percolation. The percolation thresh-
old 𝑝𝑐 initially decreases and then increases with in-
creasing the degree of aggregation 𝑟 [10]. For large
𝑟 (≫ 1), the growth of compact Eden clusters was
observed. At the percolation threshold, these clus-
ters consolidate into a large percolation cluster [9]. It
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was assumed that, in the limit 𝑟 → ∞, the percola-
tion cluster has a disk-like shape with the percolation
threshold 𝑝𝑐 ≈ 𝜋/4 ≈ 0.76 [5]. This value is close to
that for equal-sized disks homogeneously distributed
on the plane substrate, 𝑝𝑐 = 0.718± 0.003 [11].

Other correlated percolation models were studied
in [12–15]. In a 2𝑑 correlated percolation model, the
attractive interactions between near-neighbor occu-
pied sites result in the formation of a structure remi-
niscent of discontinuous metal films [12]. In the ther-
mal model of correlated deposition, the occupation
of a given site depends on the occupation states of
its nearest neighbors, as well as on the temperature
[13]. In the granular correlated percolation model, the
initial seeds are deposited on the substrate, and the
grains are growing around them [14]. The correlated
percolation for the deposition on a heterogeneous sub-
strate with two types of sites with different energies
of attraction was studied in [15].

Percolation problems for the anisotropic (elon-
gated) geometry have attracted much attention in re-
cent years. The simulation data on the deposition of
a mixture of conducting and isolating particles on a
2𝑑 substrate evidence that the height of the percola-
tion layer is dependent on the concentration of con-
ductive particles 𝑝 [16]. The crossover between the
2𝑑 and three-dimensional (3d) percolations on a cu-
bic lattice of the 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 geometry (𝐿𝑥 = 𝐿𝑦)
was studied numerically in [17, 18]. For the thickness
dependence of the percolation threshold 𝑝𝑐(𝐿𝑧), the
power law behavior at 𝐿𝑧 < 0.1𝐿𝑥 is observed

𝑝𝑐(𝐿𝑧)− 𝑝∞𝑐 ∝ 𝐿1/𝜈
𝑧 , (4)

where 𝜈 ≈ 0.88 is a correlation length exponent for
the 3𝑑 percolation problem. However, at 𝐿𝑧 ≥ 0.1𝐿𝑥,
the correction to the scaling is required.

This scaling law is in good correspondence with
experimental data on the thickness dependence of the
percolation threshold of an Al–Ge film [19].

Simulations of the continuum percolation in 3𝑑
rectangular samples filled with spherical particles
were done in [20]. The findings indicate that the sam-
ple shape and the relative sizes influence the percola-
tion behavior. The critical volume fraction 𝑝𝑐 across
the thin direction of the film is lower than the clas-
sical limit of ≈0.29 (for spheres in a 3𝑑 matrix) and
increases with the film thickness. The 2𝑑-3d percola-
tion transition for a system composed of equisized,

fully penetrable ellipsoids was numerically investi-
gated in [21]. The percolation threshold is signifi-
cantly dependent upon the preferential orientation of
particles.

The 2𝑑 rectangular 𝐿𝑥 × 𝐿𝑦 geometry was in-
vestigated extensively in [22–34]. The aspect ration
was determined as 𝑎 = 𝐿𝑥/𝐿𝑦 ≥ 1. For the or-
dinary random percolation, the growth of percola-
tion clusters was observed dominantly along the short
axis 𝐿𝑦 (easy direction for percolation), whereas the
percolation in the direction of the long axis 𝐿𝑥 (a
difficult direction for percolation) was observed in-
frequently. The different finite-size scaling functions
were derived for the percolation threshold depen-
dences 𝑝𝑥𝑐 and 𝑝𝑦𝑐 [22–24, 30, 34].

The 1d-2d percolation transition in a 𝐿𝑥×𝐿𝑦 strip
for the model of nodes and links was analyzed in [22,
23]. It was demonstrated that the 1d effects became
important for the large strip length,

𝐿𝑥 > 𝐿𝑦 exp(𝐿𝑦/𝜉)
𝑑𝑓 , (5)

where 𝜉 ∝ (𝑝−𝑝𝑐)
−𝜈 is a correlation length for the 2𝑑

percolation problem, 𝜈 = 4/3 is a correlation length
exponent, and 𝑑𝑓 ≈ 1.56 is a fractal dimensionality of
very large clusters below the percolation threshold.

For an apparent percolation threshold (the value
of 𝑝𝑐, when 50% of realizations are percolating), the
following scaling laws were conjectured [34]:

𝑝𝑥𝑐 − 𝑝∞𝑐 = Λ(𝑎)(𝐿𝑥)
−1/𝜈 , (6)

𝑝𝑦𝑐 − 𝑝∞𝑐 = −Λ(𝑎)(𝐿𝑥)
−1/𝜈 , (7)

where Λ(𝑎) = 𝑐(𝑎−1/𝜈 − 1), 𝑐 (=0.92± 0.04) is a con-
stant, 𝑝∞𝑐 (≈0.59275) is the infinite system-size perco-
lation threshold for the site percolation, and 𝜈 (=4/3)
is a correlation length exponent for a 2𝑑 system.

A scaling theory was used to study the 3𝑑 to
2𝑑 transition near the percolation threshold for an
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 (𝐿𝑥 = 𝐿𝑦 ≫ 𝐿𝑧) system [35]. The per-
colation threshold 𝑝𝑧 in the direction 𝑧 is dependent
upon the thickness of the layer 𝐿𝑧 with the transi-
tion from 𝑝2𝑑𝑐 = 0.59275 for a 2𝑑 system (𝐿𝑧 = 1)
to 𝑝3𝑑𝑐 = 0.3117 for a 3𝑑 system (𝐿𝑧 = ∞). The fol-
lowing scaling relation was obtained for 𝑝𝑧 versus 𝐿𝑧

dependence:

𝑝𝑧𝑐 = 𝑝3𝑑𝑐 + (𝑝2𝑑𝑐 − 𝑝3𝑑𝑐 )𝐿−1/𝜈 , (8)
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a) b)

Fig. 1. Examples of growth patterns in a vicinity of the percolation thresholds for 𝑝 = 0.52 and 𝑟 = 100 (а)
and 𝑝 = 0.55 and 𝑟 = 1000 (b). The data are presented for the square system 𝐿𝑥 = 𝐿𝑦 = 256. The black color
corresponds to the empty sites

where 𝜈 = 0.88 is a correlation length exponent for
the 3𝑑 percolation problem.

Effects of anisotropy on the electrical conductivity
in finite rectangular lattices were studied as well (see
[19, 32, 33, 36]). The electrical conductivity as a func-
tion of the film (Al-Ge random mixture) thickness 𝐿𝑧

was experimentally measured in [19]. The system be-
haves itself as a 3𝑑 system, when the film thickness
𝐿𝑧 is much larger than the correlation length. For the
model of deposition of conducting particles on a 2𝑑
substrate, the following scaling law for the thickness
dependence of the electrical conductivity 𝜎(𝐿𝑧) was
derived [36]:

𝜎 ∝ (𝐿𝑧 − 𝐿𝑐
𝑧)

𝑡, (9)

where 𝑡 is the critical conductivity exponent, and 𝐿𝑐
𝑧

is the critical thickness.
The data of experiments and simulations [32] for

the deposition of particles on a substrate evidence
that the percolation threshold is shifted to extremely
low surface coverages. The transfer matrix method
was applied to calculate the electrical conductivity
along the short direction 𝑦 for 𝐿𝑦 = 10 and for vari-
ous values of 𝐿𝑥 in the interval 1÷1000 [33]. The con-
ductance jump was observed at some critical value of
𝐿𝑥, and its position was dependent on the fraction of
occupied sites 𝑝. The electrical conductivity in finite
rectangular random resistor networks as a function of

the geometrical aspect ratio 𝑎 was simulated in [37]. A
numerical resistor network model on a cubic lattice of
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 geometry (𝐿𝑥 = 𝐿𝑦) [18] predicts the
following dependence on 𝐿𝑧/𝐿𝑥 for the conductivity
exponent 𝑡:

𝑡− 𝑡2𝑑 ∝ 𝐿𝑧/𝐿𝑥, at 𝐿𝑧 < 0.1𝐿𝑥 and (10)
𝑡− 𝑡2𝑑 ∝ ln(𝐿𝑧/𝐿𝑥), at 𝐿𝑧 ≥ 0.1𝐿𝑥. (11)

Here, 𝑡2𝑑 ≈ 4/3 is the conductivity exponent for 2𝑑
systems.

This work is aimed to study the impact of the ag-
gregation on the percolation anisotropy on a square
lattice in the elongated 𝐿𝑥 ×𝐿𝑦 geometry. The inter-
active cluster-growth model [9], in which the prob-
ability of occupying a site on a lattice 𝑓𝑧 is depen-
dent on the number of occupied neighboring sites 𝑧, is
used. The effects of the lattice aspect ratio 𝑎 = 𝐿𝑥/𝐿𝑦

(𝐿𝑥 > 𝐿𝑦) on the finite-size scaling and the electri-
cal conductivity are investigated. The dependences of
the electrical conductivity on the directions 𝑥 and 𝑦
at various values of 𝑟 and 𝑎 are also discussed.

2. Description of the Model
and Details of Calculations

The growth of percolation 𝑛-clusters is based on
the previously described interactive cluster-growth
model [9]. The sites of the 2𝑑 square lattice were se-
quentially filled, by using the following rules:
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Fig. 2. Mean radius of gyration 𝑅𝑔 versus the fraction of
occupied sites 𝑝 for the square system 𝐿𝑥 = 𝐿𝑦 = 256 at
various values of the aggregation degree 𝑟
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Fig. 3. Percolation probability 𝑅 versus the fraction of oc-
cupied sites 𝑝 for the different directions 𝑥 and 𝑦 at different
values of 𝐿𝑦 . The aspect ratio is 𝑎 = 𝐿𝑥/𝐿𝑦 = 2 and the ag-
gregation degree is 𝑟 = 1000

∙ the new empty site is randomly selected from the
list;

∙ the number of filled nearest neighbors 𝑧 is deter-
mined;

∙ the site is filled with probability 𝑓𝑧 as determined
from Eqs. (2) and (3).

The fraction of occupied sites 𝑝 is determined as
the ratio of the number of filled sites and the product
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Fig. 4. Apparent percolation threshold 𝑝𝑐 versus 𝐿
−1/𝜈
𝑦 . The

aspect ratio is 𝑎 = 𝐿𝑥/𝐿𝑦 = 4, and the aggregation degree 𝑟 =

= 10. The value of 𝑝∞𝑐 corresponds to the percolation threshold
of an infinite lattice
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Fig. 5. Percolation threshold 𝑝∞𝑐 versus the aggregation deg-
ree 𝑟. Here, symbol 1 corresponds to the data of the present
work, symbol 2 to the data of [10], and symbol 3 to the data
of [9]

𝐿𝑥𝐿𝑦. The lattice is filled to a given concentration 𝑝
and then is checked for the presence of a percolation
cluster.

Figure 1 presents the examples of growth patterns
in vicinities of the percolation thresholds at various
values of aggregation degree 𝑟 for the square system
𝐿𝑥 = 𝐿𝑦 = 256. The visual analysis of the data shows
that an increase of 𝑟 results in an increase of the mean
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Fig. 6. Examples of the electrical conductivity 𝜎 versus the
fraction of occupied sites 𝑝 for the directions 𝑥 and 𝑦 at different
values of 𝑎 and 𝑟 = 100 (a) and different values of 𝑟 and 𝑎 = 32

(b). The long-side size of the square lattice is 𝐿𝑥 = 1024

cluster size. For the qualitative characterization, the
radius of gyration of an individual cluster 𝑅𝑠 is cal-
culated as [38]

𝑅𝑠 =

⎯⎸⎸⎷1

𝑠

𝑠∑︁
𝑖=1

|r𝑖 − r𝑜|2, (12)

where vector r𝑖 determines the position of the 𝑖-th
site in the cluster, 𝑠 is a number of particles in the
cluster, and

𝑟𝑜 =
1

𝑠

𝑠∑︁
𝑖=1

r𝑖. (13)

Figure 2 presents examples of the mean radius of gy-
ration 𝑅𝑔 versus the fraction of occupied sites 𝑝 for
the square system 𝐿𝑥 = 𝐿𝑦 = 256 at various values of
the aggregation degree 𝑟. Note that size of the cluster
noticeably increases with 𝑟 at the fixed value of 𝑝.

The investigations were done on the elongated
square lattices with various sizes in the horizontal 𝑥
and vertical 𝑦 directions: 𝐿𝑥 ≥ 𝐿𝑦. The periodical
boundary conditions were used in the both 𝑥 and 𝑦
directions.

The Hoshen–Kopelman algorithm was used for the
labeling of different clusters [39]. The value of per-
colation threshold 𝑝𝑐 corresponds to the minimum
fraction of occupied sites, at which an infinite cluster
formed in the infinite lattice. For the estimation of
𝑝𝑐, the percolation probability 𝑅 versus the fraction
of occupied sites 𝑝 was calculated. The long lattice
side was varied in the interval of 𝐿𝑥 = 64–2048, and
the number of runs was up to 1000.

The electrical conductivity of the system is calcu-
lated, by using the highly efficient algorithm proposed
by Frank and Lobb [40]. This algorithm utilizes the
repeated application of a sequence of series, parallel,
and star-triangle (Y–△) transformations to the lat-
tice bonds. The final result of this sequence of trans-
formations is the reduction of a finite portion of the
lattice to a single bond that has the same conductance
as the entire lattice portion. We used the scheme of
four equivalent resistors (see, e.g. [41]) with high,
𝜎𝑓 = 106, and low, 𝜎𝑖 = 1, conductivities for the
occupied and empty sites, respectively.

3. Results and Discussion

Figure 3 presents examples of the percolation prob-
ability 𝑅 versus the fraction of occupied sites 𝑝 for
the different directions 𝑥 and 𝑦 at different values
of 𝐿𝑦. For finite-sized systems, the probability curves
𝑅(𝑝) for fixed values of 𝐿𝑧 and 𝑎 evidence that the
dominant growth of percolation clusters occurs ini-
tially in the direction of the short axis 𝑦 (easy direc-
tion for percolation) and then in the direction of the
long axis 𝑥 (difficult direction for percolation). It is in
full correspondence with a similar behavior observed
for the ordinary random percolation problem [22–
31, 33, 34]. All curves 𝑅(𝑝) for different 𝐿𝑧 cross each
other at a unique intersection point 𝑅*

𝑥 = 𝑅*
𝑦 located

at 𝑝𝑐 = 𝑝∞𝑐 in the thermodynamic limit.
The apparent percolation threshold 𝑝𝑐 at a given

lattice size 𝐿𝑥×𝐿𝑦 is determined in the directions 𝑥
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and 𝑦. The condition 𝑅(𝑝) = 0.5 (i.e., when 50% of re-
alizations are percolating) is used [42]. The finite-size
scaling analysis was done to obtain the percolation
threshold in the thermodynamic limit, at 𝐿𝑥 → ∞
and 𝐿𝑦 → ∞. The percolation threshold 𝑝∞𝑐 of an
infinite lattice can be found by fitting the results ob-
tained for lattices of different sizes to the scaling laws
described by Eqs. (6) and (8). The example of such
fitting is presented in Fig. 4.

Note that, at the relatively large values of 𝑟 > 100,
the noticeable violations of the scaling laws described
by Eqs. (6) and (8) are observed for the studied in-
terval of 𝐿𝑥 = 64–2048, and the apparent values of 𝑝𝑐
noticeably deviate from their magnitude in the ther-
modynamic limit. Figure 5 presents the percolation
threshold 𝑝∞𝑐 versus the aggregation degree 𝑟. The
value of 𝑝∞𝑐 initially decreases, goes through the min-
imum at 𝑟 ≈ 102, and then increases with 𝑟. For the
finite systems, the apparent anisotropy of the perco-
lation 𝑝𝑥𝑐 − 𝑝𝑦𝑐 increases with 𝑟.

Figure 6 presents examples of the electrical con-
ductivity 𝜎 versus the fraction of occupied sites 𝑝
for the different direction 𝑥 and 𝑦 at different val-
ues of 𝑎 and 𝑟 = 100 (a) and different values of 𝑟
and 𝑎 = 32 (b). The value of 𝜎 jumps in a vicinity of
the percolation threshold 𝑝𝑐. In addition, the strong
anisotropy of the electrical conductivity is observed,
and the value of 𝜎𝑦 exceeds the value of 𝜎𝑥.

The anisotropy of the electrical conductivity in-
creased with the values of 𝑟 (Fig. 6, a) and 𝑎
(Fig. 6, b). The apparent percolation threshold in the
short direction 𝑝𝑦𝑐 (𝑎) can be noticeably smaller than
that 𝑝𝑥𝑐 (𝑎) in the long direction, and 𝑝𝑦𝑐 (𝑎) < 𝑝𝑦𝑐 (𝑎 =
= 1) < 𝑝𝑦𝑐 (𝑎), where 𝑝𝑦𝑐 (𝑎 = 1) is the apparent perco-
lation threshold for the isotropic lattice.

The further investigations of the scaling of the elec-
trical conductivity anisotropy with regard for the geo-
metrical arguments is in progress and will allow one to
clarify the conduction mechanisms of thin film nano-
materials for potential applications in optoelectronics
and sensors.

4. Conclusions

The impact of the aggregation on the percolation
anisotropy for a square lattice in the elongated
𝐿𝑥 × 𝐿𝑦 geometry is studied. The aggregation is sim-
ulated, by using an interactive cluster-growth model,
in which the degree of aggregation is controlled by

the parameter 𝑟 ≥ 1. The transition from 𝑟 = 1 to
𝑟 → ∞ corresponds to the transition from the ordi-
nary random percolation to the percolation of com-
pact Eden clusters. The data evidence that the per-
colation threshold 𝑝𝑐 goes through the minimum, and
the finite-size effects are enhanced with increasing 𝑟.
For elongated systems, the electrical conductivities
are strongly dependent upon the direction of mea-
surements, and the apparent percolation threshold in
the short direction 𝑝𝑦𝑐 (𝑎) is noticeably smaller than
that, 𝑝𝑥𝑐 (𝑎), in the long direction. The obtained data
may be useful for understanding the electro-physical
behavior of composite films filled with nanoparti-
cles that have tendency to the agglomeration and
aggregation.
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(N.L.).
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М.I.Лебовка, Л.А.Булавiн,
I.А.Мельник, К.Ф.Репнiн, В.I. Ковальчук

ВПЛИВ АГРЕГАЦIЇ НА АНIЗОТРОПIЮ
ПЕРКОЛЯЦIЇ НА КВАДРАТНIЙ ҐРАТЦI
В ПОДОВЖЕНIЙ ГЕОМЕТРIЇ

Р е з ю м е

Метод Монте-Карло був застосований для вивчення впли-
ву агрегацiї на анiзотропiю перколяцiї на квадратнiй ґра-
тцi в подовженiй 𝐿𝑥 × 𝐿𝑦 геометрiї. Була використана мо-
дель взаємодiючої перколяцiї, в якiй iмовiрнiсть зайняття
певного вузла кластера на ґратцi 𝑓𝑧 залежить вiд числа
зайнятих сусiднiх вузлiв 𝑧. Величина 𝑓𝑧 дорiвнювала 1/𝑟

при 𝑧 = 0 або дорiвнювала 1 в iнших випадках. Параметр
ступеня 𝑟 ≥ 1 контролює морфологiю агрегатiв. Перехiд вiд
𝑟 = 1 до 𝑟 → ∞ вiдповiдає переходу вiд звичайної випад-
кової перколяцiї до перколяцiї по компактним кластерам
Iдена. Вивчено вплив аспектного вiдношення сторiн ґра-
тки 𝑎 = 𝐿𝑥/𝐿𝑦 (𝐿𝑥 > 𝐿𝑦) на скiнченно-вимiрний скейлiнг i
поведiнку електропровiдностi. Отриманi данi свiдчать, що
порiг перколяцiї 𝑝𝑐 проходить через мiнiмум i скiнченно ви-
мiрнi ефекти пiдсилюються при збiльшеннi 𝑟. Обговорюю-
ться залежностi електропровiдностi вiд напрямку вимiрю-
вання при рiзних значеннях 𝑟 i 𝑎.

916 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 9


