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DIMENSIONAL CROSSOVER
AND THERMOPHYSICAL PROPERTIES
OF NANOSCALE CONDENSED MATTER

The problem going to be discussed is as follows: how results for 3D systems transfer to results
for 2D systems and vice versa. Obviously, such a 8D < 2D dimensional crossover should
be smooth and without discontinuities. Here, this problem is studied for a single-component
classical liquid in a reduced geometry, namely for slit-like and cylindrical pores with the lower
crossover dimensionality Deros = 2 and Deros = 1, correspondingly, which are filled by water
molecules. The influence of the 3D < 2D dimensional crossover on the effective critical ex-
ponents Qeft, Veft, Vet and on the thermophysical properties such as the heat capacity Cv and
the isothermal compressibility Br is investigated.
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1. Introduction

The crossover (transitional) phenomena describing
the nature of the critical behavior changes on ap-
proaching from a vicinity of one phase-transition
point to another one (for example, from the critical to
the tricritical point or the crossover events between
the Ising model and the Heisenberg model critical be-
haviors) was discussed in a number of works [1-4].

The dimensional crossover, being a particular case
of the general crossover phenomena, usually takes
place in systems under confinement of different nature
such as low-dimensional magnetic systems, confined
fluids, liquid crystals, few-layer graphene, carbone
nanotubes, etc. [5-14]. The dimensional crossover is
governed by the important condition: the correlation
length & of order parameter fluctuations has to be
larger or the same order of magnitude in compari-
son with a linear size L of system’s restricted volume
under consideration, i.e. £ > L.

A consistent treatment of such kinds of crossover
phenomena in nanoscale condensed systems requires
to consider the problem of universality classes, for
which one has specific conditions of a similar critical
behavior of different physical properties. As is known
[1, 2, 15-28], these conditions of unversality classes for
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bulk systems with L > £ are as follows: (a) the same
space dimensionality D; (b) the same dimensionality
(number of components) n of system’s order param-
eter; (c) the same type (short- or long-range) of the
intermolecular interaction; (d) the same symmetry of
the Hamiltonians(fluctuation part of the thermody-
namic potential).

While changing one (or more) of these four con-
ditions, the crossover phenomena may appear in the
bulk,as well as in systems under confinement. In the
latter case, i.e. in confined systems with & > L, the
following additional conditions of universality classes
have to be taken into account: (e) the same type (hy-
drophilic, hydrophobic, or partial wetting) of bound-
ary conditions, (f) the same geometric form of sys-
tem’s limiting surfaces or the same lower crossover
dimensionality D.,os), (g) the same physical property
under consideration [6, 29-31, 43].

The lower crossover dimensionality D...s men-
tioned in condition (f) means such a dimensional-
ity, which characterizes a limiting volume in the
case where its one (two or all three) linear size is
approaching a monomolecular thickness [6, 28-30].
Thus, thin films have a form of monomolecular planes
with Deos = 2, cylindric pores receive a form of
monomolecular wires with Dg..s = 1, while quan-
tum dots or vesicules have a limiting form of a single
molecule with D5 = 0.
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The final condition (g) is considered to be also im-
portant because the equations for coordinates of max-
ima or minima for the physical properties in systems
with confinement contain non-universal amplitudes in
the scaling laws. Therefore, in contrast to the critical
parameters in bulk fluid systems with L > ¢ having
the single critical point, these equations give (a) the
analogues of the critical parameters, which are differ-
ent due to non-universal amplitudes, say, for the heat
capacity or the isothermal susceptibility, etc., as well
as (b) a non-singular “rounding” critical behavior of
the physical properties in a reduced geometry with
&> L6, 30, 39, 43].

Two types of a dimensional crossover were studied
in our previous papers [5, 6, 32-35, 3841, 43, 44].
The 1% type of a dimensional crossover corresponds
to the transition from 3D bulk to 3D confined lig-
uids. In this case, the dependence of physical proper-
ties on thermodynamic variables (temperature, den-
sity, pressure, etc.) in bulk liquids with linear sizes
L > £ converts into the dependence of these proper-
ties on linear sizes in confined liquids with £ < L. The
274 type of a dimensional crossover corresponds to the
case where a further decreasing of linear sizes in con-
fined liquids could be treated under certain conditions
as the change of the spatial dimensionality D (for ex-
ample, 3D < 2D crossover in slit-like pores or 3D <
1D crossover in cylindrical pores). A smooth 3D <
2D transition of the effective critical exponent v for
the temperature dependence of the correlation length
& fromv = 0625 for D =3torv =1for D =2is
examined for liquids in a reduced geometry in [6, 36].

This paper is aimed at studying the temperature
dependence of the isochoric heat capacity Cy and the
isothermal compressibility S in a single-component
classical liquid in a reduced geometry. For this pur-
pose, the effective critical exponents a.g for Cy and
Yot for B are calculated with a dimensional crossover
of the 2™ type taken into account. For definiteness,
all the obtained results are applied to two types of
the lower crossover dimensionality D...s = 2 and
D¢yos = 1, correspondingly, in slit-like and cylindrical
pores filled by water molecules.

2. Effective Critical
Exponent a.g and Heat Capacity Cv

Here, we study the influence of a 3D < 2D dimensio-
nal crossover on the effective critical exponent o and
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the heat capacity Cy for confined single-component
classical fluids. Numerical results will be obtained for
water in a reduced geometry of slit-like and cylindri-
cal pores. Such fluids belong to the universality class
of the Ising model and have a scalar order parameter
p== ;Cp ¢ related to a deviation of the density p from
its critical value pe.

In 3D case, the isochoric heat capacity in the bulk
phase has a “weak” singularity at the critical temper-
ature T, (00):

CV = CVOSDT_Q, (1)

where Cy®P is the non-universal amplidude of the
isochoric heat capacity, 7 = [T'—T.(00)]/T.(00) is the
temperature variable, and « is the critical exponent,
which equals asp = 0.125 for the 3D Ising model.
In the 2D Ising model, the heat capacity has the
well-known Onsager logarithmic divergence:

Cy = Cyo*Plnr, (2)

which corresponds to the critical exponent asp = 0
(see, e.g., [2]).

2.1. Effective Critical Exponent ces

To study a 3D < 2D dimensional crossover for the
critical exponent aeg, we shall use the following for-
mula for any effective critical exponent [6]:

a3p — Q2D (3)

2
Qeff = azp + | —arctg(az —b) — 1
T 2

Here, x = H/H,yos is the dimensionless coordinate
of a plane-parallel layer under confinement; H.os is
the linear size of fluid’s restricted layer, at which a
crossover occurs; a and b are the parameters charac-
terizing the slope and the position of the 3D < 2D
Crossover.

Numerical values of the dependence of the critical
exponent aeg on the number S of molecular layers,
i.e. the slit-like pore’s thickness H or the cylidrical
pore’s radius R, are given in Table 1 (see 2°¢ column).

A 3D < 2D dimensional crossover of the criti-
cal exponent aeg is more expressive within the in-
terval 0.9-3.6 nm of the pore’s thickness H or ra-
dius R in confined fluids of a slit-like or cylindri-
cal geometry. Really, the critical exponent cg is in-
creasing approximately 4 times in this interval: from
e (H = 0.9nm) = 0.03 to aeg(H = 3.6nm) ~ 0.12
(Fig. 1).
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Equation (3) looks similar to the crossover between
hydrodynamic and fluctuation regions for the central
Rayleigh component of the light-scattering spectrum
in the mode-mode coupling version of the dynamical
theory of critical phenomena [42, 44].

2.2. Isochoric heat capacity Cy

To calculate the dependence of the heat capacity Cy
not only on the temperature but also on the linear
sizes of fluid’s volume, it is necessary to use, instead
of the temperature 7 = [T — T,(00)]/Te(c0) in bulk
fluids, the following new temperature variable for flu-
ids in a confined geometry [6, 38, 39]:

7(8,€)=(G/S)Y +[14+(G/S)*(&0 /€) /¥ signT. (4)

Here, G is the geometrical factor depending on the
lower crossover dimensionality of fluid’s volume (for
plane-parallel layers or slit-like pores, G = 7; while,
for cylindrical pores, G = pu; = 2.4048, where u;
is the first zero of the Bessel function Jy(z)); S =
= L/dy is the number of molecular layers, where L is
a linear size of fluid’s volume such as layer’s thickness
or cylinder’s radius, and dy is the average diameter of
a molecule (for water molecules, dy ~ 0.3 nm).

First, let us consider the 15 type of a dimen-
sional crossover. For relatively large sizes L > &, it
is easy to find from Eq. (4) that, due to the factor
S = L/dy > 1, the correlation length ¢ is approach-
ing its bulk value & = &y7~%. In this case, the inequal-

1ty
&/€> (G/S)[L+ (/)] (5)

is valid. Then the term with (G/S) in (4) may be
omitted, and all the physical properties depend on
the thermodynamic variables (temperature, density
or concentration, pressure, etc.). In the opposite case
where the inequality

S = L/dy > G(€/&)[1 + (G/S)V"]™" (6)

takes place, one has the dependence of all the physical
properties only on the linear sizes in confined fluids.

The expressions of the isochric heat capacity in 3D
and 2D confined fluids can be written in the following
form, correspondingly, with regard for the new tem-
perature variable (4) and after substituting 7(S,¢)
instead of the temperature 7 into formulae (1) and

v - cip(S) +
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cv=citmn{(5) + 1+ (&) ](8) s}

To study explicitely a 3D < 2D dimensional
crossover of the isochoric heat capacity, let us con-
sider the case of relatively small linear sizes S and
relatively large correlation lengths £, so that inequal-
ity (6) is valid. Say, let the number S of molec-
ular layers along the direction of spatial limitation
be changing from 10 to 30, while the temperature
variable 7 ~ 1072 — 10~%, i.e. the correlation length
(€/&) ~ 1072 — 10725, As a result, the first terms
in the braces in (7) and (8) are 10 times larger than

0.12 4

0.10 -

0.08 4
A st

0.06 -

0.04

2 4 6 8 10 12 14
H, nm
Fig. 1. Critical exponent aeg in a slit-like pore with thickness

H filled by water

Table 1. The effective critical
exponents in a 3D < 2D dimensional crossover

S Qleff Veff Veff
1 —0 —1 —1.750
2 0.029 0.915 1.635
3 0.030 0.913 1.632
4 0.031 0.910 1.628
5 0.032 0.906 1.622
6 0.034 0.900 1.615
7 0.037 0.892 1.604
8 0.041 0.878 1.585
9 0.050 0.853 1.552
10 0.067 0.802 1.483
11 0.095 0.719 1.370
12 0.117 0.655 1.284
13 —0.125 —0.630 —1.250
887
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Fig. 2. Critical exponent veg in a slit-like pore with thickness
H filled by water
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Fig. 3. Heat capacity C5,(S)

the second ones. Therefore, by omitting the second
terms depending on the correlation length, one has
the following reduced expressions to study a 3D <
2D dimensional crossover of the isochoric heat capac-

ity:
Oy = G (G/8) /M), (9)

Cv = Cig[n(G/9))/v(S). (10)

The interpolation method proposed in [6] for the ef-
fective critical exponents in a 3D < 2D dimensional
crossover may be generalize onto the isochoric heat
capacity Cy. This method leads to the following in-
terpolation formula for the heat capacity Cy with re-
gard for formulae (9) and (10) together with formula
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(3) and Fig. 2 for the critical exponent veg(S):
a(S)
G\ "™ 1 (2
Cy =38 (S) +§ {7r arctg(ax — b) — 1} X

_alS) el
C3D g ) _ 02D In S
Vo S Vo I/(S)

(11)

However, this approach to calculate the heat ca-
pacity in a 3D < 2D dimensional crossover seems
to be rather complicated. It is possible to propose a
simpler way to find the dependence of the isochoric
heat capacity Cy on the linear pore size S (thickness
H or radius R) with help of the formula

Ct = Cy(8)/Cyo = (S/G)aeff(s)/'/eff(s)_ (12)

Equation (12) being similar to (9) uses the effective
critical exponents aeg(S) and veg(S) in a 3D < 2D
dimensional crossover. The results obtained for the
isochoric heat capacity C{, in accordance with (12)
are presented in Fig. 3.

As is seen, a 2D value of the isochoric heat capacity
equals 1, and then C§,(S) demonstrates a change of
the curvature and a S-like growth by factors 1.6 (or
1.5) with increasing the number S of molecular layers
to 30, i.e. the thickness H (or radius R) up to 10
nm in slit-like (or cylindrical) pores filled by water
(correspondingly, a lower curve in Fig. 3 for slit-like
pores with Dc,s = 2, while an upper curve — for
cylindrical pores with D05 = 1).

3. Effective Critical Exponent
et and Isothermal Compressibility B

Here, as in the previous section, we continue study-
ing a 3D < 2D dimensional crossover of the critical
exponents and thermophysical properties in single-
component fluids in a reduced geometry of slit-like or
cylindrical pores filled by water molecules.

3.1. Effective critical exponent ~esr

To investigate the influence of crossover effects on the
critical exponent 7, we rewrite the formula for any
effective critical exponent [6] as follows:

2 —
Yeft = V3D + <7T arctg(az — b) — ) %D% (13)

where y3p = 1.25 and vop = 1.75 [2].
Numerical values for the dependence of the critical
exponent Yeg on the number S of molecular layers are
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presented in Table 1 (see the 4" column). It is worth
to mention that the dependence 7o (S) may be eas-
ily calculated as the dependences e (H) or Yeg(R)
if one takes into account the following relationships:
H (nm) = 0.3S (nm), R (nm) = 0.35 (nm) where
H and R are the thickness and radius, correspond-
ingly, of slit-like and cylindrical pores filled by wa-
ter molecules with a diameter dg ~ 0.3 nm. As for
the critical exponent aeg, an essential decrease of
the critical exponent ~eg in a 3D < 2D dimen-
sional crossover from vyp = 1.75 to v3p = 1.25
takes place within the same interval of H or R, which
equals 0.9-3.6 nm because Yeg (0.9 nm) = 1.63 and
Yot (3.6 nm) = 1.28 (see Fig. 4).

3.2. Isothermal compressibility Br

To study the influence of a 3D < 2D dimensional
crossover on the isothermal compressibility Sr , it is
necessary to use the following results:

1) in 3D case, the isothermal compressibility Sr
in the bulk phase has a “strong” singularity at the
critical temperature T,(co):

= BroT e, (14)
where B35 is the non-universal amplidude of the
isothermal compressibility, v is the critical exponent,
which equals v3p = 1.250 for the 3D Ising model;

2) in the 2D Ising model, the isothermal compress-
ibility of a bulk fluid has a stronger divergence:

7 =BroT e, (15)
where the critical exponent vop = 1.750;

3) for fluids in a confined geometry, it is necessary
to substitute the new temperature variable 7(S,¢)
given in Eq. (4) in (14) and (15) instead of the tem-
perature variable 7 = [T — T.(00)]/T.(c0) for bulk
fluids; 4) then the expressions of the isothermal com-
pressibility in 3D and 2D confined fluids can be writ-
ten in the following form:

o
3D _ 3D ) (Y
- {(5) +

v —¥3p(S)
1+ (g) ] (550) signr} ! ,
(5
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16)

+ (17)

< - —v2p(5)
14 <G> <§O> signr} .
S €
As in the previous case of the isochoric heat capac-
ity Cy, the dependence of the isothermal compress-
ibility 87 on the linear pore size S (thickness H or
radius R) is given in accordance with the formula

B = Br(S)/Bro = (S/G)rer(S)/ven(),

Equation (18) being quite similar to (12) contains
the effective critical exponents e (S) and veg(S).
Such an approach to describe a 3D < 2D dimen-
sional crossover of the isothermal compressibility 875
gives the results presented in Fig. 5.

(18)

\\

AN
1.7 4 N
1.6 1

Yerr
15
1.4 1
1.3 |
2 4 6 8 10 12 14

H, nm

Fig. 4. Critical exponent g in a slit-like pore with thickness
H filled by water
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Fig. 5. Dependence of the isothermal compressibility 87}, on S
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The upper curve in Fig. 5 corresponds to cylindri-
cal pores with D¢os = 1 and the geometrical factor
G = 2.40, while the lower curve — to slit-like pores
with Dc.os = 2 and the geometrical factor G = 3.14.

4. Conclusion

In this paper, we have investigated the specific fea-
tures of fluids in a reduced geometry. It is shown
that, by considering the actual factor of a physical
experiment such as the spatial limitation of fluid vol-
umes under consideration, the critical exponents and
thermophysical properties (namely, the heat capac-
ity and the isothermal compressibility) may be essen-
tially changed as compared with its critical behavior
in bulk fluids. However, considering a factor of the
spatial limitation and a lower crossover dimension-
ality successively into account enables us to support
the hypothesis of the universality classes for confined
fluids. We hope for that the further development of
a consistent theory of the dimensional crossover in
various phase transitions and critical phenomena will
help one to stimulate new experiments in this difficult
and important direction.

The authors wish to give their heartiest gratitude to
Professor Leonid Bulavin for the friendship and the
collaboration for many years and the fruitful guidance
and advices, which are impossible to overestimate.
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0.B. Yaaut, O.B. Batiyesa, K.O. Yanud, I.B. Xpanitwyk

PO3MIPHUN KPOCOBEP TA
TEPMO®I3NYHI BJIACTUBOCTI
HAHOMACIIITABHIX KOHIEHCOBAHUX
MATEPIAJIIB

Pezmowme

IIpobiiema, sika Oy/ie OGrOBOPIOBATHUCS, IIOJISITAE€ B TAKOMY: SIK
pe3ysIbTaTh AJ1s1 3-BUMIPHEX CHCTEM IIEPEXOAATD ¥ PE3YJIbTATH
I1s1 2-BuMipHEX cucteM i HaBnaku. O4eBuIHO, 1m0 Takuii 3D <
2D po3MipHHiI KpOocOBEpP Ma€ OyTH IJIABHUM Ta 0€3 IOPYIIEHb
HenepepBHOCTi. [lasi 1151 npobjeMa BUBYAETHCS JJIsi OJHOKOM-
IIOHEHTHUX KJIACUYHUX PiMH B oOMerKeHiil reomeTpil, 30Kpe-
Ma JJIsl TIJIOCKO-TIapaJIeJIbHAX 1 IUJIHIPUYIHUX TI0P 3 HUXKHBOIO
KPOCOBEPHOIO PO3MIPHICTIO, BianoBiAHO, Deros = 21 Deros = 1,
SIKi HaIlOBHEHI MoJleKyJlaMH BOAu. BuByaeTbcst BiuB 3D &
& 2D posmipHOro Kkpocosepa Ha e(peKTHBHI KpUTHIHI iHgeKcH
Qloff, Veff, Yeff 1| Ha Taki TepMOMI3UYHI BJIACTUBOCTI, SIK TEIJIO-
emuicts C'y Ta i30TepMidHA CTHCIUBICTD [ .
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