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The application of the method of collective variables to study the behavior of non-universal
characteristics of a three-dimensional Ising-like system in the critical region has been illustrated
by an example of the correlation function and the susceptibility. An analytic procedure for the
calculation of those characteristics has been developed in the quartic-distribution approximation
for order parameter fluctuations. The asymptotics of the correlation function at large distances
obtained for the critical temperature (𝑇 = 𝑇c) is shown to differ qualitatively from that in the
𝑇 ̸= 𝑇c case because of the presence of the critical regime region for all fluctuation modes.
K e yw o r d s: three-dimensional Ising-like system, phase transition point, non-Gaussian dis-
tribution, correlation function, susceptibility.

1. Introduction

The paper is devoted to the calculation of some struc-
tural characteristics of a three-dimensional Ising-like
system in a vicinity of the phase transition point. The
mathematical description is carried out in the frame-
work of the method of collective variables (CV) [1–3]
with the use of a non-Gaussian distribution for the
order parameter fluctuations. The calculations were
performed both with regard for a correction for the
averaging of the Fourier transform of the interaction
potential Φ̃(𝑘), i.e. making allowance for the wave-
vector dependence of the Fourier transform of the
potential, and without it.

The dependence of Φ̃(𝑘) on the wave vector at the
calculation of the partition function of the system
considerably affects the behavior of the pair corre-
lation function 𝐺. It is known (see, e.g., work [4])
that, at the critical temperature 𝑇 = 𝑇c, this func-
tion is characterized by a critical exponent 𝜂 at large
distances 𝑟, i.e. 𝐺 ∼ 𝑟−(𝑑−2+𝜂), where 𝑑 is the space
dimensionality. Substituting the quantity Φ̃(𝑘) in ev-
ery layer of the CV phase space by its average value,
we obtain that 𝜂 = 0. A correction connected with
the dependence of the Fourier transform of the poten-
tial on the wave vector results in a non-zero 𝜂-value.
Expressions for the pair correlation function and the
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susceptibility are also changed both at 𝑇 = 𝑇c and at
temperatures different from 𝑇c.

The Fourier transform of the correlation function
𝐺(𝑇, 𝑘) in the limit 𝑘 → 0 is connected with the
susceptibility 𝜒 by the relation lim𝑘→0 𝐺(𝑇, 𝑘) =
𝛽𝜒. Here, 𝛽 = 1/(𝑘𝑇 ) is the inverse temperature.

The expressions for the correlation function and
the susceptibility of the system were obtained for the
temperatures 𝑇 > 𝑇c, 𝑇 < 𝑇c, and 𝑇 = 𝑇c. This work
logically supplements our previous researches [5, 6],
where a method of determination of the small critical
exponent 𝜂 of the correlation function was developed
and used. This supplement makes the general picture
of researches comprehensive and the character of the
researches more complete, because the developed ap-
proach is suitable for the calculation of not only the
correlation function exponent, but also the correla-
tion function itself.

2. Correlation Function
and Susceptibility of the System
Above and Below 𝑇c

The calculation of the pair correlation function near
the second-order phase transition point presumes a
research of its dependence on the distance between
particles, when the latter tends to infinity. In the CV
method, it is convenient to work with the Fourier
transform of the correlation function 𝐺(𝑇, 𝑘). It is re-
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lated to the partition function of the system by the
formula
𝐺(𝑇, 𝑘) = − 1

𝑍

𝜕𝑍

𝜕𝑑(𝑘)
. (1)

In what follows, we use an expression for the parti-
tion function in the quartic measure density approxi-
mation (the 𝜌4 model), which was presented in works
[1, 3, 5]:

𝑍 = 𝐶

∫︁
exp

{︃
−1

2

∑︁
k

𝑑(𝑘)𝜌k𝜌−k −

− 1

4!

𝑎4
𝑁

∑︁
k1,...,k4

𝜌k1
... 𝜌k4

𝛿k1+...+k4

}︃
(𝑑𝜌)𝑁. (2)

Correlation functions near the phase transition
point were calculated by many researchers [1,7,8]. As
a rule, the calculations were carried out, by using the
Gaussian measure as a basis one in the framework
of the Green’s function or other methods [9–12]. The
specific feature of the approach to the calculation of
correlation functions, which is described below, con-
sists in the application of a non-Gaussian fluctuation
distribution as a basis one. The behavior of 𝐺(𝑇, 𝑘)
at 𝑘 → 0, which corresponds to large distances, is the
most important if the critical properties of the sys-
tem are analyzed. When calculating 𝐺(𝑇, 𝑘) in the
case 𝑇 > 𝑇c, it is convenient to present the partition
function in the form

𝑍 = 𝑍0𝑍𝐶𝑅𝑍𝑇𝑅𝑍
′. (3)

Here, 𝑍0 is the partition function for the system of
noninteracting spins, and 𝑍𝐶𝑅 corresponds to the
contribution of non-Gaussian fluctuations. The mul-
tipliers 𝑍𝑇𝑅 and 𝑍 ′ describe long-wave fluctuations,
with the component 𝑍 ′ corresponding to extremely
large distances, 𝑘 → 0 (its expression can be found in
work [5]). Hence, while calculating the Fourier trans-
form of the pair correlation function (1) at large dis-
tances, 𝑟 → ∞, it is convenient to use the formula

𝐺(𝑇, 𝑘)
⃒⃒
𝑘→0

= − 1

𝑍 ′
𝜕𝑍 ′

𝜕𝑑𝑝𝜏+1(𝑘)
, (4)

in which the functional derivative with respect to
𝑑𝑝𝜏+1(𝑘) is related to the long-wave part of the parti-
tion function (3). The notation 𝑝𝜏 = 𝑚𝜏+𝑚′′+1 (see
work [3]) was introduced to shorten the expression.

Let us write the Fourier transforms of the pair cor-
relation function and the susceptibility with the use

of the quartic basis distribution of fluctuations. At
the first stage of calculations, the correction for the
averaging of the Fourier transform of the interac-
tion potential will be neglected, i.e. we suppose that
ΔΦ̃(𝑘) = 0 (see work [5]). Then, the quantity 𝛼(0)

(see formula (45) in work [5]), which was used to de-
fine the critical exponent 𝜂 of the correlation function,
vanishes. As a result, we obtain the condition 𝜂 = 0.
At 𝑇 > 𝑇c, expression (4) takes the form

𝐺(𝑇, 𝑘) =
[︁
𝑑𝑝𝜏+1(𝑘)

]︁−1

, (5)

where the quantity 𝑑𝑝𝜏+1(𝑘) is defined in works [3,5].
Using an explicit expression for 𝑑𝑝𝜏+1(𝑘) as a function
of the temperature and the wave vector, we obtain
that, as 𝑘 → 0,

𝐺(𝑇, 𝑘) =
1

𝐷𝜏2𝜈 +𝐷1𝑘2
. (6)

Here,

𝐷 =

(︂
𝑐1𝑘
𝑓0

)︂2𝜈
𝑠−2𝑚′′

𝛽Φ̃(0)𝑔0[1 + (𝑔1 − 2𝜈𝑚2)𝜏
Δ],

𝐷1 = 2𝛽Φ̃(0)𝑏2,

(7)

𝜈 is the critical exponent of the correlation length, 𝑏 is
the range of the exponentially decreasing interaction
potential, 𝑠 is the parameter of the CV phase space
division into layers, and 𝜏 = (𝑇 − 𝑇c)/𝑇c is the rela-
tive temperature. The other quantities in Eqs. (7), in
particular, 𝑚2 = −𝑐2𝑘(𝑐1𝑘/𝑓0)

ΔΦ0, were defined in
work [3]. Let us rewrite Eq. (6) in the form

𝐺(𝑇, 𝑘) =
𝐷−1

1

κ2
+ + 𝑘2

(8)

and identify the quantity κ+ with the inverse correla-
tion radius 𝜉+. For the latter, we find the expression

𝜉+ = 𝜉
(0)
+ 𝜏−𝜈(1 + 𝑎+𝜉 𝜏

Δ). (9)

Here, the quantity

𝜉
(0)
+ =

(︂
𝑓0
𝑐1𝑘

)︂𝜈
𝑏𝑠𝑚

′′
(︂
2

𝑔0

)︂1/2
(10)

is the leading critical amplitude, and

𝑎+𝜉 = 𝜈𝑚2 −
𝑔1
2

(11)

is the correlation length amplitude, which deter-
mines the correction to scaling (the confluent cor-
rection). The exponent of the scaling correction Δ
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depends on eigenvalues of the renormalization-group
linear-transformation matrix [3]. The susceptibility
at 𝑇 > 𝑇c can be obtained from the relation

𝜒+ = 𝑘𝑇 lim
𝑘→0

𝐺(𝑇, 𝑘) (12)

and takes the form

𝜒+ = 𝜒
(0)
+ 𝜏−2𝜈(1 + 𝑎+𝜒 𝜏

Δ), (13)

where

𝜒
(0)
+ = 𝑘𝑇

(︂
𝑓0
𝑐1𝑘

)︂2𝜈
𝑠2𝑚

′′

𝛽Φ̃(0)𝑔0
,

𝑎+𝜒 = 2𝜈𝑚2 − 𝑔1.

(14)

Note that our estimate

𝑎+𝜉 /𝑎
+
𝜒 = 0.5 (15)

for the ratio between the amplitudes of confluent cor-
rections for the correlation radius, 𝑎+𝜉 , and suscepti-
bility, 𝑎+𝜒 , is in agreement with the data obtained by
other authors. For instance, in the framework of field
theory, the value 𝑎+𝜉 /𝑎

+
𝜒 = 0.65±0.05 was obtained at

𝑑 = 3 [14]. The application of the high-temperature
expansion brings about a result 0.70 ± 0.03 [14],
whereas the method of 𝜖-expansion (to the second
order in 𝜖) gives values in the interval of 0.43 − 0.71
depending on the Padé approximants [13, 15].

Let us consider a case where the temperature is
lower the than critical one. Then, the partition func-
tion of the model can be written in the form

𝑍 = 𝑍0𝑍𝐶𝑅2
(𝑁𝜇𝜏+1−1)/2[𝑄(𝑃𝜇𝜏

)]𝑁𝜇𝜏+1𝑍𝜇𝜏+1. (16)

In order to calculate the Fourier transform of the cor-
relation function 𝐺′(𝑇, 𝑘), it is important to know
𝑍𝜇𝜏+1, since

𝐺′(𝑇, 𝑘)
⃒⃒
𝑘→0

= − 1

𝑍𝜇𝜏+1

𝜕𝑍𝜇𝜏+1

𝜕𝑑𝜇𝜏+1(𝑘)
. (17)

An expression for 𝑍𝜇𝜏+1 was given in work [3]. Using
Eq. (17), we find

𝐺′(𝑇, 𝑘) =
[︀
𝑑𝜇𝜏+1(𝑘)

]︀−1
. (18)

Then, using the result of calculations for 𝑑𝜇𝜏+1(𝑘)
(see work [3]), we obtain

𝐺′(𝑇, 𝑘) =
1

𝐷′|𝜏 |2𝜈 +𝐷1𝑘2
, (19)

where

𝐷′ = 4𝑓0

(︂
𝑐1𝑘
𝑓0

)︂2𝜈
𝛽Φ̃(0)

[︃
1−𝑐2𝑘

(︂
𝑐1𝑘
𝑓0

)︂Δ
2𝜈Φ0|𝜏 |Δ

]︃
,

𝐷1 = 2𝛽Φ̃(0)𝑏2.

(20)

In view of this expression for 𝐺′(𝑇, 𝑘), we find the
correlation radius at 𝑇 < 𝑇c:

𝜉− = 𝜉
(0)
− |𝜏 |−𝜈(1 + 𝑎−𝜉 |𝜏 |

Δ). (21)

Here, the quantities 𝜈 and Δ are the same as in
Eq. (9), and

𝜉
(0)
− = 𝑏

(︂
𝑓0
𝑐1𝑘

)︂𝜈
(2𝑓0)

−1/2,

𝑎−𝜉 = 𝑐2𝑘

(︂
𝑐1𝑘
𝑓0

)︂Δ
𝜈Φ0.

(22)

For the susceptibility at 𝑇 < 𝑇c, we have

𝜒− = 𝜒
(0)
− |𝜏 |−2𝜈(1 + 𝑎−𝜒 |𝜏 |Δ), (23)

where

𝜒
(0)
− = 𝑘𝑇

(︂
𝑓0
𝑐1𝑘

)︂2𝜈
1

𝛽Φ̃(0)
(4𝑓0)

−1,

𝑎−𝜒 = 2𝑐2𝑘

(︂
𝑐1𝑘
𝑓0

)︂Δ
𝜈Φ0.

(24)

Similarly to the case 𝑇 > 𝑇c, we come to the relation

𝑎−𝜉 /𝑎
−
𝜒 = 0.5. (25)

Unlike the critical exponents 𝜈 and Δ, the lead-
ing critical amplitudes 𝜉

(0)
± and 𝜒

(0)
± , as well as

the correction-to-scaling amplitudes 𝑎±𝜉 and 𝑎±𝜒 , de-
pend on the microscopic parameters of the Hamil-
tonian. This dependence is contained in the multi-
pliers 𝑐1𝑘 and 𝑐2𝑘, whose expressions are given in
work [3]. However, the ratios of amplitudes at tem-
peratures above and below 𝑇c are universal quanti-
ties. Besides equalities (15) and (25), we have

𝜉
(0)
+ /𝜉

(0)
− = 2𝑠𝑚

′′
(︂
𝑓0
𝑔0

)︂1/2
(26)

and

𝜒
(0)
+ /𝜒

(0)
− = 4𝑠2𝑚

′′ 𝑓0
𝑔0

. (27)

It should be noted that the ratios
𝑎+𝜉

𝑎−𝜉
,

𝑎+𝜒

𝑎−𝜒
,

𝑎+𝜉

𝑎+𝑐
,

𝑎−𝜉

𝑎−𝑐
, (28)
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and many other combinations of critical amplitudes
are also universal [16–20]. The universal character of
the ratios between confluent corrections amplitudes of
type (28) in the CV method is provided by a reduction
of the non-universal factor 𝑐2𝑘(𝑐1𝑘/𝑓0)

Δ.
The relations given above were obtained in the ap-

proximation 𝜂 = 0. Making allowance for the depen-
dence of the Fourier transform of the potential Φ̃(𝑘)
on the wave vector at integrating the partition func-
tion over the CVs allows similar calculations to be
performed at 𝜂 ̸= 0. In this case, expressions (5) and
(18) remain the same, but the quantities 𝑑𝑛(𝑘) are
changed. In the case 𝑇 > 𝑇c, neglecting the confluent
correction, we find in the limit 𝑘 → 0 that

�̃�(𝑇, 𝑘) =
1

�̃�𝜏𝛾 + �̃�1𝑘2
, (29)

where

�̃� =

(︂
𝑐1𝑘

𝑓

)︂𝛾
𝛽Φ̃(0)𝑠−2𝑚′′

𝑔0,

�̃�1 = 2𝛽Φ̃(0)𝑏2
(︂
𝑐1𝑘

𝑓

)︂−𝜂𝜈

𝜏−𝜂𝜈 ,

(30)

and 𝛾 = (2−𝜂)𝜈. The exponent 𝜈 together with other
quantities in Eqs. (30) is defined in works [3, 5]. The
correlation radius 𝜉+ obtained with regard for the po-
tential averaging correction takes the form

𝜉+ = 𝜉
(0)
+ 𝜏−𝜈 , (31)

where the critical amplitude 𝜉
(0)
+ is defined by the

expression

𝜉
(0)
+ =

(︃
𝑓

𝑐1𝑘

)︃𝜈
𝑏𝑠𝑚

′′
(︂
2

𝑔0

)︂1/2
. (32)

The susceptibility calculated from expression (29) in
the limit 𝑘 → 0 can be presented in the form

�̃�+ = �̃�
(0)
+ 𝜏−𝛾 . (33)

Here, the critical amplitude

�̃�
(0)
+ = 2𝑘𝑇𝛾+

4 (34)

is characterized by the coefficient

𝛾+
4 =

(︃
𝑓

𝑐1𝑘

)︃𝛾
𝑠2𝑚

′′

2𝛽Φ̃(0)𝑔0
. (35)

Expressions (32) and (34) transform into Eqs. (10)
and (14), respectively, if the correction connected
with the wave-vector dependence of the Fourier trans-
form of the potential tends to zero.

In the case where 𝑇 < 𝑇c and 𝜂 ̸= 0, the Fourier
transform of the correlation function is given by the
formula

�̃�′(𝑇, 𝑘) =
1

�̃�′|𝜏 |𝛾 + �̃�1𝑘2
, (36)

where

�̃�′ = 4𝑓

(︂
𝑐1𝑘

𝑓

)︂𝛾
𝛽Φ̃(0),

�̃�1 = 2𝛽Φ̃(0)𝑏2
(︂
𝑐1𝑘

𝑓

)︂−𝜂𝜈

|𝜏 |−𝜂𝜈 .

(37)

On the basis of Eq. (36), the following expressions
for the correlation radius 𝜉− and the susceptibility
�̃�− are obtained:

𝜉− = 𝜉
(0)
− |𝜏 |−𝜈 , �̃�− = �̃�

(0)
− |𝜏 |−𝛾 . (38)

The expressions for the leading critical amplitudes
𝜉
(0)
− and �̃�

(0)
− are similar to the formulas for 𝜉

(0)
− and

𝜒
(0)
− in Eqs. (22) and (24), where the quantities 𝑓0,

𝑐1𝑘, and 𝜈 have to be substituted by the quantities
𝑓 , 𝑐1𝑘, and 𝜈 renormalized owing to the inequality
ΔΦ̃(𝑘) ̸= 0.

Note that formulas (13) for the susceptibility 𝜒+

(the case 𝑇 > 𝑇c with the confluent correction) and
(33) for �̃�+ (the case 𝑇 > 𝑇c with the correction
for the averaging of the Fourier transform of the in-
teraction potential), which were obtained with the
help of the Fourier transform of the correlation func-
tion, coincide with the corresponding expressions for
the susceptibilities, which found earlier on the ba-
sis of the free energy (see works [5, 21]), to within
the factor (𝑘𝑇 )2/𝜇2

B, where 𝜇B is the Bohr magne-
ton. Those susceptibilities have different dimension-
alities. In particular, the susceptibilities 𝜒+ and �̃�+

were obtained in terms of 𝑘𝑇 units (or Φ̃(0) ones),
whereas the susceptibilities determined on the ba-
sis of the free energy were calculated in 𝜇2

B/Φ̃(0)
units. Here, Φ̃(0) if the Fourier transform of the in-
teraction potential at the zero wave vector.

3. Pair Correlation Function at 𝑇 = 𝑇c

In the calculations carried out for the correlation
function above and below 𝑇c, the presence of a re-
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gion with either the limiting (at 𝑇 > 𝑇c) or in-
verse (at 𝑇 < 𝑇c) Gaussian regime was substan-
tially used. Each of those regimes is characterized by
a Gaussian basis measure. The specific feature of this
measure is a non-analytic temperature dependence of
the dispersion.

In the case 𝑇 = 𝑇c, there are strong correlations
between spins that are located at arbitrarily large
distances in the system. No region of the Gaussian
regime arises at that. At 𝑇 = 𝑇c, the region of the
critical regime characterized by the renormalization
group symmetry exists for all fluctuation modes in-
cluding 𝑘 = 0. Therefore, expression (4) is inapplica-
ble here for the calculation of 𝐺(𝑇c, 𝑘).

The partition function for a system of Ising spins
at 𝑇 = 𝑇c looks like

𝑍 = 𝑍0𝑍𝐶𝑅, (39)

where

𝑍𝐶𝑅 =

∞∏︁
𝑛=0

�̃�𝑛, (40)

and the expression for �̃�𝑛 is given in works [3,5]. The
Fourier transform of the correlation function will
be calculated for every separate 𝑛-th block struc-
ture. Let 𝐺𝑛 be the average value of the correlation
function for the 𝑛-th block structure. Let us intro-
duce, instead of 𝐺(𝑘) = ⟨𝜌k𝜌−k⟩, the quantity

𝐺𝑛 =
1

𝑁𝑛 −𝑁𝑛+1

∑︁
𝐵𝑛+1<𝑘≤𝐵𝑛

⟨𝜌k𝜌−k⟩, (41)

where the symbol ⟨...⟩ means the averaging over the
non-Gaussian-type interacting system. The quantity
𝐺𝑛 is calculated using the relation

𝐺𝑛 =
𝛽

𝑁𝑛 −𝑁𝑛+1

𝜕𝐹𝑐

𝜕𝑑𝑛(𝐵𝑛+1, 𝐵𝑛)
. (42)

The free energy of the system, 𝐹𝑐, looks like [22]

𝐹𝑐 = −𝑘𝑇c

∞∑︁
𝑛=0

[︁
𝑁𝑛 ln �̃�(𝑑𝑛) +𝑁𝑛+1 ln𝑄(𝑃𝑛)

]︁
. (43)

A specific feature of the expressions given above for
𝐺𝑛 and 𝐹𝑐 is an unusual behavior of the quantities
𝑑𝑛(𝐵𝑛+1, 𝐵𝑛) and �̃�

(𝑛)
4 as functions of the block struc-

ture number 𝑛 (see works [5,22]). In the general case,

the quantities 𝛼𝑛, 𝑟𝑛 and �̃�𝑛, in terms of which the
quantities 𝑑𝑛(𝐵𝑛+1, 𝐵𝑛) and �̃�

(𝑛)
4 are expressed, de-

pend on the number 𝑛. Only at 𝑇 = 𝑇c, the quantity
𝛼𝑛 is independent of 𝑛. Using the solutions of the
renormalization group equations at 𝑇 = 𝑇c for 𝑟𝑛
and �̃�𝑛, we obtain

𝑑𝑛(𝐵𝑛+1, 𝐵𝑛) = 𝑠−𝑛(2−𝜂)(𝑟 + 𝑞 + 𝑐2�̃��̃�𝑛
2 ),

�̃�
(𝑛)
4 = 𝑠−2𝑛(2−𝜂)(�̃�+ 𝑐2�̃�

𝑛
2 ).

(44)

Here, 𝑟 and �̃� are the coordinates of a fixed point
[5], 𝑞 = 𝑞𝛽Φ̃(0), 𝑞 corresponds to the average value
of 𝑘2 in the interval (1/𝑠, 1], �̃� = �̃�12/(�̃�2 − �̃�11),
𝑐2 = 𝑐2𝑘(𝛽𝑐Φ̃(0))

2, and �̃�𝑖𝑗 and �̃�2 are the ele-
ments and one of the eigenvalues of the renor-
malization-group linear-transformation matrix, res-
pectively. In accordance with Eqs. (44) and tak-
ing into account that �̃�2 < 1, the quantity 𝑥𝑛 =

=
√
3𝑑𝑛(𝐵𝑛+1, 𝐵𝑛)(�̃�

(𝑛)
4 )−1/2 at large 𝑛 looks like

𝑥𝑛 = �̃�

[︃
1 +

(︃
𝑐2�̃�

𝑟 + 𝑞
+

𝑐2
2�̃�

)︃
�̃�𝑛

2

]︃
, (45)

where �̃� =
√
3(𝑟+𝑞)(�̃�)−1/2. The quantity �̃�𝑛

2 can be
presented in the form

�̃�𝑛
2 = 𝑠−𝑛�̃�, �̃� = Δ̃/𝜈.

The exponent 𝜈 = ln 𝑠/ ln �̃�1 is determined by the
larger eigenvalue of the renormalization group trans-
formation matrix (�̃�1 > 1). It characterizes the be-
havior of the correlation length. The exponent Δ̃ =
= − ln �̃�2/ ln �̃�1 characterizes the correction to scal-
ing. Therefore, neglecting the term proportional to
�̃�𝑛

2 in expression (45) means that the correction to
scaling is not taken into consideration.

Let us consider a certain block structure with the
number 𝑛0. According to Eq. (42), the expression for
𝐺𝑛 at 𝑛 = 𝑛0 should be sought from the relation

𝐺𝑛0 =
𝛽

𝑁𝑛0
−𝑁𝑛0+1

[︃
𝜕𝐹𝑐

𝜕𝑑𝑛0
(𝐵𝑛0+1,𝐵𝑛0

)
+

+

(︂
𝜕𝐹𝑐

𝜕𝑥𝑛0

+
𝜕𝐹𝑐

𝜕𝑦𝑛0

𝑑𝑦𝑛0

𝑑𝑥𝑛0

)︂
𝜕𝑥𝑛0

𝜕𝑑𝑛0
(𝐵𝑛0+1, 𝐵𝑛0

)

]︃
, (46)

taking formulas for �̃�(𝑑𝑛) and 𝑄(𝑃𝑛) into account
(see works [3, 22]). When calculating 𝐺𝑛0

, the main
difficulty is connected with the fact that, besides the
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derivatives of the quantities with the subscript 𝑛0,
Eq. (46) also contains the derivatives of the quantities
with the subscripts 𝑛0 + 1, 𝑛0 + 2, and so on.

For the derivative in the first term on the right-
hand side of Eq. (46), we can write

𝜕𝐹𝑐

𝜕𝑑𝑛0

= 𝑘𝑇c
1− 𝑠−3

2

∞∑︁
𝑛=𝑛0

𝑁𝑛
𝜕 ln 𝑑𝑛(𝐵𝑛+1, 𝐵𝑛)

𝜕𝑑𝑛0

. (47)

In the limit of large 𝑛, the quantity �̃�𝑛
2 quickly de-

creases. On the basis of Eqs. (44) to within �̃�𝑛0+𝑚
2 ,

we obtain the following simplified relations:

𝑑𝑛0+𝑚(𝐵𝑛0+𝑚+1, 𝐵𝑛0+𝑚) =

= 𝑠−𝑚(2−𝜂)𝑑𝑛0
(𝐵𝑛0+1, 𝐵𝑛0

), (48)

�̃�
(𝑛0+𝑚)
4 = 𝑠−2𝑚(2−𝜂)�̃�

(𝑛0)
4 .

In the critical temperature case, using Eqs. (47) and
(48), we come to the expression

1

2(1− 𝑠−3)

1

𝑑𝑛0
(𝐵𝑛0+1, 𝐵𝑛0

)
,

which corresponds to the contribution of the first
term on the right-hand side of Eq. (46) to 𝐺𝑛0 . Two
other terms in Eq. (46) give no contribution to
𝐺𝑛0

, because 𝑥𝑛 ≈ �̃� and does not depend on
𝑑𝑛0

(𝐵𝑛0+1, 𝐵𝑛0
) (�̃�𝑛0+𝑚

2 ≪ 1).
Hence, at 𝑇 = 𝑇c, we have

𝐺𝑛0
=

1

2
(1− 𝑠−3)−1[𝑑𝑛0

(𝐵𝑛0+1, 𝐵𝑛0
)]−1. (49)

Taking the equality

𝑑𝑛0
(𝐵𝑛0+1, 𝐵𝑛0

) = (𝑟 + 𝑞)𝑠−𝑛0(2−𝜂)

into account, we find

𝐺𝑛0
= 𝐺0𝑠

𝑛0(2−𝜂), (50)

where

𝐺0 =
1

2

(1− 𝑠−3)−1

𝑟 + 𝑞
. (51)

The quantity 𝐺𝑛0 is the Fourier transform of the cor-
relation function for the 𝑛0-th block structure.

In the course of the step-by-step integration of the
partition function, every interval of wave-vector val-
ues 𝑘 ∈ (𝐵𝑛+1, 𝐵𝑛], where 𝐵𝑛 = 𝐵′𝑠−𝑛 and 𝐵′ =
= (𝑏

√
2)−1, is assigned the average value⟨︀

𝑘2
⟩︀
𝐵𝑛+1,𝐵𝑛

= 𝐵′2𝑞𝑠−2𝑛. (52)

Earlier, we obtained the quantity 𝐺𝑛0
averaged in the

𝑛0-th layer. It depends on the average wave-vector
value in the 𝑛0-th block structure. Its asymptotics at
large 𝑛 differs from expression (52), because the po-
tential averaging correction is taken into account. It
is this correction that gives rise to the appearance of
extra factors

(1 + 𝛼0)(1 + 𝛼1)...(1 + 𝛼𝑛−1)

in the term proportional to 𝑘2𝜌k𝜌−k in the expo-
nent of the distribution function (see work [5]). At
𝑇 = 𝑇c, we have 𝛼0 = 𝛼1 = ... = 𝛼𝑛 = 𝛼(0). Ac-
cordingly, owing to the smallness of 𝛼𝑛, the prod-
uct (1 + 𝛼0)...(1 + 𝛼𝑛−1) can be approximated by
exp(𝑛𝛼(0)). Then, Eq. (52) takes the form

(1 + 𝛼(0))𝑛
⟨︀
𝑘2
⟩︀
𝐵𝑛+1,𝐵𝑛

= 𝑠−𝑛(2−𝜂)𝐵′2𝑞, (53)

where the equality 𝛼(0) = 𝜂 ln 𝑠 was used. Comparing
Eqs. (52) and (53), we obtain the expression

𝑠−𝑛(2−𝜂)𝐵′2𝑞 =
⟨︀
𝑘2−𝜂

⟩︀
𝐵𝑛+1,𝐵𝑛

. (54)

Hence, the correction for the potential averaging leads
to the substitution of 𝑠−2𝑛 by 𝑠−𝑛(2−𝜂) and corre-
sponds to the renormalization of the exponent: 𝑘2 →
𝑘2−𝜂. As a result, at 𝑇 = 𝑇c, the Fourier transform
of the correlation function for the 𝑛0-th block struc-
ture in the limit 𝑛0 → ∞, which corresponds to small
wave-vector magnitudes 𝑘, reads

𝐺𝑐 = lim
𝑛0→∞

𝐺𝑛0
= 𝐺(0) lim

𝑘→0

⟨︀
𝑘−2+𝜂

⟩︀
, (55)

where

𝐺(0) =
𝑞

4𝑏2
(1− 𝑠−3)−1

𝑟 + 𝑞
. (56)

The quantity 𝜂 corresponds to the critical exponent
of the correlation function.

4. Conclusions

Important information on the behavior of physical
systems can be obtained by calculating their corre-
lation functions. Those functions describe main fea-
tures that arise near the phase transition tempera-
ture [1,7,8,10]. This problem is especially challenging
for the description of three-dimensional systems, for
which an exact solution cannot be obtained, as a rule.
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In this work, a new method has been proposed for
the analytic calculation of the pair correlation func-
tion for a three-dimensional spin system with a one-
component order parameter. The method is based on
the functional differentiation of the partition func-
tion for the Ising magnet. The calculation of the sus-
ceptibility in a vicinity of the phase transition point
is connected with the limit of the Fourier transform
of the correlation function as 𝑘 → 0. Calculations
were carried out in the high-temperature (𝑇 > 𝑇c)
and low-temperature (𝑇 < 𝑇c) regions, as well as at
𝑇 = 𝑇c. The technique used to calculate the Fourier
transform of the correlation function at 𝑇 = 𝑇c differs
from that used in the case of temperatures different
from 𝑇c. This difference results from the existence (at
the critical temperature) of the critical regime region
for all modes of spin moment density oscillations, in-
cluding modes with the wave vector 𝑘 = 0. This re-
gion of the renormalization group symmetry corre-
sponds to the presence of strong correlations between
spins located at arbitrarily large distances from one
another. At 𝑇 = 𝑇c, only the critical regime region
exists, and the region of the Gaussian regime does
not arise, in contrast to the case 𝑇 ̸= 𝑇c.
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КОРЕЛЯЦIЙНА ФУНКЦIЯ
ТА СПРИЙНЯТЛИВIСТЬ IЗИНГОВОГО МАГНЕТИКА
В ОКОЛI ТОЧКИ ФАЗОВОГО ПЕРЕХОДУ

Р е з ю м е

Застосування методу колективних змiнних до вивчення по-
ведiнки неунiверсальних характеристик тривимiрної iзин-
гоподiбної системи в критичнiй областi проiлюстровано на
прикладi кореляцiйної функцiї та сприйнятливостi. Аналi-
тичну процедуру для розрахунку кореляцiйної функцiї та
сприйнятливостi системи розвинуто в наближеннi четвiр-
ного розподiлу флуктуацiй параметра порядку. Показано,
що асимптотика кореляцiйної функцiї на великих вiдстанях
при критичнiй температурi (𝑇 = 𝑇c) якiсно вiдрiзняється
вiд випадку 𝑇 ̸= 𝑇c внаслiдок наявностi дiлянки критично-
го режиму для всiх мод флуктуацiй.


