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DEPENDENCES OF DIPOLE
PLASMON RESONANCE DAMPING CONSTANTS
ON THE SHAPE OF METALLIC NANOPARTICLES

PACS 68.49.Jk, 72.10.-d,
73.20.Mf

A theory describing the dependence of the damping constants of dipole plasmon resonances on
the shape of metallic nanoparticles has been developed. Analytical expressions for the damping
constants as functions of the ratio between the curvature radii are derived in the case of
spheroidal particles and provided the dominating role of electron scattering at the surface. The
corresponding plots are drawn. A considerable dependence of the damping constants on the
nanoparticle shape is illustrated. It is shown that the incorporation of metallic nanoparticles
of a certain shape into a dielectric matrix with a high dielectric permeability can lead to a
resonance caused by the coincidence of the plasmon resonance frequency with the frequency of
individual electron oscillations (between the potential walls). This resonance is responsible for
the appearance of a quasi-oscillating dependence of the plasmon resonance damping constants
on the nanoparticle size.
K e yw o r d s: damping constants, plasmon resonances, metallic nanoparticles.

1. Introduction

The physical properties of metallic nanoparticles
(MNPs) and their ensembles have been studied
for rather a long time, but those researches were
strongly intensified in recent years. Emission [1], op-
tical and plasma [2, 3], and other properties [4] are
researched. The interest in those objects is associated
with the fact that they reveal new physical regular-
ities that are absent in the case of massive metals.
First of all, this is surface plasma resonances (collec-
tive oscillations in the electron subsystem of the clus-
ter with respect to its frame) in MNPs and a modifica-
tion of the electron–lattice energy exchange at small
particle sizes, which favors the appearance of hot elec-
trons, when the energy is introduced into MNPs.
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The number of plasma resonances (PRs) and their
frequency positions depend on the MNP shape. There
is one dipole plasma resonance in a spherically sym-
metric MNP, two in a particle with the cylindrical
symmetry, and three in an ellipsoidal particle. The
PR frequencies belong to the visible spectral range;
therefore, their presence substantially governs the op-
tical properties of MNPs and their ensembles. In par-
ticular, the matter concerns the light absorption and
scattering by MNPs and their ensembles. In addition,
the PR excitation stimulates the generation of high
local electric fields. This effect is widely used in bio-
physics [5].

If the energy is introduced into MNPs or their en-
sembles (island metallic films) by means of laser radi-
ation or current transmission, the electron gas in such
systems becomes “hot”. The temperature of hot elec-
trons crucially depends on the character of electron–
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lattice energy exchange [1]. The intensity of the lat-
ter, as was showed in works [1,6,7], starts to decrease
in a quasi-oscillating manner as the clusters become
smaller, if the sizes of MNPs do not exceed the elec-
tron mean free path length; at certain sizes, the en-
ergy exchange in the bulk disappears altogether. In
this case, only the surface energy exchange survives,
the intensity of which is by orders of magnitude lower
than the bulk one. Due to this feature of the electron–
lattice energy exchange in island metallic films, hot
electrons can be obtained not only if the power is
introduced in the pulse regime, but also in the sta-
tionary one [1]. It is known that hot electrons are not
obtained under stationary (quasi-stationary) condi-
tions in massive metals and continuous metallic films,
because the intensive electron–lattice exchange favors
the heating of the lattice and its thermally induced
destruction.

Plasma resonances in MNPs are characterized by
their characteristic frequencies 𝜔𝛼 and damping con-
stants 𝛾𝛼. The dependences of the frequencies 𝜔𝛼 on
the shape and the size of MNPs are well studied (see
e.g., work [3]). The situation is worse for the size de-
pendences of decrements 𝛾𝛼, especially if the MNP
sizes are smaller than the electron mean free path
length. Even in the simplest case of a spherically sym-
metric MNP and when the electron scattering [8–10]
both in the bulk and at the surface is taken into ac-
count, the decrement of the dipole PR damping is
often written in the form

𝛾 = 𝜈 +𝐴
𝜐F
𝑅

,

where 𝜈 is the frequency of collisions in the bulk, 𝜐F
the Fermi velocity, and 𝑅 the MNP radius. The con-
stant 𝐴 either is accepted to equal 3/4 or is considered
to be a fitting parameter [8–10]. Actually, the “con-
stant” 𝐴 may depend on the MNP size and shape (see
below). Its explicit form can be obtained only in the
framework of the kinetic approach, while describing
the electron scattering in the MNP bulk and at the
MNP surface [11, 12]. The necessity of using the ki-
netic approach becomes especially actual in the case
where the MNP has an asymmetric shape, and the
optical conductivity becomes a tensor quantity [11–
13]. In this case, the “constant” 𝐴 mentioned above
will have different forms for different dipole PRs in
the same metallic particle.

In this work, a theory describing the size depen-
dence of the PR damping constants in small ellip-

soidal metallic particles will be developed in the fra-
mework of the kinetic approach. It will be shown that,
under certain conditions, the quasi-oscillating size de-
pendences of PR decrements are possible. An analyt-
ical dependence of those decrements on the particle
shape, provided a dominating role of the surface elec-
tron scattering in MNPs, is obtained for the first time.

2. Statement of the Problem

Let us consider an ellipsoidal metallic nanoparticle in
the electromagnetic wave field

E(r, 𝑡) = E0𝑒
−𝑖(𝜔𝑡−kr), (1)

where E0 is the amplitude of the electromagnetic
wave, 𝜔 its frequency, k its wave vector, and r and 𝑡
are the coordinate vector and the time, respectively.
The choice of the ellipsoidal shape for the particle is
attractive, because the results obtained can be ex-
tended to a wide spectrum of shapes (from disk-like
to rod-like ones) by changing the curvature radii of
the ellipsoid [11, 13].

Let us suppose that the electromagnetic wave
length is much longer than the particle size, i.e.

𝑘𝐿 ≪ 1, (2)

where 𝐿 = max 𝑅𝑖, 𝑅𝑖 is the 𝑖-th curvature radius,
and 𝑖 = 1, 2, 3. If condition (2) is satisfied, the electro-
magnetic wave (1) induces a spatially uniform electric
field in the ellipsoidal metallic nanoparticle [14],

𝐸𝛽
𝑖𝑛𝑒

−𝑖𝜔𝑡 =
𝐸𝛽

0 𝑒
−𝑖𝜔𝑡

1 + 𝐿𝛽 [𝜖𝛽𝛽 − 1]
, (3)

where 𝐿𝛽 is the depolarization factor, and 𝜖𝛽𝛽 the di-
agonal component in the tensor of dielectric permit-
tivity 𝜖. In the case of spherical particle, 𝜖 becomes a
scalar and looks like

𝜖(𝜔) = 𝜖′(𝜔)+𝑖𝜖′′(𝜔) = 1−
𝜔2
𝑝𝑙

𝜔2 + 𝜈2
+𝑖

𝜈

𝜔

𝜔2
𝑝𝑙

𝜔2 + 𝜈2
. (4)

In Eq. (4),

𝜔𝑝𝑙 =

√︂
4𝜋𝑛𝑒2

𝑚
(5)

is the bulk plasma frequency. Here, 𝑒 is the elemen-
tary charge, 𝑚 the electron mass, and 𝑛 the electron
concentration.
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For an ellipsoidal metallic nanoparticle with dimen-
sions less than the electron mean free path length
(this means that the electron scattering at the cluster
surface dominates), the imaginary part of the dielec-
tric permittivity becomes a tensor [11, 13],

𝜖′′(𝜔) → 𝜖′′𝛽𝛽(𝜔) =
4𝜋

𝜔
𝜎𝛽𝛽(𝜔), (6)

where 𝜎𝛽𝛽 are the components of the tensor of optical
conductivity.

The internal electric field (3) generates a high-fre-
quency current in the nanocluster,

𝑗𝛼(r, 𝜔) = 2𝑒
(︁ 𝑚

2𝜋~

)︁3 ∫︁
𝑣𝛼𝑓1(r,v)𝑑3𝑣 =

=

3∑︁
𝛽=1

𝜎𝛼𝛽(r, 𝜔)𝐸
𝛽
in, (7)

where 𝑓1(r,v) is the distribution function of electrons
in the field Ein. It can be written in the form

𝑓(r,v) = 𝑓0(𝜀) + 𝑓1(r,v), (8)

where 𝑓0(𝜀) is the Fermi distribution function of elec-
trons over the energy 𝜀, and 𝑓1(r,v) is a correction
to 𝑓0(𝜀) linear in Ein. In order to determine the func-
tion 𝑓1(r,v), the following kinetic equation linearized
in E𝑖𝑛 is used:

(𝜈 − 𝑖𝜔)𝑓1(r,v) + v
𝜕𝑓1(r,v)

𝜕r
+ 𝑒Einv

𝜕𝑓0
𝜕𝜀

= 0, (9)

with the boundary conditions at the surface

𝑓1(r,v)|𝑆 = 0, 𝑣𝑛 < 0, (10)

where 𝑣𝑛 is the velocity component normal to the
surface. Condition (10) corresponds to the diffusion
mechanism of electron scattering by the surface of a
metallic nanocluster.

The normal to ellipsoid’s surface depends on all co-
ordinates and all 𝑅𝑖. This circumstance makes the so-
lution of Eq. (9) more complicated. In order to avoid
those difficulties, it is expedient to change in Eq. (9)
to a deformed coordinate system and velocities:

𝑥′
𝑖 = 𝛾𝑖𝑥𝑖, 𝑣′𝑖 = 𝛾𝑖𝑣𝑖, 𝛾𝑖 =

𝑅

𝑅𝑖
, 𝑅 = (𝑅1𝑅2𝑅3)

1/3.

(11)

In the deformed (primed) coordinate system, the na-
noparticle takes the spherical form, with the volume
equal to that of initial ellipsoidal particle. Boundary
condition (10) becomes strongly simplified at that.

The solution of Eq. (9) with boundary conditions
(10) in the deformed coordinate system looks like [15]

𝑓1(r,v) = −𝑒Einv
𝜕𝑓0
𝜕𝜀

1− exp[−(𝜈 − 𝑖𝜔)𝑡0(r
′,v′)]

𝜈 − 𝑖𝜔
,

(12)
where

𝑡0(r
′,v′) =

1

𝑣′2

[︁
r′v′ +

√︀
(R2 − r′2)v′2 + (r′v′)2

]︁
(13)

is the characteristic of Eq. (9). After determining,
with the help of Eqs. (7) and (12), the high-frequency
current generated in the metallic nanoparticle by the
internal field Ein, it is possible to obtain an expres-
sion for the energy absorbed by the particle per time
unit [11]:

𝑊 =
1

2
Re

∫︁
𝑑3𝑟j(r)E*

in(r) =

=
𝑉

2

3∑︁
𝛼=1

𝜎𝛼𝛼

(︀
𝜖𝑚𝜔2/𝑔𝛼

)︀2 |𝐸𝛼
0 |

2

(𝜔2
𝛼 − 𝜔2)2 + (4𝜋𝐿𝛼𝜎𝛼𝛼/𝑔𝛼)

2
𝜔2

. (14)

Expression (14) corresponds to the general case where
the metallic particle is located in a dielectric matrix
with the dielectric permittivity 𝜖𝑚. In this case,

𝑔𝛼 = 𝜖𝑚 + 𝐿𝛼(1− 𝜖𝑚), (15)

and the characteristic plasma frequencies 𝜔𝛼 look like
[11, 12]:

𝜔𝛼 =

(︂
𝐿𝛼

𝑔𝛼

)︂1/2

𝜔𝑝 𝑙. (16)

In vacuum, 𝜖𝑚 = 1 and 𝑔𝛼 = 1. As is seen from
Eq. (14), the decrement of dipole plasma oscillations
equals

𝛾𝛼 = 4𝜋𝐿𝛼𝜎𝛼𝛼/𝑔𝛼. (17)

Our problem consists in studying how the constant
of dipole plasma oscillation damping 𝛾𝛼 varies when
changing from the bulk electron scattering to the sur-
face one as a result of the cluster size change.
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3. Quasi-Oscillating Size
Dependence of the Damping Constant
for Dipole Plasma Oscillations

Expressions (14) and (17) contain the real parts of
components of the tensor 𝜎𝛼𝛽(r, 𝜔) averaged over the
volume. According to Eq. (12), we have

𝜎𝛼𝛼(r, 𝜔) =
2𝑒

𝑉

(︁ 𝑚

2𝜋~

)︁3
Re

∫︁
𝑑3𝑟′

∫︁
𝑑3𝑣 𝑣𝛼 ×

×

[︃
−𝑒𝑣𝛼

𝜕𝑓0
𝜕𝜀

1− 𝑒−(𝜈−𝑖𝜔)𝑡0(r′,v′)

𝜈 − 𝑖𝜔

]︃
. (18)

Till now, all calculations were made for an ellipsoidal
nanoparticle with three different radii of curvature. In
what follows, with the purpose to obtain the final
results in an analytical form, the consideration will
be confined to the case of spheroidal particle, i.e. we
assume that 𝑅1 = 𝑅2 = 𝑅⊥ and 𝑅3 = 𝑅‖. Taking
into account that the integral in Eq. (18) equals∫︁

𝑑3𝑟′

𝑉

[︁
1− 𝑒−(𝜈−𝑖𝜔)𝑡0(r′,v′)

]︁
=

=
3

4

[︂
4

3
− 2

𝑞
+

4

𝑞3
− 4

𝑞2

(︂
1 +

1

𝑞

)︂
𝑒−𝑞

]︂
=

3

4
Ψ(𝑞), (19)

where 𝑞 = 2𝑅(𝜈 − 𝑖𝜔)/𝑣′, expression (18) for the di-
agonal components of the optical conductivity tensor
takes the form

𝜎𝛼𝛽(𝜔)=
3

2

(︁ 𝑚

2𝜋~

)︁3
Re

𝑒2

𝜈 − 𝑖𝜔

∫︁
𝑑3𝑣 𝑣𝛼𝑣𝛽𝛿(𝜀−𝜀F)Ψ(𝑞).

(20)

Here, we took into consideration that 𝜕𝑓0
𝜕𝜀 = −𝛿(𝜀−

− 𝜀F), where 𝜀F is the Fermi energy.
Let the direction 𝑂𝑍 be selected along the spheroid

axis. Then, in accordance with Eq. (11), the “de-
formed” velocity 𝑣′ in the expression for 𝑞 has the
form

𝑣′ = 𝑣𝑅

[︃
sin2 𝜃

𝑅2
⊥

+
cos2 𝜃

𝑅2
‖

]︃1/2

. (21)

As a result, Eq. (20) yields

𝜎⊥(𝜔) = 𝜎𝑥𝑥(𝜔) = 𝜎𝑦𝑦(𝜔) =

=
9𝑛𝑒2

8𝑚
Re

1

𝜈 − 𝑖𝜔

𝜋/2∫︁
0

𝑑𝜃 sin3 𝜃Ψ(𝑞)|𝜀=𝜀F ,

𝜎‖(𝜔) = 𝜎𝑧𝑧(𝜔) =

=
9𝑛𝑒2

4𝑚
Re

1

𝜈 − 𝑖𝜔

𝜋/2∫︁
0

𝑑𝜃 sin 𝜃 cos2 𝜃Ψ(𝑞)|𝜀=𝜀F . (22)

3.1. Spherical metallic nanoparticle

In the case of a spherical nanoparticle, we have 𝑅⊥ =
= 𝑅‖ = 𝑅 and 𝑣′ = 𝑣. From Eq. (22), we obtain

𝜎⊥(𝜔) = 𝜎‖(𝜔) =
3𝑛𝑒2

4𝑚
Re

Ψ(𝑞)|𝜀=𝜀F

𝜈 − 𝑖𝜔
. (23)

Expression (23) describes the optical conductivity of
a spherical nanoparticle with an arbitrary relation
between the bulk and surface scatterings. This ex-
pression remains to be rather cumbersome in view
of the form of Ψ(𝑞). Much simpler expressions can
be obtained from formula (23) in the limiting cases
corresponding to the domination of either scattering
mechanism.

Since the quantity 𝑞1 = 2𝑅𝜈/𝑣′ is defined as the
ratio between the bulk, 𝜈, and surface, 𝑣′/2𝑅, scat-
tering frequencies, the limiting expression for the
purely bulk mechanism of scattering is obtained from
Eq. (23) by putting 𝑞1 → ∞, and the purely sur-
face one by putting 𝑞1 → 0. From Eq. (19), we
have Ψ(𝑞) ≈ 4/3 for the bulk mechanism of scatter-
ing. Therefore, in accordance with Eq. (23), we obtain

𝜎 =
𝑛𝑒2

𝑚

𝜈

𝜈2 + 𝜔2
=

𝜔2
𝑝𝑙

4𝜋

𝜈

𝜈2 + 𝜔2
. (24)

According to Eqs. (15) and (17), the damping con-
stant for plasma dipole oscillations in the spherical
metallic nanoparticle located in the vacuum looks like

𝛾(𝜔) =
4𝜋

3
𝜎(𝜔) =

𝜔2
𝑝𝑙

3

𝜈

𝜈2 + 𝜔2
. (25)

Since 𝛾(𝜔) describes the damping of dipole oscilla-
tions at the frequency 𝜔𝑆 = 𝜔𝑝𝑙/

√
3, we are in-

terested in the value of 𝛾(𝜔 = 𝜔𝑆). The frequency
𝜔𝑆 is located in the visible spectral range, so that
𝜔𝑆 ≫ 𝜈. Then Eq. (25) yields

𝛾(𝜔𝑆) ≈ 𝜈, (26)

i.e. the relaxation time of dipole plasma oscillations in
the case of bulk scattering is equal to the momentum
relaxation time in the bulk metal.

More interesting is the case where the surface scat-
tering dominates (𝑞1 → 0). From Eq. (19), we obtain

Ψ(𝑞)|𝑞1→0 → Ψ(−𝑖𝑞2) =
4

3
+

4

𝑞22

(︂
cos 𝑞2 −

1

𝑞2
sin 𝑞2

)︂
+

+ 𝑖

[︂
− 2

𝑞2
+

4

𝑞22
sin 𝑞2 −

4

𝑞32
(1− cos 𝑞2)

]︂
, (27)
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where 𝑞2 = 2𝑅𝜔/𝑣′. Using this formula, we find from
Eq. (23) that

𝜎 =
3

8𝜋
𝜈𝑠

(︁𝜔𝑝𝑙

𝜔

)︁2 [︂
1− 2

𝜈𝑠
𝜔

sin
𝜔

𝜈𝑠
+

+2
(︁𝜈𝑠
𝜔

)︁2 (︂
1− cos

𝜔

𝜈𝑠

)︂]︂
, (28)

where 𝜈𝑠 = 𝑣F/2𝑅 is the frequency of electron os-
cillations between the potential walls, and 𝑣F is the
Fermi velocity. Hence, in the case of surface scatter-
ing, we obtain for a spherical nanoparticle in the vac-
uum that

𝛾(𝜔) =
3𝑣F
4𝑅

[︂
1− 2

𝜈𝑠
𝜔

sin
𝜔

𝜈𝑠
+ 2

(︁𝜈𝑠
𝜔

)︁2(︂
1− cos

𝜔

𝜈𝑠

)︂]︂
.

(29)

One can observe a quasi-oscillating size dependence
that arises, when the frequency of individual electron
oscillations between the potential walls (𝜈𝑠 = 𝑣F/2𝑅)
approaches the frequency of collective oscillations in
the electron subsystem with respect to the ionic frame
(𝜔𝑆 = 𝜔𝑝𝑙/

√
3). In both limiting cases 𝜈𝑠 ≫ 𝜔𝑆 and

𝜈𝑠 ≪ 𝜔𝑆 , the expression in the brackets in Eq. (29)
tends to unity.

If the spherical metallic nanoparticle is located in
the vacuum, it may be unrealistic to observe the
quasi-oscillating dependence (29), because 𝜈𝑠 ≪ 𝜔𝑆

as a rule. However, as one can see from Eq. (16), those
oscillations can be made observable by selecting a ma-
trix with the corresponding dielectric permittivity 𝜖𝑚
and a particle with the corresponding shape (the pa-
rameter 𝐿𝛼).

It is worth emphasizing that, in accordance with
Eq. (25), the high-frequency conductivity 𝜎(𝜔) deter-
mines the plasma resonance width at the frequency
𝜔 = 𝜔𝑆 . However, at the frequencies far from the
resonance, 𝜎(𝜔) determines the Joule power losses
of separate electrons, which are not associated with
their collective motion. In this case, if the frequency
of the external electric field 𝜔 coincides with the fre-
quency of individual electron oscillations 𝜈𝑠 = 𝑣F/2𝑅,
the absorbed energy also begins to depend on 𝜈𝑠/𝜔
in a quasi-oscillating manner if the surface scattering
dominates. This fact was marked for the first time in
works [11,16] dealing with the electric absorption and
in works [15, 17] dealing with the magnetic one.

3.2. Spheroidal metallic nanoparticle

In the case of spheroidal nanoparticle, the diagonal
components of the tensor of optical conductivity are
given by formulas (22). If the surface scattering dom-
inates, 𝑞1 → 0 and 𝑞 → −𝑖𝑞2. Then, in accordance
with Eq. (21) and the definition of variable 𝑞, we have

𝑞2 =
2𝑅𝜔

𝑣′
=

2𝑅⊥𝜔

𝑣

(︀
1− 𝑒2𝑝 cos

2 𝜃
)︀−1/2

. (30)

where 𝑒𝑝 =

√︂⃒⃒⃒
1−𝑅2

⊥/𝑅
2
‖

⃒⃒⃒
is the spheroid eccen-

tricity, and 𝜃 is the angle between v and the axis
of spheroid symmetry. Formula (30) can be used to
change in Eq. (22) from the integration over 𝜃 to the
integration over 𝑞2 ≡ 𝑥. In so doing, taking Eq. (27)
into acount, we obtain from Eq. (22) in the limit
𝑞1 → 0 that

𝜎‖(𝜔) =
9𝑛𝑒2

2𝑚𝜔

(︂
𝜔

𝜈𝑠,⊥

)︂2
1

𝑒3𝑝

𝜔/𝜈𝑠,‖∫︁
𝜔/𝜈𝑠,⊥

𝑑𝑥

𝑥4

[︃
1−

(︂
𝜔

𝜈𝑠,⊥𝑥

)︂2]︃1/2

×

×
[︂
1− 2

𝑥
sin𝑥+

2

𝑥2
(1− cos𝑥)

]︂
, (31)

𝜎⊥(𝜔)=
9𝑛𝑒2

4𝑚𝜔

(︂
𝜔

𝜈𝑠,⊥

)︂2𝑒2𝑝−1

𝑒3𝑝

𝜔/𝜈𝑠,‖∫︁
𝜔/𝜈𝑠,⊥

𝑑𝑥

𝑥4

1−
(︁

𝜔
𝜈𝑠,‖𝑥

)︁2
[︂
1−

(︁
𝜔

𝜈𝑠,⊥𝑥

)︁2]︂1/2×
×
[︂
1− 2

𝑥
sin𝑥+

2

𝑥2
(1− cos𝑥)

]︂
. (32)

Here, the following notations are introduced:

𝜈𝑠,‖ =
𝑣F
2𝑅‖

, 𝜈𝑠,⊥ =
𝑣F
2𝑅⊥

. (33)

In accordance with Eq. (17), the damping con-
stants for dipole plasma oscillations occurring along
the spheroid axis and transverse to it look like

𝛾‖ = 4𝜋𝐿‖𝜎‖(𝜔)|𝜔=𝜔‖ , (34)

𝛾⊥ = 4𝜋𝐿⊥𝜎⊥(𝜔)|𝜔=𝜔⊥ . (35)

As one can see from Eqs. (31) and (32), at frequen-
cies, including the characteristic ones, that satisfy the
inequalities

𝜔 > 𝜈𝑠,‖, 𝜈𝑠,⊥, (36)
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the oscillating terms in the brackets can be omitted,
leaving only unity. In this case, integrals (31) and (32)
are calculated exactly, and we obtain

𝜎‖(𝜔) =
9𝑛𝑒2𝜈𝑠,‖

16𝑚𝜔2

1

𝑒3𝑝

[︁
− 𝑒𝑝(1− 2𝑒2𝑝)+

+ (1− 𝑒2𝑝)
−1/2 arcsin 𝑒𝑝

]︁
. (37)

Analogously,

𝜎⊥(𝜔) =
9𝑛𝑒2𝜈𝑠,⊥
32𝑚𝜔2

1

𝑒3𝑝

[︁
𝑒𝑝(1 + 2𝑒2𝑝)(1− 𝑒2𝑝)

1/2 −

− (1− 4𝑒2𝑝) arcsin 𝑒𝑝

]︁
. (38)

When obtaining expressions (37) and (38), we used
the identity

arcsin 𝑎± arcsin 𝑏 = arcsin(𝑎
√︀
1− 𝑏2 ± 𝑏

√︀
1− 𝑎2).

(39)

On the basis of Eqs. (34), (35), (37), and (38), we
obtain the following expressions for the decrements
of dipole plasma oscillations in metallic spheroidal
nanoparticles:

𝛾‖(𝜔‖) =
3𝑣F
4𝑅‖

𝜑‖(𝑒𝑝), (40)

where

𝜑‖(𝑒𝑝)=
3

8𝑒3𝑝

[︁
−𝑒𝑝(1−2𝑒2𝑝)+(1−𝑒2𝑝)

−1/2arcsin 𝑒𝑝

]︁
.

(41)

and
𝛾⊥(𝜔⊥) =

3𝑣F
4𝑅⊥

𝜑⊥(𝑒𝑝), (42)

where

𝜑⊥(𝑒𝑝)=
3

16𝑒3𝑝

[︁
𝑒𝑝(1+2𝑒2𝑝)(1−𝑒2𝑝)

1/2−(1−4𝑒2𝑝)arcsin 𝑒𝑝

]︁
.

(43)

For the spherical shape, 𝑒𝑝 → 0, and we obtain
𝜑‖‖(0) = 𝜑⊥(0) = 1. The functions 𝜑‖,⊥(𝑒𝑝) charac-
terize the dependence of the plasma oscillation damp-
ing on the metallic nanoparticle shape. Those depen-
dences are plotted in Figure.

Formulas (41) and (43) are valid only for a prolate
spheroid, i.e. at 0 ≤ 𝑒𝑝 ≤ 1. In the case of oblate
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�Rþ
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12
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Dependences of the plasma oscillation damping functions on
the metallic nanoparticle shape: 𝜑‖(𝑒𝑝) (solid curve) and
𝜑⊥(𝑒𝑝) (dashed curve)

spheroid, i.e. at 1 ≤ 𝑒𝑝 ≤ ∞, we obtain, instead of
formulas (41) and (43), the following corresponding
expressions:

𝜑‖(𝑒𝑝) =
3

8𝑒3𝑝

[︁
𝑒𝑝(1 + 2𝑒2𝑝)−

− (1 + 𝑒2𝑝)
−1/2 ln(𝑒𝑝 +

√︁
1 + 𝑒2𝑝)

]︁
, (44)

𝜑⊥(𝑒𝑝) =
3

16𝑒3𝑝

[︁
𝑒𝑝(2𝑒

2
𝑝 − 1)(1 + 𝑒2𝑝)

1/2 +

+(1 + 4𝑒2𝑝) ln(𝑒𝑝 +
√︁
1 + 𝑒2𝑝)

]︁
. (45)

The spherical shape of a MNP corresponds in Figure
to the value 𝑅⊥/𝑅‖ = 1 (or 𝑒𝑝 = 0).

From Figure, one can see that the influence of the
MNP shape on the PR damping constants is not re-
duced to small corrections to the known results ob-
tained in the case of spherical MNP. Depending on
the particle shape, the functions 𝜑‖(𝑒𝑝) and 𝜑⊥(𝑒𝑝)
can change by several times. Hence, the MNP shape
can substantially affect not only the PR frequency,
but also the damping constants. Eventually, we note
that the effect of the MNP shape on the PR damp-
ing constants has been studied in the classical case. A
similar effect arises also in the quantum case due to
the appearance of quantum levels determined by the
boundary conditions on the surfaces of MNPs.

4. Conclusions

To summarize, a theory describing the dependence
of the PR damping constants on the MNP shape is
developed for the case of particle sizes where the sur-
face electron scattering dominates. It is shown that
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when MNPs are incorporated into a dielectric matrix
with high dielectric permittivity, there may appear
a quasi-periodic size dependence of the PR damp-
ing constant stemming from the coincidence of the
dipole PR frequency with the frequency of individual
electron oscillations between the potential walls. For
spheroidal particles, analytical expressions are ob-
tained, and the dependences of the PR damping
constants on the ratio between the curvature radii
𝑅⊥/𝑅‖ are plotted. The influence of the MNP shape
on the PR decrements is shown to be substantial and
is not reduced to small corrections of the known re-
sults obtained for spherical MNPs. Therefore, when
interpreting the experimental results, it is necessary
that the dependences of not only PR frequencies, but
also PR decrements on the particle shape be taken
into consideration.

1. R.D. Fedorovich, A.G. Naumovets, and P.M. Tomchuk,
Phys. Rep. 328, 73 (2000).

2. G.V. Hartland, Chem. Rev 111, 3858 (2011).
3. V.V. Klimov, Nanoplasmonics (Nauka, Moscow, 2012) (in

Russian).
4. E.F. Venger, A.V. Goncharenko, and M.L. Dmitruk, Optics

of Small Particles and Disperse Media (Naukova Dumka,
Kyiv, 1999) (in Ukrainian).

5. N.G. Khlebtsov, Kvant. Elektron. 38, 6 (2008).
6. E.D. Belotskii and P.M. Tomchuk, Surf. Sci. 239, 143

(1990).
7. E.D. Belotskii and P.M. Tomchuk, Int. Electronics 69, 169

(1990).
8. U. Kreibig, Optical Properties of Metal Clusters (Springer,

New York, 1995).
9. A. Pinchuk, U. Kreibig, New J. Phys 5, 151.1 (2003).

10. A. Pinchuk, G. von Plessen, and U. Kreibig, J. Phys. D
37, 3133 (2004).

11. P.M. Tomchuk and N.I. Grigorchuk, Phys. Rev. B 73,
155423 (2006).

12. N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84,
085448 (2011).

13. P.M. Tomchuk and B.M. Tomchuk, Zh. Eksp. Teor. Fiz.
112, 661 (1997).

14. L.D. Landau and E.M. Lifshitz, Electrodynamics of Con-
tinuous Media (Pergamon Press, New York, 1984).

15. A.G. Lesskis, V.E. Pasternak, and A.A. Yushkanov, Zh.
Eksp. Teor. Fiz. 83, 310 (1982).

16. M.I. Grigorchuk and P.M. Tomchuk, Ukr. Fiz. Zh. 51, 9
(2006).

17. A.G. Lesskis, A.A. Yushkanov, and Yu.I. Yalamov, Po-
verkhnost Fiz. Khim. Mekhan. 11, 11 (1987).

Received 10.09.14.
Translated from Ukrainian by O.I. Voitenko

П.М.Томчук, Д.В.Бутенко

ЗАЛЕЖНIСТЬ ДЕКРЕМЕНТIВ
ЗГАСАННЯ ДИПОЛЬНИХ ПЛАЗМОВИХ РЕЗОНАНСIВ
ВIД ФОРМИ МЕТАЛЕВИХ НАНОЧАСТИНОК

Р е з ю м е

В роботi розвинута теорiя залежностi декрементiв згасання
дипольних плазмових резонансiв в металевих наночастин-
ках вiд їх форми. Для частинок у виглядi елiпсоїда обер-
тання у випадку домiнуючої ролi розсiяння електронiв на
поверхнi отриманi аналiтичнi формули (i побудованi графi-
ки) залежностi декрементiв згасання як функцiї вiдноше-
ння радiусiв кривизни. Проiлюстрована значна залежнiсть
декрементiв вiд форми наночастинок. Показано, що при iн-
корпорацiї металевих наночастинок певної форми у дiеле-
ктричну матрицю з високою дiелектричною проникнiстю
можливий резонанс, зумовлений збiганням частоти плазмо-
вого дипольного коливання з частотою iндивiдуальних еле-
ктронних осциляцiй (вiд однiєї потенцiальної стiнки до про-
тилежної). Такий резонанс зумовлює появу квазiосциляцiй-
ної розмiрної залежностi декремента згасання плазмових
коливань.
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