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ON PENDRY’S EFFECTIVE ELECTRON MASS

In 1996, J. Pendry, an English theoretical physicist put forward an idea about the dependence
of the effective electron mass on the magnetic field, while interpreting the dielectric response
of metal wire mesh structures. The idea was based on the well-known relation between the
kinematic and canonical momenta of a charged particle moving in the magnetic field. In this
paper, proceeding from the universal character of that relation, the applicability of Pendry’s
effective electron mass meg to the problem of electrons in metal mesh structures, as well as to a
wide class of problems for charges moving in the magnetic field, has been examined. The general
properties of meg following directly from its definition were found, and an analogy between the
effective electron mass meg and m* known in the solid-state theory was established. A physical
interpretation of meg was proposed. It was demonstrated in several examples that, despite the
generality of the defining relation for the effective mass meg, the use of meg beyond the problem

of the dielectric response of metal wire mesh structures leads to incorrect results.
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1. Introduction

The concept of effective mass for charge carriers is
widely used to describe various phenomena in met-
als and semiconductors. In particular, it is used in
the theories of electroconductivity, Hall effect, and
cyclotron resonance in metals [1-3].

In the solid-state theory, the effective mass of con-
duction electrons, m*, is usually determined from
their dispersion law E(k), where E and k are the en-
ergy and the wave vector of an electron, respectively.
For example, in the the simplest case of isotropic
quadratic dispersion law [3], we have

= (LPEY
T\ ok2)

The difference between m* and the rest mass of a
free electron, m, is known to emerge owing to the in-
teraction of conduction electrons in a solid with the
periodic internal crystal field. As a result of this in-
teraction, electrons in the solid are accelerated under
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the action of external electromagnetic fields, however,
not as free particles with the mass m, but as certain
imaginary particles with the mass m*. According to
experimental data, the value of m* can significantly
(by 1-2 orders of magnitude) differ from m [4].

In the case of anisotropic dispersion, the effective
mass of the electron depends on the direction of its
acceleration. In this case, the dynamical properties of
the electron are not characterized by a single scalar
m™*, but a collection of three scalars m} (i = x,y, 2),
which are reciprocals of the principal values of the
tensor of inverse effective mass of electrons, [3]

iyt = (2 LE
i = \ 2 ok,0k;)

It is worth noting that the effective mass m* (or
m}) is determined by specific features in the elec-
tron energy spectrum of that or another solid, being
a function of the wave vector k, temperature, and
pressure [5].

In 1996, Pendry et al. [6], while considering the
frequency dependence of the dielectric function of
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metal wire mesh structures, introduced the concept
of effective electron mass dependent on the magnetic
field. Unlike the effective mass of electrons m*, which
is considered in the solid-state theory, the effective
mass Meg introduced in work [6] (below, it will be
called Pendry’s effective mass) is defined on the ba-
sis of the relation, known from the classical mechan-
ics, between the kinematic and canonical momenta of
a non-relativistic spinless charged particle moving in
the magnetic field (similarly to works [6-8], the SI
units are used below):

megv = P, (1)
P=p+¢A, (2)

where p = mv and P = 9L/0v are the kinematic
and canonical, respectively, momenta of the particle;
m, v, q, and L are its mass, velocity, and charge
and the Lagrangian, respectively; and A is the vector
potential of the magnetic field (B = rot A). Using
the idea of meg, Pendry et al. derived an analytical
expression for the mesh plasma frequency wy,, which is
in good agreement with experimental data (see, e.g.,
works [9, 10]).

Pendry’s effective mass meg cardinally differs from
the mass m* considered in the solid-state theory:
not only by definition, but also by properties. For
instance, in contrast to m®*, the value of meg can
easily reach giant values of the order of (10*+10%)m
[6, 7]. Moreover, as a result of the gage invariance of
the vector potential A entering Eq.(2), meg turns
out an ambiguously defined quantity [11]. Taking this
fact into account, the critical remarks were made con-
cerning both the correctness of the definition of meg
[11] and the reality of predictions on the basis of Mmeg
[12,13]. Those remarks forced some authors to search
for the ways of deriving the major results of work
[6] without attracting the meg concept. The success
attained in those searches [14-17] testifies that, de-
spite the productivity of this concept demonstrated
by Pendry et al., its introduction is not required for
the explanation of the dielectric response of a metal
mesh structure. Nevertheless, in last books on meta-
materials [7, 8|, this response was explained, by en-
gaging meg.

Can the notion of meg be used beyond the scope
of work [6]7 Relation (2) between p and P is rather
general, being used not only in classical mechanics,
but also in quantum one. Proceeding from its uni-
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versal character and on the basis of the principle of
integrity of physics, one may hope for that the con-
cept of meg could be applied, while considering a
wide range of problems (both classical and quantum-
mechanical) concerning the motion of charges in a
magnetic field. However, the possibility of its appli-
cation has not been considered till now.

Earlier, the interpretation of meg was not con-
sidered. The absence of such an interpretation that
would be compatible at least with the results of work
[6] invokes a number of questions concerning the phys-
ical meaning of the effective mass meg. For exam-
ple, does meg characterize the inertial properties of
an electron in the magnetic field? Or does the rela-
tion meg = 10*m mean that the inertial and, owing
to the Einstein equivalence principle, gravitational
masses of an electron increase in the magnetic field
by four orders of magnitude? Statements like “Elec-
trons become as heavy as hydrogen atoms” |6, p. 4775]
are based on a free interpretation of the relation
Mmeg = 10*m rather than the physical interpretation
of meg itself, and more likely entangle the situation
rather than clarify it.

It is worth to recall that analogous questions con-
cerning the “ordinary” effective mass m* of electrons
in a solid arose when the solid-state theory was for-
mulated in the 1930s, in particular, during the dis-
cussions concerning the interpretation of the results
of classical experiments by Tolman and Stewart [18]
and Barnett [19]. Answers to them were given only af-
ter the proper interpretation of m*, which was based
on its definition and properties, had appeared (see,
e.g., work [20]).

The problem concerning the interpretation of the
effective mass meg proposed by Pendry et al. could
also be removed after a detailed analysis of the meg
properties that follow from its definition. However,
to the knowledge of the author of this work, nobody
has carried out such an analysis till now.

This work was aimed at establishing the general
properties of the effective mass meg, which follow di-
rectly from its definition; formulating a physical in-
terpretation of meg, which would be compatible, at
least, with the verified results of work [6]; and ana-
lyzing the application of meg beyond the problem of
metal wire mesh structures, namely, in a wide range
of problems concerning the motion of charges in the
external magnetic field, when the relation between p
and P in the definition of meg should manifest itself.
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Scheme of a metal wire mesh structure excited by an external electromagnetic wave. Electric oscillations arise in the mesh
conductors (they are called active), which are parallel to the vector E of the incident wave. If the orientation of E with respect
to the mesh structure is arbitrary, all the conductors, generally speaking, are active (a). At the homogenization of the sublattice
of active conductors in the cubic metal mesh structure, its unit cell, which covers a conductor segment with an arbitrary length,
is considered as being filled with a homogeneous electron plasma with concentration neg (b)

The paper is organized as follows. In Section 2, the
main results of work [6] concerning the effective mass
meg oOf electrons in metal mesh structures and the
plasma frequency w, of those meshes are presented. It
was done not only to demonstrate a way, in which
the concept of meg is used at the solution of a spe-
cific problem, but also to give the reader unfamiliar
with this concept some initial information on m.g, in
particular, its order of magnitude and its dependence
on the parameters of the problem. In Section 3, on
the basis of definition (1), the general properties of
meg are found, and an interpretation of meg is pro-
posed. In Section 4, a number of examples illustrating
the application of the meg notion in various situations
associated with the motion of classical or quantum-
mechanical charged particles in a magnetic field are
considered.

2. Effective Mass of an Electron
in Metal Wire Mesh Structures

The metal wire mesh structures are, as a rule, three-
dimensional periodic structures fabricated from thin
metal wire conductors (Figure, a). Such meshes have
already been studied for more than half a century:
first, as artificial insulators and, at the modern stage,
as photonic crystals and metamaterials (see a short
historical excursion in work [21]). In the branch of
metamaterials, the wire meshes are more often called
mesh metamaterials and usually applied as media
with a negative effective dielectric permittivity eeg-.
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Since the dielectric function eeg(w) of mesh struc-
tures has a Drude form (it was established as early
as in the 1960s), negative values of e.g are attained
at frequencies lower than the plasma frequency w, of
the mesh. The plasma frequency w, depends on the
mesh structure parameters. The knowledge of the ex-
plicit form of this dependence is important both for
the mesh design and for the interpretation of experi-
mental data. For the simplest model of a cubic mesh
structure composed of infinitely thin ideal conduc-
tors, this dependence looks like

2mc?
“r = \/ @®In (a/ro)’ ®)

where a is the mesh period, 7y the radius of conduc-
tor wires (rg < a), and c¢ the speed of light in vac-
uum. Expression (3) was derived for the first time in
work [6] on the basis of the following reasoning.

For continuous media, the plasma frequency is
known to be given by the Langmuir formula [22]

ne?
W = 4
P \/ com’ @)

where n is the concentration of electrons in the
medium, m = 9.11 x 1073! kg is the electron mass,
e = 1.60 x 107 C is the elementary charge, and
g9 = 8.85 x 10712 F/m is the electric constant. For-
mula (4) can be elementarily derived, while consider-
ing the dynamics of electrons at plasma oscillations.
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The plasma frequency of a cubic metal mesh struc-
ture equals that of the sublattice of its active con-
ductors. This sublattice can be regarded as a certain
continuous medium (Figure, b) with the effective elec-
tron concentration

w3

Neff = ?n, (5)

where n is the electron concentration in the material
of mesh conductors. In addition, it was proposed in
work [6] to take into account that the dynamics of
electrons in the mesh is influenced by the magnetic
field of currents I, which arise in the active conduc-
tors of the mesh structure at plasma oscillations. This
influence can be effectively presented as a change of
the electron mass m — meg, where meg is defined by
formulas (1) and (2), in which A is the vector poten-
tial of the magnetic field induced by the currents I.

For an infinite mesh structure, the vector poten-
tial A of currents I is periodic. In every unit cell of
the mesh centered at the conductor axis, it can be
calculated by the formula [6, 9]

pol

Ar) = B tna/r), (6)
where r is the distance from the conductor axis
(r € [ro,a/2]), and pg = 47 x 10~7 H/m is the mag-
netic constant. Taking into account that I = mr3nev,
where v is the drift velocity of electrons in the con-
ductor, and that electrons move in ideal conductors
only on their surface and, therefore, “feel” the field
A(rp), we obtain

2
A(ro) = B0 n(a/ro).
For real mesh metamaterials, the term eA(rg) in
Eq. (2) turns out much larger than the kinematic mo-
mentum mo of conduction electrons (see the numeri-
cal example below). Therefore, neglecting the latter,
it is possible to assume that

A
Meff = < (TO)
v
or b
rgne
Meft = 'u0+ In(a/ro). (7)

This is a sought expression for Pendry’s effective elec-
tron mass in metal mesh structures. Formula (3) for
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the mesh plasma frequency can now be easily ob-
tained from the Langmuir formula (4) by substituting
Egs. (5) and (7) for n and m, respectively, into it.

Below, we give a few remarks concerning mg.

1. An idea about the magnitude of effective elec-
tron mass in metal wire mesh structures can be ob-
tained from the following numerical example [6]. For
a mesh with the parameters a = 5 mm and rg = 1 ym
(so that a/r¢g = 5000 > 1) and made from aluminum
conductors (n = 1.81 x 10%* m~3), we have

Mege/m ~ 2.7 x 10%.

By the way, the giant value of this ratio (meg/m >
> 1) means that the relation eA > mv used in the
derivation of expression (7) for meg is satisfied.

The electron dilution coefficient for the considered
mesh structure equals

neg/n = a*/ (wrd) ~ 8.0 x 10°,

and the mesh plasma frequency turns out by five or-
ders of magnitude lower than the plasma frequency
wp(Al) for bulk aluminum,

wp(Al)

wp Nef ™M

~ 4.6 x 10°. (8)

Estimate (8) is confirmed by experimental data.

2. As one can see from the example given above, the
increase of the electron mass, m — meg, plays a sub-
stantial role in the formation of the value of w,. The
account for only one effect — the dilution of charge car-
riers, n — Neg, which is intuitively clear — would not
allow one to obtain correct numerical values for wy,.

3. According to Eq. (7), the effective electron mass
depends on the geometrical mesh parameters a and
ro in such a way that, by increasing the mesh period,
i.e. passing to the limiting case of isolated conductor,
“one could easily obtain electrons with an effective
mass of, say, 1 kg” [12].

4. The authors of work [6] assume the mutual in-
ductance L of mesh’s conductors to be the physical
origin of the electron mass increase. However, while
deriving formulas for m.g and wy,, the quantity L has
not been used.

3. Properties and Interpretation of meg
3.1. General properties of Mg

One of the properties of the effective mass meg that
follows immediately from its definition, namely, its
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uncertainty owing to the gage invariance of the vector
potential A, which participates in the meg definition,
was already noted in work [11]. Let us consider other
properties of meg that follow from the definition

MegV = mv + qA 9)

but have not been noticed by anybody till now.

1. Generally speaking, the effective mass meg is a
tensor quantity. Indeed, for non-parallel v and A, we
also obtain that v J} P. The latter fact means that
the quantity meg in the expression megv = P is a
tensor rather than a scalar. The quantity meg is a
scalar only in the case v || A.

An analytical expression for the tensor meg can be
obtained from Eq. (9) by regarding the vector A as a
result of the action of some operator T on v:

A=Tv.

The action of this operator on the vector v consists in
the elongation of the latter by the factor A/v and the
rotation of the result until the new vector becomes su-
perposed on A. Proceeding from that, let us express
T in the form

A
T==-R
~R(n,9),
where R(n, ¢) is the operator of rotation by the angle

o around the axis defined by the unit vector n, with

v XxA
v x Al

In such a manner, we obtain

p=4L(v,A), n

A
Meg =M -1 4 %R(n, )
from Eq. (9) or, in the coordinate representation,

ﬁRij(m ),

v

where 1 = {§;;} is the unit operator (J;; is the Kro-
necker symbol), the matrix elements R;; of the op-
erator R(n, ¢) are known to have the form (see, e.g.,

work [23])

(meff)ij =md;; +

R;;j(n, @) = §;; cos ¢ — €;jpng sin + n;n; (1 — cos @),

and €5, is the Levi-Civita symbol.

2. In the case where the effective mass meg is a
scalar, it can be both larger and smaller than partic-
le’s mass m. Moreover, meg can accept a zero value
or even a negative one.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 10

3. In any case, the magnitude and the sign of meg
are determined by the relative orientation of the vec-
tors v and A, and by the relation between the abso-
lute values of terms p = mv and gA, which define
meg. For instance, for a positively charged particle
(g > 0), we have meg < 0 if the particle moves in
the direction opposite to the field A (v 1] A) and
v < gA/m.

4. Generally speaking, the effective mass depends
on the time: Mmeg = Mmeg(t). This phenomenon is as-
sociated with the fact that a moving charged particle
passes through various spatial points, where both the
field A (owing to its spatial nonuniformity or time de-
pendence) and the particle velocity can be different.

3.2. Analogy between meg and m*

Some of the indicated properties of Pendry’s effective
mass Mg are similar to the properties of the effec-
tive mass m* of conduction electrons in solids. For
example, in the general case, both meg and m* can
be anisotropic and should be described by the cor-
responding tensors !. Those properties, in particular,
distinguish both effective masses meg amd m* from
the ordinary rest mass of particles m, which is always
a scalar larger than or equal to zero.

3.3. Interpretation of meg

Which is the physical meaning of the mass meg? Is
it “real”? Do the giant values of meg for electrons in
metal wire mesh structures (and not only in them, see
below) mean that the electron mass m actually grows
gigantically, so that the electron becomes extremely
heavy?

The assumption that the electron mass increases
in the magnetic field looks unphysical, because we
cannot specify any real mechanism that could be re-
sponsible for the enormous growth of the electron
mass under the physical conditions that exist in the
meshes. However, this assumption allows quantita-
tively proper results to be obtained for the plasma fre-
quency in metal mesh structures. A collision between
the nonphysical character and the practical value of
this assumption can be eliminated by giving a proper
interpretation of meg.

1 Strictly speaking, as was mentioned in Introduction, it is the
inverse mass 1/m* rather than the mass m* itself that has
tensor properties.
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As was mentioned in Introduction, the issue con-
cerning the physical content of m.g is similar to those
arisen in due time with respect to m*. Taking this
fact into account, as well as a certain similarity (not
only a terminological one, see the previous item) be-
tween meg and m*, we can make attempt to interpret
meg in the spirit of m™. Namely, we may consider
that a real charged particle with mass m moves un-
der the action of electromagnetic forces in a magnetic
field with a potential A, as a certain particle charac-
terized by the same charge and the mass m.g moves
under the action of the same forces but without mag-
netic field. Here, as well as in the interpretation of
the effective mass m* in the solid-state theory [5], a
key issue is that meg makes it possible to calculate
the particle acceleration (in this case, in the mag-
netic field) under the action of only electromagnetic
forces. The acceleration of the same particle owing to
the action of forces of any other origin, e.g., grav-
itational forces, depends on its rest mass m, which
remains the same in the magnetic field, as it was in
the absence of a field.

It is easy to see that the proposed interpretation at
least agrees with the results obtained for the metal
wire mesh structures described in Section 2. Does it
contradict other known results? Let us consider some
examples.

4. Effective Mass meg from Different Sides

In this section, we analyze Pendry’s effective mass
Meg In various situations where charges move in a
magnetic field. In so doing, we ignore the problem
associated with the ambiguity in the choice of a field
potential A and, accordingly, the ambiguity of a mass
Meg. Similarly to works [6-9], it is supposed that the
results presented below are valid for a certain cali-
bration of the potential A, the choice of which is not
specified and remains offscreen.

4.1. Electron in the magnetic
field of a conductor with current

In Section 2, it was demonstrated that the effective
electron mass meg can easily reach large (of an order
of 10%m) values in metal mesh structures at a proper
choice of their parameters. Now, let us estimate the
effective mass of an electron moving in the magnetic
field of an infinitely long conductor with current. For
a single straight infinite conductor with radius r¢ and
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with current I, the vector potential A of the magnetic
field created by the current is directed in parallel to
the conductor and looks like [24]

A(r) = —‘ZLI (1 fom 4 C), (10)

78 To

where r is the distance from the conductor axis,
and C is an arbitrary constant. For the choice C =
= pol/(47), potential (10) has the “minimal form”

(11)

This formula almost coincides with expression (6) for
the potential of a magnetic field induced by currents
in wire mesh structures: the difference consists in the
substitution a — 7.

Let us consider an electron that moves with the
velocity v = 1 mm/s (this is a typical order of mag-
nitude for the drift velocity of electrons in metals
at a current density of 1 A/mm?) at the distance
r = 1 m from the axis of a conductor with the ra-
dius rp = 1 mm and the current I =1 A. According
to Eq. (11), the magnetic field potential of the cur-
rent at the electron position equals A ~ 107¢ T - m.
The corresponding contribution eA to the canonical
momentum (2) of the electron has an order of mag-
nitude of 1072% kg - m/s. At the same time, the kine-
matic momentum of the electron p = mwv under the
same conditions has an order of magnitude equal to
10733 kg - m/s. Since eA/p ~ 10%, we obtain in this
case that meg ~ 103m.

Let us pay attention to the following issues.

1. In order to achieve the enormous values of meg ~
108m, it is not necessary to use superstrong magnetic
fields or create some exotic physical conditions. Such
values can be easily realized under usual laboratory
conditions.

2. Do the large values of meg mean that electrons
become extremely heavy indeed? If it have been so,
then, as an example, the mass of the rotor windings
of electric motors (and the mass of the electric mo-
tors in whole) would have increased by several or-
ders of magnitude at their start. Surely, it was never
observed. The interpretation proposed in item 3 (see
Subsection 3.3) allows the misleading interpretation
of great meg-values as the effect of an increase in the
electron mass m to be avoided.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 10
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4.2. Electron in Earth’s magnetic field

In the majority of electric engineering problems, the
magnetic field of the Earth is neglected, because the
corresponding effects are small. However, the effective
electron mass meg in this field turns out even larger
than in the example with the magnetic field of the
current considered in Subsection 4.1.

Really, the induction of the magnetic field created
by a rectilinear current at a distance of 1 m equals
B = pol/(2nr) = 0.2 uT. The magnetic field of
the Earth near its surface is known to be equal to
approximately 50 uT [25], i.e., it is by two orders
of magnitude stronger. From the linear relation be-
tween B and A (this is a consequence of the relation
B = rotA), it follows that the potentials of those
two fields are also different by two orders of magni-
tude. In view of the results of the previous example,
we arrive at the conclusion that the effective mass
of an electron moving near the Earth suface at the
same velocity v = 1 mm/s should differ from the rest
mass of electron by 10 (!) rather than 8 orders of
magnitude.

4.3. Free charges in electric
and magnetic fields

The analysis of free charge motions in electric and
magnetic fields of various configurations — uniform
or non-uniform, parallel or crossed, stationary or al-
ternating — is of interest for a number of physics do-
mains, e.g., the physics of accelerators and the plasma
physics. Results of this analysis are well-known (see,
e.g., works [26, 27]) and predict that, for a descrip-
tion of the charge motion to be correct, it is neces-
sary that the both components of the Lorentz force
acting on the charge — the electric, ¢E, and magnetic,
qv x B, ones — be taken into account in the explicit
form. In contrast to that, in the framework of the
effective mass concept, the magnetic field can be ex-
cluded from consideration, so that the motion of a
particle with the mass meg only in the electric field
can be analyzed (see item 3 in Section 3.3.1). It is
clear that the well-known classical results are not re-
producible in the framework of this consideration. For
instance, instead of the known E x B-drift of parti-
cles in crossed E and B fields, which is a complicated
motion in the plane perpendicular to E and B [27]
we obtain a simple uniformly accelerated motion of a
particle with the mass meg along the vector E in the
framework of the effective mass concept.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 10

4.4. Influence of mcg on electric conductivity

The authors of work [13] paid attention to that the
giant values of effective electron mass in metal mesh
structures should induce not only a reduction of the
mesh plasma frequency in comparison with that for
the mesh conductor material, but also to a corre-
sponding giant reduction of the mesh conductivity
and a growth of Joule losses in the mesh. It can be
explained by the relation between the conductivity
o of the medium and the mass of charge carriers in
it. In the case of electron conductivity, [2]

’/l€27'

ag =

T (12

where 7 is the electron relaxation time. For crystalline
solids, the effective mass m* characterizing the dy-
namic properties of electrons in a crystal is used in-
stead of m. In the case of mesh structures, the substi-
tution m — Mmeg should be made in Eq. (12). Then,
bearing in mind the numerical estimations for m.g,
the conductivity o should decrease, and, accordingly,
the Joule losses should increase by several orders of
magnitude. As is well-known, neither of those effects
is observed in mesh structures.

With regard for the results described in items 1 and
2 in Section 4, we may assert that the influence of meg
on the electric conductivity should be substantial not
only in mesh structures, but also in bulk metal spec-
imens. For example, item 2 implies that, under the
conditions of terrestrial laboratories, the conductiv-
ity and the resistivity of an ordinary metal conductor
can differ by 10 orders of magnitude from the values
that would be obtained in the absence of Earth’s mag-
netic field. It is clear that this prediction contradicts
the whole body of accumulated experimental data.

4.5. Electrons in a solid

Let us demonstrate now that the concept of effective
mass Mg is not pertinent to the quantum-mechanical
solid-state theory as well. First, it will be recalled
that the effective mass m* of conduction electrons
used in the solid-state theory implicitly makes al-
lowance for the effect of electron interaction with a
periodic field U(r) = U(r+a) in the crystal lattice, so
that this field can be excluded from the Schrodinger
equation. In this case, the Hamiltonian of the initial
Schrédinger equation,

1
H=_—(p—eA)? v,
5, P A +U+V,
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which describes a real electron with mass m that
moves in the periodic crystal field U, an external mag-
netic field with the vector potential A, and a field V'
created by external forces of all other types, e.g., elec-
tric and gravitational ones, is reduced to a simpler
form 2

H= (P—eA)?+V,

2m* (13)

corresponding to a free particle with mass m* moving
in the fields A and V [3].

Can the Hamiltonian of an electron in the solid
be simplified further with the use of the concept of
effective electron mass meg dependent on the mag-
netic field? According to the interpretation of m.g,
Hamiltonian (13) could be simplified by excluding A
from it and simultaneously by making the substitu-
tion m* — meg (in this case, meg should be calcu-
lated from Egs. (1) and (2), in which the substitution
m — m* was preliminarily made). As a result, we ob-
tain the following Hamiltonian of a free particle with
the mass meg that moves in the field V:

pr+ V.

- 2meff

Do the solutions of the Schrédinger equation with
this Hamiltonian coincide with the solutions corre-
sponding to Hamiltonian (13)? It is clear that this
is not the case. This becomes the most evidently if
V' = 0. All the practice of considering various phe-
nomena in solid-state physics, in which the magnetic
field plays an essential role, e.g., the cyclotron res-
onance and the Hall effect, testifies that, for those
phenomena to be described correctly, the dependence
of H on A must be taken into consideration explic-
itly. Hence, the well-known results of the solid-state
theory cannot be reproduced in the framework of the
concept of effective mass meg-.

5. Conclusions

The concept of effective mass of an electron in the
magnetic field was introduced in work [6], while solv-
ing the problem of the plasma frequency of metal
mesh structures. The way of introducing the mass
meg substantially uses the concept of canonical mo-
mentum, P = 9L/dv, of charged particle in an ex-
ternal electromagnetic field and the relation between

2 Here, for simplification, the simplest case of isotropic
quadratic dispersion law is considered, for which the effective
mass is a scalar.
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the kinematic, p = mv, and canonical particle’s mo-
menta. The concept of canonical momentum is an
important element of the Lagrange and Hamilton for-
malisms of classical mechanics; it is also used in the
quantum mechanics. The universal character of this
notion and the relationship between P and p give a
hope for that the concept of effective mass meg can
be used not only in the specific problem, where it was
introduced, but also in other problems (both classi-
cal and quantum-mechanical ones) dealing with the
motion of charges in the magnetic field.

The analysis of the effective mass meg, which was
carried out in this work, testifies to its rather un-
usual properties. For instance, meg turns out, gener-
ally speaking, to be a tensor quantity. In some cases,
it can acquire zero or even negative values. A cer-
tain analogy between meg and the effective mass m*
known from the solid-state theory allows the former
to be interpreted in the spirit of the latter, by remov-
ing, in such a way to a certain extent, the problem of a
non-physical character of meg marked earlier by var-
ious authors. In addition, this interpretation of meg
does not contradict the experimentally confirmed re-
sults of work [6].

Although the relationships, on which the definition
of meg is based, have universal character, the appli-
cation of the meg concept beyond the problematics
of the dielectric response of metal wire mesh struc-
tures does not allow one to obtain plausible results
or to reproduce the already known ones. For exam-
ple, the dependence of the effective electron mass on
the magnetic field gives rise to a conclusion about
an enormous increase of the metal resistance even in
weak magnetic fields. Taking this fact into account,
this concept has to be recognized as an ad hoc hy-
pothesis, which allows the proper results to be ob-
tained only for a specific problem dealing with the
frequency of plasma oscillations in thin metal wire
mesh structures.
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ITPO EOEKTUBHY MACY EJIEKTPOHA 3A ITEH/PI
Peszmowme

Y 1996 p. anrmificekuit disuk-reoperux k. Ilerapi, mosicHio-
IOYM JIieJIEKTPUYHUN BiAI'yK MeTajIeBUX CITOK, BUCYHYB iJeio
PO 3aJIe>KHICTh ePEeKTUBHOI MaCU eJIEKTPOHA BijJl MarHiTHOIO
nons. Iz inest rpyHTyeThCs Ha BimoMoMmy coiBBigHOmIEHH] Mixk
KiHEMATHYHUM 1 KQHOHIYHHMM IMITyJIbCAMH 3apsiy, L0 pyXae-
ThCS B Mar"irHoMy moJii. B maniit crarti, Buxogsun 3 yHiBEp-
CaJIBHOCTI 3a3HA4Y€HOI'0 CIIiBBiJHOIIEHHS, JIOCIIJKYETHCS MO-
2KJIMBICTH 3aCTOCYBAHHS ITOHATTS €(PeKTUBHOI MacH €JIEKTPOHA
3a [Tenapi meg He JvIe 10 €JIEKTPOHIB y MeTaJIeBUX CiTKax, a
i1 J10 OLJIBII IITMPOKOIO KOJIA 33124 IIPO PYX 3aps/iiB Y MarHiTHO-
My nosi. BeranoBieHo 3arasnbHi BiIacTUBOCTI e(DeKTHBHOI MacH
Meff, K1 BUIUIMBAIOTHL Oe3mocepeHbo 3 11 o3HadeHHs. Busis-
JIEHO aHAJIOTII0 MiXK Mg Ta €PEKTUBHOIO MACOIO €JIEKTPOHIB
m™*, 0 PO3IJISIIAEThCS y TeOPil TBEPAOro Tijia. 3arporoOHOBAHO
dizuuny inTepuperario meg. Ha KibkKOX npukiazax mokasa-
HO, III0, HE3BAKAIOUN Ha YHIBEpCAJIBHICTH BUKOPHCTOBYBAaHOIO
B O3HAYEHHI M CHIBBIIHOIIEHHST Mi2K KiHEMATUIHUM i KaHO-
HIYHUM IMITyJIbCaMU, 3aCTOCYBAHHS IIOHATTS M 11032 MeXKa-
MH IPOOJIEMATHKHU Hi€JIEKTPUTIHOrO BIATYKY METAJIEBHX CiTOK
He JI03BOJISIE€ OJIEPKATU NIPABUJIbHI PE3YJIbTATH.
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