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SOME SPHERICALLY SYMMETRIC R/W UNIVERSE
INTERACTING WITH VACUUM B–D SCALAR FIELDPACS 98.80.Jk

We study a spherically symmetric vacuum cosmological model of the Universe interacting
with the Brans–Dicke (B–D) scalar field in the Robertson–Walker (R/W) metric. Exact time-
dependent solutions of B–D vacuum field equations are obtained in two different cases. The
physical and dynamical properties of the model are discussed in detail.
K e yw o r d s: Brans–Dicke theory, vacuum cosmological model, spherically symmetric scalar
field.

1. Introduction

The Brans–Dicke (B–D) theory [1] describes most of
the important features of the progress of the Universe
during the late-time dynamical epoch. As a result,
the B–D theory has attained a significant attention
in recent years. The scalar-tensor theories are consid-
ered the simplest and best understood modification of
gravity theory. The Brans–Dicke theory is, in fact, a
modification of Einstein’s General Relativity allowing
the variable gravity with certain coupling parameter
𝜔. It is somewhat classical in nature, for that reason it
is expected to play a crucial role in the late-time evo-
lution of the Universe. It is also realized that most of
the inflationary models based on the B–D scalar the-
ory overcharge many important elements about the
evolution of the Universe [2, 3]. Hence, the B–D the-
ory gives a connection between the accelerated expan-
sion of the Universe and fundamental physics. Earlier,
Brans and Dicke [1] obtained the vacuum solutions
of B–D field equations followed by three more solu-
tions for a spherically symmetric metric. Nariri [4]
proposed a Hamiltonian approach to the dynam-
ics of the expanding homogeneous Universe. Janis
et al. [5] established a theorem to generate the B–D
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vacuum state solutions. Tabensky and Taub [6] ob-
tained B–D vacuum static solutions with plane sym-
metric self-gravitating fluids. Rao et al. [7] discussed
about cylindrically symmetric B–D fields. Various au-
thors [8–13] discussed about vacuum solutions in the
Brans–Dicke theory of gravitation for the metric ten-
sors viz. plane symmetry, static cylindrical symme-
try, zero-mass scalar field, conformal scalar field, for
spatially homogeneous and anisotropic configuration,
axisymmetric stationary and spherical symmetries,
static fields, etc. Bhadra and Sarkar et al. [14] ob-
tained that only two classes are independent among
the four classes of static spherically symmetric so-
lutions of the vacuum Brans–Dicke theory of grav-
ity. Adhav et al. [15] obtained an exact solution of
the vacuum Brans–Dicke field equations for the met-
ric tensor of a spatially homogeneous and anisotropic
model. Static, cylindrically symmetric vacuum solu-
tions with and without a cosmological constant in the
B–D theory were obtained by Baykal et al. [16]. Rai
et al. [17] obtained an exact solution of the vacuum
Brans–Dicke field equations for the metric tensor of a
spatially homogeneous and anisotropic model. Here,
we studied the problem of a B–D scalar field interact-
ing with the spherically symmetric Robertson–Walker
metric. The paper is organized as follows: in Sec-
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tion 2, we consider the metric and give solutions of
the field equations in different cases; in Section 3, we
give conclusion about the solutions.

2. Solutions of Field Equations

The vacuum Brans–Dicke field equations in the gen-
eral form are given by
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1

2
𝑅𝑔𝑖𝑗 + Λ𝑔𝑖𝑗 =
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;𝑠
;𝑠], (1)

(3 + 2𝜔)𝜑;𝑠
;𝑠 = 4Λ, (2)

where 𝜑 is the scalar field, Λ is the cosmological con-
stant, 𝜔 is the dimensionless Dicke coupling constant,
𝑅𝑖𝑗 is the Ricci tensor, 𝑅 is the Riemann curvature
scalar, 𝑔𝑖𝑗 is the metric tensor, �𝜑 = 𝜑;𝑠

;𝑠, � is the
Laplace—Beltrami operator, and 𝜑,𝑖 is the partial dif-
ferentiation with respect to the 𝑥𝑖 coordinate.

Let us consider the R/W space time metric
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where 𝑅(𝑡) is the scale factor, and 𝑘 is the curvature
index, which can take up the values (−1, 0,+1) for
open, flat, and closed models of the Universe, respec-
tively. Corresponding to metric (3), the Brans–Dicke
field equation (1) becomes
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From Eq. (2), we get[︃
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where a dot (.) and dash (′) denote the differentiation
with respect to the time 𝑡 and 𝑟, respectively. From
Eqs. (4) and (5), we obtain the relation
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under the conditions 𝜑′ ̸= 0, 1− 𝑘𝑟2 ̸= 0. Integrating
Eq. (9), we get

𝜑𝜔+1 = 𝐵
√︀
1− 𝑘𝑟2 +𝐷 (10)

provided 𝑘 ̸= 0, where 𝐵 and 𝐷 are arbitrary func-
tions of time 𝑡.

Using (10) in (4) and (5), we obtain
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Using (10) in (6), we obtain
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Using (10) in (7), we obtain

�̇�

𝐵
=

�̇�

𝑅
. (14)

Now, we shall determine the values of five unknowns
𝐵, 𝜔, 𝑅, Λ, and 𝐷, by using four equations (11), (12),
(13), and (14). Since the number of unknowns is more
than the number of equations, this is a case of under-
determinacy, so it is reasonable to assume a physical
relation to solve the field equations. Now, we try to
solve the field equations under different physical sit-
uations.

Case I: Taking the arbitrary constant 𝐷 = 0 and
using Eq. (14) in (11), (12), and (13), we obtain the
relations(︃
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=
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To obtain the exact solutions from Eqs. (15), (16),
and (17), we consider a case where the coupling con-
stant 𝜔 = 0. Then Eqs. (15), (16), and (17) are re-
duced to the following forms:

3

(︃
�̇�

𝑅

)︃2
+ 3

�̈�

𝑅
− Λ = − 3𝑘

𝑅2
, (18)

3
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𝑅

)︃2
− Λ

2
= − 3𝑘

𝑅2
, (19)

3
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)︃2
+
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𝑅
+

3𝑘

𝑅2
= 4Λ. (20)

Corresponding to 𝑘 = −1, Eqs. (18), (19), and (20)
imply that Λ = 0 and 𝑅 = 𝑡. In this case, the value
of 𝜑 from Eqs. (10) is given by

𝜑 = 𝑡
√︀

1 + 𝑟2. (21)

From Eqs. (14) and (21), we observe that the expan-
sion parameter is purely a function of the time 𝑡, while
the B–D scalar 𝜑 is a function of both 𝑟 and 𝑡. Here,
𝑟 → ∞, 𝜑 → ∞, while 𝑅 remains finite. However, as
𝑡 → ∞, both 𝜑 and 𝑅 tends to ∞. We can further
conclude that, corresponding to 𝑘 = −1 and 𝜔 = 0,
the B–D scalar 𝜑 is an increasing function of both 𝑟
and 𝑡, since the B–D scalar 𝜑 and the gravitational
variable 𝐺 [18] are related by the relation

𝐺 =
1

𝜑

(︂
4 + 2𝜔

3 + 2𝜔

)︂
. (22)

So, the gravitational variable

𝐺 ∝ 1

𝜑
, (23)

i.e., 𝐺 decreases, as 𝑡 (or 𝑟) increases. From Eq. (14),
we further observe that, at the initial stage (i.e., when
𝑡 = 0), the radius of the Universe is zero, thereby
showing that the Universe was concentrated to a mass
point and expands gradually till it becomes infinitely
large, which supports the present finding for the ac-
celerated expansion of the Universe. This is in confor-
mity with the steady state theory of the cosmological
Universe. The corresponding deceleration parameter
is zero.

Case II: Taking 𝜑′ = 0 and 3 + 2𝜔 ̸= 0 in the field
equations, we obtain

3
�̇�

𝑅
�̇�+ 𝜑 =
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𝜔
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𝜑
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Under the conditions Λ = 0 and 𝑘 = 0, relations
(24)–(26) become

�̇�

𝑅
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3
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, (27)(︃
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Variation of 𝜔 for various values of 𝜈 according to (37)

3

(︃
�̇�

𝑅

)︃2
=

𝜔

2

(︃
�̇�

𝜑

)︃2
− 3

�̇�

𝑅

�̇�

𝜑
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Adding (28) and (29), we get

4

(︃
�̇�

𝑅

)︃2
+ 2

�̈�

𝑅
= −5

�̇�

𝑅

�̇�

𝜑
− 𝜑

𝜑
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Integrating (27) and (30), we get

𝑅3�̇� = 𝑎 = const, (31)

𝜑
𝑑

𝑑𝑡
(𝑅3) = 𝑏 = const. (32)

The sum of Eqs. (31) and (32) becomes

𝑑

𝑑𝑡
(𝜑𝑅3) = 𝑎+ 𝑏 = 𝑐 = const. (33)

Integrating, we get

𝜑 =
𝑐𝑡+ 𝑙

𝑅3
, (34)

where 𝑐 and 𝑙 are constants. Moreover, from (31) and
(32), we get

�̇�

𝜑
= 3𝜈

�̇�

𝑅
, (35)

where 𝜈 = 𝑎
𝑏 = const.

Using (35) in (29), we have(︂
1 + 3𝜈 − 3

2
𝜔𝜈2
)︂(︃

�̇�

𝑅

)︃2
= 0. (36)

Since �̇�
𝑅 ̸= 0, Eq. (36) becomes

𝜔 =
2

3

(︂
1 + 3𝜈

𝜈2

)︂
. (37)

The variation of 𝜔 according to (37) for variuos values
of 𝜈 has been shown in Figure.

For 𝜈 = − 1
3 and 𝜔 = 0, we get that there is neither

expansion nor contraction of the Universe, where the
B–D scalar 𝜑 decreases with time, till it vanishes as
𝑡 → ∞.

In addition, when 𝜈 = −1 and 𝜈 = − 1
2 , we get

𝜔 = − 4
3 , which implies that the B–D scalar 𝜑 and the

gravitational variable 𝐺 will remain finite for all finite
values of the time 𝑡. Here, corresponding to 𝜔 = 0
and 𝜔 = − 4

3 from Eq. (22), we find that 𝐺 ∝ 1
𝜑 , as

in Eq. (23), which implies that 𝜑 and 𝐺 will remain
finite for all finite values of time 𝑡, and the gravita-
tional variable 𝐺 will be an increasing function of the
time.

3. Conclusion

Here, we have seen that the role played by the scalar
𝜑 relating to the contraction and the expansion of the
Universe consists in that the B–D scalar 𝜑, which is
an increasing function of the time, can be treated as
something reflecting the contraction of the Universe,
while the B–D scalar 𝜑 which is a decreasing function
of the time may be treated as something reflecting
the expansion of the Universe.
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СФЕРИЧНО-СИМЕТРИЧНИЙ
Р/У ВСЕСВIТ, ВЗАЄМОДIЮЧИЙ
З ВАКУУМНИМ Б–Д СКАЛЯРНИМ ПОЛЕМ

Р е з ю м е

Розглянуто сферично-симетричну вакуумну космологiчну
модель Всесвiту, взаємодiючу зi скалярним Бранса–Дiке
(Б–Д) полем в метрицi Робертсона–Уолкера (Р/У). Отри-
мано точнi залежнi вiд часу рiшення Б–Д вакуумних по-
льових рiвнянь для двох рiзних випадкiв. Докладно обго-
ворюються фiзичнi i динамiчнi властивостi моделi.


