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Cooperativity represents a type of the not well-defined quantities implemented in different fields
ranging from physics to chemistry, biology, informatics, etc. In the present work, we define
the cooperativity from the physical point of view by relating it to the stability of a few-state
system with respect to the irreversibility. First, we reduce this system evolving in time to the
pair of fluctuating energy levels of different dimensionalities with the initial population of
one level, different probabilities of microscopically reversible transitions between the levels,
and some probability of irreversible decay of another level. Then we make an average of the
reduced system over the energy level fluctuations to provide between-level transition rates with
the explicit impacts of external controls on levels’ positions and dimensionalities. Finally, we
demonstrate the emergence of the cooperativity of a fractional degree ranging between 2/𝑒 and
unity when normalized in this system and observe that, at the lower bound of such degree,
the system becomes unstable, so that, to restore the stability, one needs either to decrease the
irreversible decay rate or to make the reversible backward transitions faster.
K e yw o r d s: irreversible kinetic processes, energy fluctuations, dissipating environment, co-
operativity, Hill’s coefficient, ligand-receptor assembly.

1. Introduction

There is no single definition of cooperativity which
can equally be applicable to all situations in natural,
life, social, economic, and information sciences. His-
torically, the concept of cooperativity has been in-
troduced as far as the Enlightenment, perhaps when
human beings of different ownerships were managed
to organize themselves in collectives for a mutual ben-
efit [1]. At these times, people could roughly be differ-
entiated by those who strongly interact with one an-
other to form the collectives of cooperatively coupled
persons and others which contact each other much
weaker to remain the uncoupled individuals. For the
former, it was quite likely to think of cooperativity
as of a synonymous of collectivity, by simply relating
the emergent collective property with the number of
persons present at the cooperative workplace [2], thus
regarding that the bigger the collective, the greater
would be its benefit.

Later on, it became obvious that too much co-
operativity is not always better for collective’s sta-
bility [3]. Indeed, any multistate many-particle sys-
tem, to be well-controlled with respect to the
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environment-induced exchange of energy and parti-
cles, would likely be much stable than more cooper-
ative ones. Therefore, in treating the cooperativity,
the use of additive (extensive) parameters like the
number of states or particles and the form or size of
the modular configurations within the system might
be insufficient. Instead, to be certain in framework-
ing the cooperativity, one should rather employ the
ensemble-averaged (intensive) properties of the sys-
tem like its stability and flexibility.

Far later on, with advances in the investigation of
biological [4–6], physical [7–9], and chemical [10–13]
systems at the molecular level, different measures de-
scribing the cooperative properties of molecular struc-
tures in equilibrium have been proposed. These mea-
sures were mostly reduced to the degree, to which
fitting system’s saturated responses to external stim-
uli by a sigmoidal curve deviates from the two-state
Boltzmann distribution [4–6, 10–13]. Three types of
such a degree have been especially noticed: the Hill
coefficient describing the binding of ligands to mul-
tisite proteins [14]; the elasticity coefficient relat-
ing to the response of target state variables of a
system to a change in its control variables [15–17];
and the strength of intermolecular bond interactions,
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to the either structurally promoted, by a stabiliza-
tion, or structurally constrained, by a concerted re-
action, high level of target state population with re-
spect to the population of initial and intermediate
states [18–25] (cf. also [26, 27]). It was established
that, for a one-ligand few-state system, there ex-
ists a sigmoidal Boltzmann distribution of the equi-
librium target state population, which is approxi-
mated by the normalized rational function of degree
1 [6, 11]. In this case, the degree of cooperativity de-
fined with respect to the control parameter involved
in the integral power series in the distribution de-
nominator (via equilibrium constants) is identified
as the maximum power of a series greater than or
equal to one and less than the number of states mi-
nus one [22, 23]. However, in the more general case
of a multistate many-ligand system, similarly assess-
ing the degree of cooperativity becomes inappropriate
since the shape of the distribution function greatly de-
viates from that of a sigmoidal type [16]. Rather, for
the simplest two-state system, there was a common
consensus that the cooperativity degree equals one
and only one irrespective of to which control param-
eter it would be defined [26]. This coincides with the
idea that the states of an equilibrium two-level system
reveal themselves as statistically independent ones
so showing no correlations (or cooperativity) beyond
ones imposed by the Boltzmann statistics [28]. So
the main corollary is that, if being in equilibrium,
any two-state system should be regarded stable, non-
cooperative, and characterized by the cooperativity
of a conventional degree 1 [23, 25].

However, most real molecular systems are not sta-
tic in time and space. Rather, depending on external
controls, they constantly evolve from the nonequilib-
rium to equilibrium states, by undergoing the irre-
versible relaxation transitions between different en-
ergy levels. These transitions occur due to the nona-
diabatic coupling of a system with the environment,
leading to the transient changes of level’s populations
with time. As a result even in the two-state case, such
non-stationary nonequilibrium systems, when being
unstable, could demonstrate the cooperativity of a
fractional degree. Therefore, to describe the kinet-
ics of these systems, one should revisit some of the
prescripts from equilibrium statistical mechanics [28],
particularly in application to the case of irreversibly
damped nonequilibrium systems which have a few mi-
croscopically fluctuating quantum energy levels [29].

If we deal with the thermodynamically closed sys-
tem (CS) consisted of 𝑀 +1 levels with energies 𝐸𝑚,
𝑚 = 0, 1, 2, ...,𝑀 , then, to describe the ensemble-
averaged equilibrium level population 𝑃∞

𝑚 in cooper-
ative dependence on the energy (enthalpy) changes,
it is sufficient to use 𝑀 state variables, say the
between-state energy differences Δ𝐸𝑚𝑚′ = 𝐸𝑚−𝐸𝑚′

counted from the lower level bound often let equal
zero: 𝐸𝑚′=0 = 0. Since, in the CS, every microscopic
action is reversible, these quantities form the oscilla-
tory dynamics of non-averaged populations with the
enthalpically driven frequencies Ω𝑚𝑚′ = Δ𝐸𝑚𝑚′/~,
whose controllable variation, however, does not lead
to system’s cooperativity (~ is the Planck constant).
Rather, to describe transient kinetics of the non-
oscillatory behaviors of populations, one should use
a concept of open system (OS) [30, 31], which allows
the non-stationary irreversible transitions to occur on
the quantum-level scale [32]. In this concept, the OS
is considered as a few-level nonequilibrium part of an
infinite-level CS that treats its rest part as the equi-
librium environment (EE). Therefore, to analyze the
time-dependent dynamics of the nonequilibrium level
population 𝑃𝑚(𝑡), one needs to expand the set of state
variables to 2𝑀 independent parameters, say, the
probabilities 𝑊𝑚𝑚′ of leading-order transitions from
a level 𝑚 to the neighboring level 𝑚′ ̸= 𝑚 constrained
by the condition of detailed balance (a principle of mi-
croscopic reversibility) [33,34]. These relaxation tran-
sitions are caused by perturbations of the OS on the
specific transient time scale 𝜏

(𝑊 )
tr = {𝑊−1

𝑚𝑚′} formed
due to the relaxation interaction between the OS and
the EE.

However, for the so-defined OS, the number of en-
ergy levels does not conserve. For example, this is
the case if the OS being in contact to the EE ex-
changes with it as energy as well particles, whose con-
centration is controlled, or, if the OS is decomposed
into parts, due to the energy level fluctuations [35].
Hence, it is necessary to regard such number as an
entropically driven parameter related to the effec-
tive level dimensionality. Furthermore, that number
can even be uncertain when, along with the micro-
scopically reversible forward-backward transitions be-
tween the levels, their depopulation kinetics in the
OS comprises also the macroscopically irreversible de-
cays [36, 37]. In effect, the latter specifies the loss of
stability of microscopic states, which directly points,
relating to the problem of irreversibility in quantum
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mechanics [38], to the possibility of violation of the
lower (zero) boundness of the state energy spectrum
just for a few-level OS [39].

In the aforementioned cases, one problem is to
exactly solve the set of 𝑀 + 1 ordinary differential
equations for non-conserved level populations 𝑃𝑚(𝑡),
given initial conditions. To simplify this commonly
hard problem, one usually does not try to analytically
find or numerically calculate the overall kinetics in
every microscopic detail. Instead, one intends to un-
derstand how the levels of potentially large (variable
or uncertain) number 𝑀 + 1 are correlated (or coop-
erated) in their reversible dynamics and irreversible
kinetics so that to be adequately described within
an effective few-level system. Moreover, how has one
to control the degree of correlations between (or co-
operativity of) these few levels such that to be con-
sistent in associating the transient population peaks
with the thermodynamic quasiaverages like levels’
dimensionalities and particles’ concentration? Note
that this directly corresponds to a reduced descrip-
tion of the OS originally formulated by Bogolyubov
as the principle of weakening of correlations in the
initial value problem for the non-ergodic multilevel
systems and, equivalently, as a procedure of contrac-
tion of the number of system’s independent variables
in the boundary condition problem in a distant past,
both basing on the idea of a hierarchy of relaxation
times [40, 41].

Another problem is to define the highly contracted
energy spectrum of the OS when to perform a
coarse-graining of the CS consisting of macroscop-
ically many states. To provide this correctly, there
is the Nakajima–Zwanzig method, which allows one
to observe an evolution of the CS through its pro-
jection on state variables of a few-level OS only [42,
43]. However, this method has a price such that the
eigenenergy levels found for the so-reduced OS cannot
be represented deterministically at every time instant
but rather only functionally with the random and un-
resolved dynamics [44, 45]. In these situations, one
substitutes the latter for the well-known stochastic
processes, e.g. a Gaussian white noise or dichotomous
colored noises. This allows one to take on the proce-
dures of stochastic averaging of the functionals in-
troduced to be analytically unapproximated [46–51],
particularly by using the stationary Lorentzian dis-
tribution for the stochastic realizations of fluctuating
energy levels in the OS and the equilibrium Boltz-

mann distribution for the occupation numbers of har-
monic vibrations in the EE [52].

In the present paper, the above-presented coarse-
graining methodology contained, in part, in our re-
cent work [51] is applied here to show the role of en-
ergy level fluctuations for quantifying the degree of
cooperativity of a few-state irreversible OS and defin-
ing the possible ways of its control. Especially, we aim
at modeling the cooperative behavior of the nonequi-
librium OS in the equilibrium while noisy EE. We
restrict ourselves to the case where the noise adds
to the eigenenergies of the stochastic Hamiltonian of
the OS rather the Hamiltonian of the EE is time-
independent. In Section 2, we outline the microscopic
model of evolution of the OS in detail. We make ac-
cent on the adiabatic and nonadiabatic interactions
of the OS and the EE in the weak coupling limit as
well as provide an averaging of the stochastic mas-
ter equation with properly balanced probabilities of
transitions between the states. In Section 3, we calcu-
late these transition probabilities by reducing the OS
to the simplest case of two irreversibly decaying and
randomly fluctuating energy levels of different dimen-
sionalities, provide the output level population with
the dependence on the input, backward, and output
rates, determine the degree of cooperativity of this
OS, and establish the bounds of variation of that de-
gree. Finally, in Section 4, we analyze the results ob-
tained, discuss some consequences, and sum up with
the conclusion.

2. Microscopic Model of a Multilevel
System in Contact to the Environment

Consider the closed system which can be decomposed
into two weakly interacting parts such as the nonequi-
librium open system and the equilibrium environ-
ment. Suppose that there exists some perturbation
technique to introduce a microscopic model of the CS
on a countable state space, which renormalizes the OS
state basis (|𝑚 = = 0, 1, 2, ...,𝑀⟩) such that to elim-
inate all direct (resonant) couplings of states from
explicit consideration. In second-order perturbation
theory on the rest indirect (relaxation) interactions
between states, this allows us to represent the Hamil-
tonian 𝐻CS(𝑡) of the CS in the form

𝐻CS(𝑡) = 𝐻OS(𝑡) + 𝑉 +𝐻EE. (1)
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Here,

𝐻OS(𝑡) =
∑︁
𝑚

𝐸𝑚(𝑡)|𝑚⟩⟨𝑚| (2)

is the time-dependent stochastic Hamiltonian of the
OS in the adiabatic approximation with the eigenen-
ergy levels 𝐸𝑚(𝑡) = 𝐸𝑚+𝜖𝑚(𝑡), where 𝐸𝑚 and 𝜖𝑚 are
the mean and stochastic level positions at the time 𝑡,
respectively,

𝐻EE =
∑︁
𝜆

~𝜔𝜆(𝑏
†
𝜆𝑏𝜆 + 1/2) (3)

is the time-independent Hamiltonian of the EE mod-
eled as a set of equilibrated harmonic oscillators play-
ing a role of the infinite state thermal bath for the
OS with 𝑏†𝜆 and 𝑏𝜆 being the operators of creation
and annihilation, respectively, of a normal vibration
(phonon) of the mode 𝜆 with frequency 𝜔𝜆 in the EE,

𝑉 =
∑︁
𝑚𝑚′

(𝛿𝑚𝑚′ − 1)
∑︁
𝜆

𝜒𝜆
𝑚𝑚′(𝑏

†
𝜆 − 𝑏𝜆)|𝑚⟩⟨𝑚′| (4)

is the operator of bilinear nonadiabatic coupling of
the OS to the EE with the parameters 𝜒𝜆

𝑚𝑚′ provided
the energy balance holds within the total CS at every
instant.

Given the representation of Hamiltonians (1)–(4),
the next step is to suppose a hierarchy of fundamen-
tal time scales for the dynamics of the density matrix
𝜌CS(𝑡) of the CS due to the Liouville–Neumann quan-
tum evolution equation

�̇�CS(𝑡) = − 𝑖

~
[𝐻CS(𝑡), 𝜌CS(𝑡)]. (5)

Let this hierarchy be as follows:

𝜏ch ≪ 𝜏st ≪ 𝜏tr. (6)

Here, on the short time scale Δ𝑡 ≤ 𝜏ch for the chaotic
phase of the dynamics, the state basis of two parts of
the CS is completely formed. This factorizes 𝜌CS(𝑡)
by the nonequilibrium density matrix 𝜌OS(𝑡) of the
OS and the equilibrium density matrix 𝜌EE of the EE
like

𝜌CS(𝑡) = 𝜌OS(𝑡)𝜌EE, (7)

where 𝜌EE = exp{−𝐻EE/𝑘B𝑇}/TrE exp{−𝐻EE/𝑘B𝑇}
with 𝑇 and 𝑘B being the absolute temperature and
Boltzmann’s constant, respectively. Moreover, at

the times 𝑡 ≥ 𝜏ch, applying the diagonal Nakajima–
Zwanzig projection operator 𝑇𝑑 according to the
rule 𝜌

(𝑑)
OS(𝑡) = 𝑇𝑑𝜌OS(𝑡) for the diagonalization

of the density matrix of the OS transforms the
Liouville–Neumann equation (5) to its diagonal form

�̇�
(𝑑)
OS(𝑡) = − 1

~2

𝑡∫︁
0

𝑑𝜏𝑇𝑑[𝑉,𝑈(𝜏)[𝑉, 𝜌
(𝑑)
OS(𝑡− 𝜏)]𝑈†(𝜏)],

(8)

where 𝑈(𝜏) = �̂� exp{− 𝑖
~
∫︀ 𝜏

0
𝑑𝑡′[𝐻OS(𝑡

′) + 𝐻EE]} is
the stochastic operator of evolution (�̂� is Dyson’s
operator of chronological ordering). So, Eq. (8) de-
coheres the dynamics of the OS, by making impos-
sible for the off-diagonal elements 𝜌

(𝑛𝑑)
OS (𝑡) of 𝜌OS(𝑡)

to oscillate with the defined phase in unison to pos-
sibly produce the interference effects. Meanwhile,
on the long-time scale Δ𝑡 ≥ 𝜏tr, the evolution of
𝜌OS(𝑡) becomes averaged with respect to the ran-
dom trajectories, assigning the slowest time 𝜏tr ≫ 𝜏st
of occurring the nonadiabatic relaxation transitions
between the different yet already steady-state lev-
els of the OS. Rather, on the stationary time scale
Δ𝑡 ≈ 𝜏st, there occur any relaxation transitions be-
tween the OS states, as well as there are no corre-
sponding processes of phonons’ creation and annihi-
lation in the EE. Nevertheless, there exists essentially
the adiabatic stochastic dynamics of the energy levels
of the OS. This requires to provide the averaging over
random realizations of trajectories of 𝜌OS(𝑡) for the
stochastic energy shifts at the level of the evolution
equation (8) (usually designated as ⟨⟨...⟩⟩), in partic-
ular, for finding the averaged populations of states
𝑃𝑚(𝑡) = ⟨⟨𝑝𝑚(𝑡)⟩⟩, where 𝑝𝑚(𝑡) = ⟨𝑚|𝜌(𝑑)OS(𝑡)|𝑚⟩ are
the non-averaged populations, as well as the averaged
probabilities 𝑊𝑚𝑚′ of transitions between states.

Averaging Eq. (8) with the use of (1)–(4) gives

�̇�𝑚(𝑡) = − 2

~2
Re

∑︁
𝑚′

𝑡∫︁
0

𝑑𝜏⟨⟨𝑄𝑚𝑚′(𝜏)𝑝𝑚(𝑡− 𝜏)−

−𝑄𝑚′𝑚(𝜏)𝑝𝑚′(𝑡− 𝜏)⟩⟩. (9)

Here, 𝑄𝑚𝑚′(𝜏) =
∑︀

𝜆 |𝜒𝜆
𝑚𝑚′ |2𝑓𝑚𝑚′(𝜏)𝑅𝜆(𝜏)𝑒

𝑖Ω𝑚𝑚′𝜏

are the time-dependent transition coefficients,
Ω𝑚𝑚′ = (𝐸𝑚−𝐸𝑚′)/~, 𝑓𝑚𝑚′(𝜏) = exp[𝑖

∫︀ 𝜏

0
𝜔𝑚𝑚′(𝑡′)×

×𝑑𝑡′] are stochastic functionals of the random fre-
quency shifts 𝜔𝑚𝑚′(𝑡) ≡ [𝜖𝑚(𝑡)− 𝜖𝑚′(𝑡)]/~, 𝑅𝜆(𝜏) =
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= 𝑛(𝜔𝜆)𝑒
𝑖𝜔𝜆𝜏 + [1 + 𝑛(𝜔𝜆)]𝑒

−𝑖𝜔𝜆𝜏 is the one-phonon
correlation function, and 𝑛(𝜔𝜆) = [𝑒~𝜔𝜆/𝑘B𝑇 − 1]−1 is
the Bose distribution function for vibrations.

In Eq. (9), the main difficulty is to treat a non-Mar-
kovianity of integrands and to average the stochas-
tic functionals ⟨⟨𝑄𝑚𝑚′(𝜏)𝑝𝑚(𝑡 − 𝜏)⟩⟩ in the explicit
form. However, if the random energy level fluctua-
tions in the OS are stationary, then, on the tran-
sition time scale 𝜏st ≪ Δ𝑡 ≤ 𝜏tr, averaging the
right-hand side of (9) can be factorized provided that
⟨⟨𝑓𝑚𝑚′(𝜏)𝑝𝑚(𝑡−𝜏)⟩⟩ = 𝐹 (𝜏)𝑃𝑚(𝑡). To do so, we must
take into account that, in the second-order pertur-
bation theory, the non-Markovianity of population of
states does not reveal 𝑃𝑚(𝑡−𝜏) ≈ 𝑃𝑚(𝑡). In addition,
we introduce a stochastically averaged characteristic
functional in the form

𝐹𝑚𝑚′(𝜏) = ⟨⟨𝑓𝑚𝑚′(𝜏)⟩⟩ = ⟨⟨𝑒𝑖
∫︀ 𝜏
0

𝜔𝑚𝑚′ (𝑡)𝑑𝑡⟩⟩. (10)

The latter can easily be calculated for many sto-
chastic processes, e.g., for the di- and trichotomous
ones or Gaussian white noise [46–51]. In such cases,
one reduces (10) to the simple exponential form

𝐹𝑚𝑚′(𝜏) = 𝑒−𝛾𝑚𝑚′𝜏 (11)

with 𝛾𝑚𝑚′ meaning the effective half-width of the
𝑚,𝑚′-pair of levels. Such a quantity is also associ-
ated with the friction coefficient for the movement
of particles within the OS, which has to be linearly
proportional, in direct accordance with the Stokes
law, to the viscosity of the EE. Physically, the val-
ues of 𝛾𝑚𝑚′𝜏ch are referred to as the squares of the
reduced amplitudes of energy level fluctuations of
the OS being introduced in the Hamiltonian 𝐻OS(𝑡)
as it ad hoc adiabatic stochastic additions to its
eigenenergies (2). Therefore, the inverse root of these
in fact forms the range for a stochastic time scale
Δ𝑡 ≈ 𝜏st = {𝛾𝑚𝑚′𝜏ch}−1/2 within the assumed hier-
archy of time scales (6).

Using (10) and (11) reduces the integral differential
equation (9) to the master equation

�̇�𝑚(𝑡) = −𝑃𝑚(𝑡)
∑︁
𝑚′

𝑊𝑚𝑚′(𝑡) +
∑︁
𝑚′

𝑃𝑚′(𝑡)𝑊𝑚′𝑚(𝑡),

(12)

where the normalized populations
∑︀

𝑚 𝑃𝑚 = 1 are
supposed Markovian on the longer (transition) time

scale, but can retain the memory about their initial
values via the time-dependent transition probabilities

𝑊𝑚𝑚′(𝑡) =
2

~2
Re

𝑡∫︁
0

𝑑𝜏𝑒(𝑖Ω𝑚𝑚′−𝛾𝑚𝑚′ )𝜏 ×

×
∑︁
𝜆

|𝜒𝜆
𝑚𝑚′ |2{𝑛(𝜔𝜆)𝑒

𝑖𝜔𝜆𝜏 + [1 + 𝑛(𝜔𝜆)]𝑒
−𝑖𝜔𝜆𝜏} (13)

on the shorter (stochastic) time scale. This type of
generalization of the master equation is just typical
in using the Golden Rule approaches for the phe-
nomenological or microscopic description of nona-
diabatic nonequilibrium processes in the condensed
phase systems [53, 54]. It appears here as a result of
the stochastic averaging over random fluctuations of
the energy levels of the OS and necessitates the ac-
counting for cooperative effects in a wide range of
transition probabilities including the very small ones,
where the non-Markovianness of the OS is particu-
larly apparent. Importantly, the assumed hierarchy
of fundamental time scales (6) in the OS does not
explicitly enter the master equation (12), but is es-
pecially necessary for its strict derivation so being
represented in it in the form (13) most convenient
for the sequel. Moreover, information about the time
scales is neither lost nor filtered out, but rather is
correctly taken into account by the corresponding
averages: equilibrium occupation phonon numbers
𝑛(𝜔𝜆) formed at chaotic times in the EE, intensities
𝛾𝑚𝑚′ of stationary adiabatic energy level fluctuations
established at stochastic times in the OS, and pa-
rameters 2~−2|𝜒𝜆

𝑚𝑚′ |2|Ω𝑚𝑚′ |−1 of nonadiabatic cou-
pling between the OS and the EE responsible for oc-
curring the relaxation processes at transition times,
respectively.

3. Fractional Cooperativity
of a Reduced Two-Level Irreversible System

In the previous section, starting from the microscopic
model for the Hamiltonians of a set of adiabatically
fluctuating energy levels of the nonequilibrium open
system and their weak nonadiabatic coupling to the
equilibrium environment (2)–(4), we get the proba-
bility of relaxation transitions between these levels
(13) averaged over both the equilibrium vibrations in
the EE and the stationary fluctuations in the OS. By
its form, the expression for the transition probabil-
ity (13) appears as some kind of the Fermi Golden
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Rule where, however, the main attention is paid not
to summing over a proper dense set of energy lev-
els of the final state of the OS, but rather to pro-
viding a correct averaging on stochastic trajectories
for transitions with their different contributions ac-
cording to a Cauchy distribution [52]. Moreover, the
transition probability (13) includes stochastic addi-
tions to the fluctuating energy levels in a nonper-
turbation manner [49–51]. This allows us to analyze
the different regimes for transition processes in the
OS in dependence on the stochastic {𝛾𝑚𝑚′} and nat-
ural {|Ω𝑚𝑚′ |} frequencies that can potentially vary
in wide limits. However, there are two problems in
practically calculating the otherwise strict expression
(13). First, the order of taking on the calculation of
(13) is of crucial importance: at first, to take a sum
over the infinite number Λ → ∞ of phonon modes
𝜆 = 1, 2, ...,Λ, which generally diverges, and only
then to integrate over the time 𝜏 in the interval from
0 to 𝑡. Therefore, to sufficiently change the orders
of summing and integrating and further to provide
these operations most accurately necessitate to make
additional assumptions about a specific relation be-
tween the parameters {𝛾𝑚𝑚′} and {|Ω𝑚𝑚′ |}, as well
as the possible dependence of the couplings |𝜒𝜆

𝑚𝑚′ |2
on 𝜆. Second, the transition probability (13) assumes
that to cover the difference between energy levels in-
volved in relaxation of the OS is mainly the process
of creation or annihilation in the EE of only a one
phonon, while the role of multiphonon processes is
minor. However, this assumption is not very critical
for describing the transition processes caused by the
weak coupling of states of the OS to the vibrations
in the EE and can safely be relaxed in the Born ap-
proximation over the nonadiabatic operator (4) used
above (cf., e.g., [53–55]).

Exceptionally interested in that how to give a sim-
ple but adequate description of the degree of coopera-
tivity of the OS, we restrict ourselves to only the cal-
culable cases for the time-dependent transition prob-
ability (13). These are basically the two: nonadia-
batic transitions with |Ω𝑚𝑚′ | ≫ 𝛾𝑚𝑚′ → +0 and
adiabatic transitions with 𝛾𝑚𝑚′ ≫ |Ω𝑚𝑚′ | → +0. In
both cases, the upper limit of the integral on the
right-hand side of (13) can be turned to infinity
𝑡 → ∞, which is equivalent to neglecting the time-
dependence of (13) within the hierarchy of time scales
(6). Furthermore, since ~𝛾𝑚𝑚′ ≈ 𝑘B𝑇 [49, 50], as
usual, those correspond to the quantum ~|Ω𝑚𝑚′ | ≫

≫ 𝑘B𝑇 and classical ~|Ω𝑚𝑚′ | ≪ 𝑘B𝑇 limits, respec-
tively. Consequently, in these cases, introducing the
rate limit factors

Φ𝑚𝑚′ = Φ𝑚′𝑚 =

=

⎧⎪⎪⎨⎪⎪⎩
(2𝜋/~2)

∑︀
𝜆 |𝜒𝜆

𝑚𝑚′ |2𝛿(|Ω𝑚𝑚′ | − 𝜔𝜆),
|Ω𝑚𝑚′ | = 𝜔𝜆 ≫ 𝑘B𝑇/~,
(2𝜋/~2)

∑︀
𝜆(|𝜒𝜆

𝑚𝑚′ |2/𝜔𝜆),
|Ω𝑚𝑚′ | ≤ 𝜔𝜆 ≪ 𝑘B𝑇/~

(14)

leads to the following reduced expressions for relax-
ation transition probabilities:

𝑊𝑚𝑚′ =

=

⎧⎨⎩Φ𝑚𝑚′ [𝜃(Ω𝑚𝑚′) + 𝑒−~|Ω𝑚𝑚′ |/𝑘B𝑇 𝜃(Ω𝑚′𝑚)],
|Ω𝑚𝑚′ | = 𝜔𝜆 ≫ 𝑘B𝑇/~,
Φ𝑚𝑚′ , |Ω𝑚𝑚′ | ≤ 𝜔𝜆 ≪ 𝑘B𝑇/~

(15)

with 𝜃(𝑥) being the Heaviside step function, which
is 0 for 𝑥 < 0 and 1 for 𝑥 ≥ 0. So, if quantifying
the degree of cooperativity of the few-level OS most
simplistically but correctly, we can classify the prob-
abilities of transitions between the fluctuating energy
levels by the two likely types: mechanistic type of ac-
tivationless temperature-independent transitions and
Arrhenius’s type of activation-like exponentially tem-
perature dependent transitions. In (15), these corre-
spond to the case 𝑊𝑚𝑚′ = Φ𝑚𝑚′ of either classi-
cal ~|Ω𝑚𝑚′ | → 0 (the lower line) or highly exoer-
gic quantum ~Ω𝑚𝑚′ ≫ 𝑘B𝑇 > 0 (the first term
in the upper line) limits and to the case 𝑊𝑚𝑚′ =
= Φ𝑚𝑚′𝑒−~Ω𝑚′𝑚/𝑘B𝑇 of the highly endoergic quan-
tum limit ~Ω𝑚′𝑚 ≫ 𝑘B𝑇 > 0 (the second term in the
upper line), respectively.

To illustrate how such a clear else rigorous result of
calculation of the probability of transitions (15) can
affect the emergence of the cooperativity within the
OS, let us constrain ourselves to considering that el-
ementary model for its energy levels, in which this
is only possible. Being specific (cf. [51]), let the en-
ergy levels of the OS be distinguished according to
the contact positions of a particle of the one sort,
referred to as a ligand (L), with respect to both
the particles of the other sort in the bulk and the
binding center of a molecule referred to as a recep-
tor (R). To model the R, let us restrict it to have
only two contacts with the L corresponding to either
the metastable L-R bound state |1⟩ with the energy
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level of 𝐸1 or the stable L-R bound state |0⟩ with
the energy level of 𝐸0. The latter state is assumed
to be the most long-lived one in the OS of modeling,
for instance, the ground state of the R or the state,
where the integrity of the L as individual particle is
broken down due to irreversible mechanisms so that
the energy spectrum of the OS becomes formally un-
bounded from the below with 𝐸1 −𝐸0 → ∞. On the
other hand, concerning the particles in the bulk, the
number of their contacts with the L can be macro-
scopically large. Moreover, the energies 𝐸2,3,...,𝑀 of
these contacts can be considered equal to one another
forming the quasiisoenergetic levels. In this case, one
should distinguish between the number 𝑍 of parti-
tions among contacts of the L with a particular parti-
cle and the number 𝑁 = 1/𝐶 of independent particles
per one L of concentration 𝐶 in the bulk. Hence, for
the number of states {|𝑚 = 1, 2, ...,𝑀⟩}, one obtains
𝑀 = 1+𝑍𝑁 ≡ 1+𝑍/𝐶, where the dimensionless con-
centration 𝐶 of the L, if being small 𝐶 ≪ 1, serves
as a running control parameter that can vary in wide
limits, when we define the degree of cooperativity in
the OS.

To reduce the generally large number 𝑀 of states
of the OS, we combine the degenerate contacts in the
bulk into the one level of energy 𝐸2 and dimensional-
ity 𝑍𝑁 and then count only the two remaining energy
levels supposing them largely extended from one an-
other with respect to the thermal energy 𝐸2 −𝐸1 ≫
≫ 𝑘B𝑇 . It is common to use the ergodic approxi-
mation to model the a priori unknown probabilities
of transitions between the bulk states. In this case,
one may regard every state in the bulk to be con-
nected to every other state such that to approximate
all probabilities of transitions between these states
with one the same rate constant 𝑊 ≡ 𝑊𝜇𝜇′(𝜇 ̸=
̸= 𝜇′ = 2, 3, ...,𝑀) to be the most rapid one in the OS
to remove from consideration. Substituting the as-
sumptions made into the master equation (12) coarse-
grains it to the system of two ordinary differential
equations for nonconserved populations

�̇�2(𝑡) = −𝑎𝑃2 + 𝑏𝑃1;

�̇�1(𝑡) = 𝑎𝑃2 − (𝑏+ 𝑘)𝑃1
(16)

equipped with effective transition probability rates
(Φ ≡ Φ12):

𝑎 = 𝑊21/𝑍𝑁 = 𝐶Φ/𝑍 ≡ Φ/𝑑;

𝑏 = 𝑊12 ≡ Φ𝑒~Ω12/𝑘B𝑇 ; 𝑘 = 𝑊10 ≫ 𝑊01 → 0. (17)

(a) (b)
Fig. 1. A diagram of 𝑀 energy levels (numbers) distinctly
distant each other (in thermal energy units) (a) and its coarse-
grained reduction by a two-level scheme with effective rate con-
stants 𝑎, 𝑏, and 𝑘 (b)

The coarse-grained reduction provided by (15)–
(17) is depicted in Fig. 1 with mapping the 𝑀 -state
scheme in Fig. 1, a into the two-state effective scheme
in Fig. 1, b. The latter represents an age-old paradig-
matic case of the Michaelis-Menten reaction scheme
of the mass-action enzyme kinetics (see, e.g., [56] and
references therein). In more physical terms, it ap-
pears as a tetrad evolving in time, that is: a pair
of well-separated energy levels 𝐸2 − 𝐸1 ≡ Δ𝐸 ≫
≫ 𝑘B𝑇 of relative dimensionality 𝑑 = 𝑍𝑁 , two prob-
abilities of relaxation transitions between the lev-
els related by a principle of microscopic reversibility
𝑊21 = 𝑊12𝑒

Δ𝐸/𝑘B𝑇 , and the probability 𝑘 of the ir-
reversible decay of one of the levels. In fact, using a
coarse-grained reduction implies that to possibly de-
scribe the degree of cooperativity could emerge in the
two-level OS is the quadruple {Ω, 𝑎, 𝑏, 𝑘} measured in
inverse time units, where each of four positive param-
eters – an oscillation frequency Ω ≡ |Ω12| = Δ𝐸/~,
an input rate 𝑎, a backward rate 𝑏, and an output
rate 𝑘 – independently varies in a semiinfinite inter-
val [0,∞) serving either the running or tuned con-
trol parameter. Note that coarse-graining (16) is cor-
rect only subsequent to time 𝜏𝑊 = 𝑊−1, at which
mixing the transitions between bulk degenerate lev-
els is complete. This forms the specific ergodic-mixing
timescale, on which the generic energy levels (12) of
the multistate scheme in Fig. 1, a are collectively pop-
ulated almost analogously to the population of the re-
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Fig. 2. 3D plot of output level populations 𝑃1(𝑡) as a function
of the time and the tuned parameters 𝑏 and 𝑘 (in inverse time
units): 𝑏 = 7; 𝑘 = 5 (in the upper case) and 𝑏 = 0.04; 𝑘 = 0.5

(in the lower case). Inset: Sigmoidal curve fitting of population
peaks 𝑃 1 as a function of the running parameter 𝑎 on the log
scale (solid line) in comparison to the Boltzmann curve (dotted
line)

duced degenerate energy levels (16) of the two-state
effective scheme in Fig. 1, b. In essence, the time 𝜏𝑊
characterizing the recurrent dynamics in the OS is re-
lated to the stochastic time 𝜏𝑠𝑡, which, however, does
not enter any resulting expressions being, hence, in-
sufficient to influence the cooperativity.

Solving (16) is elementary. For the ergodic case
where any contact of the L with every particle in the
bulk is distributed over contacts almost evenly and at
one time, given initial conditions 𝑃2(0) = 1;𝑃1(0) =

= 0, this yields

𝑃2(𝑡) = (𝜆2 − 𝜆1)
−1[(𝜆2 − 𝑎)𝑒−𝜆1𝑡 +

+(𝑎− 𝜆1)𝑒
−𝜆2𝑡], (18)

𝑃1(𝑡) = 𝑎(𝜆2 − 𝜆1)
−1[𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡],

where

𝜆1,2 =
1

2

[︁
(𝑎+ 𝑏+ 𝑘)∓

√︀
(𝑎+ 𝑏+ 𝑘)2 − 4𝑎𝑘

]︁
. (19)

According to (18), the time behavior of the popula-
tion 𝑃2(𝑡) of the input level of the OS is monotonous
and, in general, spurious for cooperativity. Rather
that, for the output level, 𝑃1(𝑡) is essentially tran-
sient, being a good candidate for embodying the co-
operativity of the OS. Figure 2 presents a 3D illustra-
tion of this effect, by using two different sets of the
tuned control parameters: 𝑏 = 7, 𝑘 = 5 (in the upper
case) and 𝑏 = 0.04, 𝑘 = 0.5 (in the lower case); with
𝑎 being the running control parameter. As is seen for
both cases, the 𝑃1(𝑡) functions exhibit bell-shaped
variations in time. With increasing 𝑎, they peak at
maxima 𝑃 1 = 𝑃 1(𝑎) ≡ 𝑃 1(𝑡

(𝑎)
peak), as a function of

𝑎, successively attained at regressive times 𝑡 = 𝑡
(𝑎)
peak,

obeying a sigmoid saturation curve (solid line in the
inset), which, depending on the values of tuned pa-
rameters, is more (upper case) or less (lower case)
close to the Boltzmann distribution (dotted line in
the inset). The remoteness of a sigmoid curve from
the Boltzmann distribution may point so to the co-
operativity qualitatively present in the lower case.

To describe the degree of cooperativity more quan-
titatively, one firstly considers the odds ratio 𝑃 1/(1−
−𝑃 1) for the maximum normalized to 1 of the tran-
sient output-level population max0≤𝑎<∞[𝑃 1(𝑎)] = 1,
then calculates the logarithm of this ratio ln[𝑃 1/(1−
−𝑃 1)], as a function of the logarithm of the input
rate ln 𝑎, and finally, associates a slope of this function
with the desired degree. In (17)–(19), this is formally
equivalent to providing a variation of the logarithm of
the L bulk concentration (the L thermodynamic en-
tropy) ln𝐶 or a change of the number of the L local
contacts (the L configurational entropy) ln𝑍, or the
choice of the logarithmic dimensionality of bulk states
(the L overall entropy) ln 𝑑. Using such log-log regres-
sions is common in different types of nonlinear data
analyses [57], particularly in cases where the dynam-
ics of levels of a system is regarded to be correlated
due to cooperation mechanisms [58].
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For the practical use of log-log models, one usually
assumes that the log odds ratio scales are as follows:

ln
[︀
𝑃 1/(1− 𝑃 1)

]︀
= ℎ𝑎(𝑏, 𝑘) ln[𝑎/(𝑏+ 𝑘)], (20)

where ℎ𝑎(𝑏, 𝑘) is the scaling exponent sought as a
function of the tuned control parameters 𝑏 and 𝑘
with 𝑎 being the running control parameter. The pa-
rameter ℎ𝑎(𝑏, 𝑘) is a commonly regarded equivalent
to the Hill coefficient so referring to the coopera-
tivity degree in cases where a change of the input
rate 𝑎 can lead to the saturable variation of 𝑃 1. If
ℎ𝑎 = 1, then the OS is considered stable and hence
non-cooperative (or maximally cooperative, when the
increase of 𝑎 causes the Boltzmann-like change of the
normalized 𝑃 1). Rather the case ℎ𝑎 < 1 indicates the
loss of stability with an emergence of “negative” coop-
erativity simply attributed as the effect of fractionally
lowering its degree. In the limiting case ℎ𝑎 → 0 so-
called as a “null” cooperativity, one says that the OS
is anti-cooperative, when any change in 𝑎 causes no
change of 𝑃 1. Therefore, calculating the log-log slopes
in (20) as functions of the tuned control parameters
involved in the kinetic scheme in Fig. 1, b allows us to
indicate the emergence of lowering the degree of coop-
erativity for the non-cooperative or maximally coop-
erative OS from 1 to fractional values with identifying
those intervals of tuning the parameters which make
the effect of “negative” cooperativity most salient.

The corresponding 3D graph of ℎ𝑎(𝑏, 𝑘) is depicted
in Fig. 3. As expected from (18) and (19), making
the two-level OS in Fig. 1, b reversible with 𝑘 → 0
stabilizes it attributing as non-cooperative for all
𝑏. This represents the Boltzmann–Gibbs (or Lang-
muir’s isothermal) sigmoid distribution for the popu-
lation

𝑃 1 =
𝑎

𝑎+ 𝑏
=

[︁
𝑒−Δ𝐹/𝑘B𝑇 + 1

]︁−1

(21)

of level 1 lying lower than level 2 by the energy differ-
ence Δ𝐸 ≫ 𝑘B𝑇 with Δ𝐹 = 𝑘B𝑇 ln(𝑎/𝑏) being the
corresponding free-energy difference for levels. The
latter, according to Δ𝐹 = Δ𝐸−𝑘B𝑇 ln 𝑑, will vary in
the entire infinite interval by respectively choosing the
appropriate values of Δ𝐸 ≫ 𝑘B𝑇 and 𝑑 ∈ [1,∞). In
the coordinates 𝑃 1 vs. ln(𝑎/𝑏), the maximum slope of
the sigmoid curve (21) attained in a vicinity of 𝑎 ≈ 𝑏 is
1/4. This directly refers to just as of non-cooperative
case ℎ𝑎(𝑏, 𝑘 ≈ 0) = 1 in (20).

Fig. 3. 3D plot of the degree ℎ𝑎(𝑏, 𝑘) of cooperativity (Hill’s
coefficient) as a function of the tuned parameters 𝑏 and 𝑘 (in
inverse time units), with 𝑎 being the entropically driven run-
ning parameter, for the case of the irreversible two-level scheme
in Fig. 1, b

In contrast, enlarging 𝑘 > 0 makes the OS irre-
versible that conditions the effect of “negative” (i.e.,
fractional) cooperativity of it. However, this effect ap-
pears to be generally dependent on 𝑏. Indeed, at large
𝑏 ≫ 𝑘, the larger 𝑘, the more distinct (i.e., smaller)
is the fractional cooperativity. On the other hand, at
small 𝑏 < 𝑘 there is a critical zone of even smaller 𝑎
within the region of operationally driven parameters,
where the negative cooperativity becomes even more
prominent. Such a dip of cooperativity indicates that,
in this region, the OS behaves itself as metastable
and, as a result, is poorly controllable. Formally, in
(20), this corresponds to the lowest fractional val-
ues of ℎ𝑎(𝑏 ≈ 0, 𝑘) < 1 determined numerically in
Fig. 3. Nevertheless, their bounds can be extracted
analytically as well.

In order to sight such a bound, let us note that,
in the irreversible case 𝑘 > 0, relations (18) and (19)
at 𝑏 = 0 yield 𝑃 1(𝑡) = [𝑎/(𝑎 − 𝑘)][𝑒−𝑘𝑡 − 𝑒−𝑎𝑡]. This
expression cannot be admitted to 𝑃 1 in terms of the
running 𝑎 and the widely tuned 𝑘 similar to that in
terms of 𝑎 and 𝑏 for the reversible case (21), but rather
only for the limiting case of 𝑎 ≈ 𝑘 when the 𝑃 1(𝑡) =
= 𝑎𝑡𝑒−(𝑎+𝑘)𝑡/2 known of being peaked at the time
𝑡peak = = [(𝑎+ 𝑘)/2]−1 approximately yields

𝑃 1(𝑎 ≈ 𝑘) = (2/𝑒)
𝑎

𝑎+ 𝑘
. (22)
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Obviously, in a vicinity of 𝑎 ≈ 𝑘, the slope of (22) is
1/2𝑒. Therefore, comparing this with that of (21) in
a vicinity of 𝑎 ≈ 𝑏 provides possible values of ℎ𝑎(𝑏, 𝑘)
with the following universal bounds

2

𝑒
≤ ℎ𝑎(𝑏, 𝑘) ≤ 1. (23)

It is noteworthy that the left bound of 2/𝑒 ≈ 0.74
in (23) is being very close to the lowest value of 0.76
sighted in Fig. 3, which strengthens the validity of the
approach. However, achieving a more coincidence be-
tween the numerical and estimated values is difficult,
partially due to the effect of tailing the data, when
varying the kinetic parameters near the very small
𝑘 ≈ 𝑎.

It is important to stress that the choice of a scaling
exponent in the form (20) is not unique. Therefore,
it is necessary to consider the alternative variants
too. For example, it may be a situation where the
backward parameter 𝑏 is not actually tuned, but
rather running, while the input parameter 𝑎 instead
tuned. Within the operational framework in Fig. 1,
this means the use of an enthalpically driven scheme,
where to achieve the high population of level 1 re-
quires varying the energy difference Δ𝐸 between lev-
els, while remaining the dimensionality of level 2 con-
stant. Providing the corresponding analysis for the
log odds ln[𝑃 1/(1 − 𝑃 1)] = ℎ𝑏(𝑎, 𝑘) ln[𝑏/(𝑎 + 𝑘)]
demonstrates that the respective scaling exponent
ℎ𝑏(𝑎, 𝑘) does not experience, in fact, any noticeable
change being very close to unity at almost all tuned
parameters 𝑎 and 𝑘 (data not shown). Consequently,
if the running control parameter is driven almost
enthalpically so that a principle of microscopic re-
versibility of the OS remains hold, then that OS re-
tains its intrinsic stability and, hence, the initial non-
cooperativity (or, equivalently, normalized maximum
cooperativity) irrespective to which control parame-
ters are tuned including those for the reversible input
and irreversible output stages. Similarly, when energy
level fluctuations inherent in the OS do not influence
its microscopic reversibility like as in (15), then these
fluctuations are lacking to impact its stability and
non-cooperativity too. On the contrary, if a running
control parameter is driven entropically so that to
break the principle of microscopic reversibility of the
OS, then that OS becomes “negatively”cooperative
combining with the fractional degree bounded from

above and below by unity and a constant 2/𝑒, respec-
tively, according to the universal relation (23).

4. Discussion and Conclusion

In this paper, a microscopic framework for describing
the cooperativity of the nonequilibrium open system
weakly interacting with the noisy equilibrium envi-
ronment on the multiple time scales is presented. The
cooperativity is characterized by the degree associ-
ated with the stability of the OS to quantify its sen-
sitivity to the running and tuned controls. The ap-
proach is limited to treating the Liouville–Neumann
quantum evolution equation (5) for the density ma-
trix (7) of the total closed system (CS) (1) by the
Nakajima–Zwanzig method which considers the CS
as a sum of the OS plus the EE plus their interac-
tion with projecting the overall evolution of the CS
on state variables of the OS only. The Born–Markov
approximation is used to reduce the integral differen-
tial master equation (8) for the density matrix of the
OS (7) to the kinetic equations for its state popula-
tions (9). Providing a gain-loss balance (12) for equa-
tions with the probabilities of relaxation transitions
between the energy levels (13) by averaging them over
the fast fluctuations in the OS and the equilibrium
vibrations in the EE is performed within a micro-
scopic model [46–48]. In this model, Hamiltonian (2)
of the OS is considered as a diagonal operator in-
volving stochastic additions to eigenenergies; Hamil-
tonian (3) of the EE is regarded secular and repre-
sented by an infinite sum of harmonic oscillators; and
the operator of interaction between the OS and the
EE (4) weakly couples the corresponding transitions
in the OS to the processes of creation or annihilation
of one vibrational quantum (phonon) in the EE, re-
spectively, conditioned by the energy conservation for
the CS [49–51].

Setting the energy balance in the CS must mean
that, when being in equilibrium, it holds stable in
respect to all those disturbances of positions of its
energy levels, which do not change the existed sym-
metry order. Since, for both the CS and its nonequi-
librium counterpart, the OS, conserving a structure
is equivalent to their stability, the latter will also be
related to the cooperativity. Indeed, allowing it to be
stable will imply the correlated (or cooperated) order
in the OS. To characterize such a stability (or coop-
erativity), one can use a dimensionless degree for it in
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the interval, say, from zero to one being normalized to
the maximum and number of the OS states. However,
this fails in the infinite-level CS for the general com-
plexity and in a few-level OS because of the inabil-
ity to incorporate multiple time scales to the expres-
sions derived for its stability (or cooperativity). In
this situation, one paves another way, rather solving
the problem of the lifetimes 𝜗𝑖 of metastable states
|𝑖⟩ of the OS [59–61], which have, in their most highly
populated periods, only the temporary existence. The
populations 𝑃𝑖(𝑡) of metastable states present non-
monotonic behaviors with peaks 𝑃 𝑖 = 𝑃𝑖(𝑡

(𝑖)
peak) at

the times 𝑡 = 𝑡
(𝑖)
peak so that 𝜗𝑖 =

∫︀∞
0

𝑃𝑖(𝑡)𝑑𝑡. Usually,
it is difficult to provide the assigning of 𝑃𝑖(𝑡) for all
times. In the stationary approximation for exponen-
tially decaying 𝑃𝑖(𝑡) = 𝑃 𝑖𝑒

−𝑘𝑡 with 𝑘 ≪ [𝑡
(𝑖)
peak]

−1

being the slowest Lyapunov exponent, one makes the
estimate 𝜗𝑖 = 𝑃 𝑖/𝑘. Thus, instead of assessing the
unknown integral quantities 𝜗𝑖, one can treat the
measurable steady-state population amplitudes 𝑃 𝑖

as those fractional variables that are regarded fea-
tured with the degree of stability (or cooperativity)
of the OS.

Considering the population peaks 𝑃 𝑖 in more
details, one indicates three possibilities. The first
is to refer to the elasticity coefficients 𝜂𝑖𝑗 =
= 𝜕𝑃 𝑖/𝜕𝑃 𝑗 . This signifies the reversible elastic in-
terrelation of controllable changes – regardless run-
ning (induced) or tuned (spontaneous) – in the state
variables 𝑃 𝑖 and 𝑃 𝑗 ̸=𝑖. These very quantities often
represent the signatures for both the stability [10, 11]
and the cooperativity [16], but within the narrow in-
tervals constrained by the applicability of elasticity
theory. The second possibility expands 𝜂𝑖𝑗 to their
logarithmic values 𝑙𝑖𝑗 = 𝜕 ln𝑃 𝑖/𝜕 ln𝑃 𝑗 independent
of the range of change of the 𝑃 𝑖 and 𝑃 𝑗 ̸=𝑖. Since
the latter obey the Boltzmann statistics with pro-
portionality to the exponentials of the relative ener-
gies of metastable steady states, to involve the coef-
ficients 𝑙𝑖𝑗 becomes very close to using the concept
of a strength of intermolecular interactions that sta-
bilizes quite those states of the OS [25]. Finally, the
third possibility is to model the relationships between
some binary state variables 𝑃 1 and 𝑃 2 = 1− 𝑃 1, by
using a linear logistic regression. This assumes that
the log of the odds ratio 𝑃 1/𝑃 2 is a linear function
of the running control parameter, say ln 𝑎, weighted
with the coefficient ℎ𝑎(𝑏, 𝑘) being dependent on two

tuned parameters 𝑏 and 𝑘, plus a term indicating the
instant of employing the onset of 𝑎. Physically, the
odds ratio represents the direct way to quantify that
how likely to be or not to be in state |1⟩ of the two-
state OS is associated with to be or not to be it in
state |2⟩. Therefore, the odds ratio presents a desired
measure of the degree of cooperativity by in effect de-
scribing the strength of either the association or non-
independence between normalized probabilities of the
two energy levels reduced to the binary case. One can
thus use the odds ratio as a sought quantity to fea-
ture those correlations of different states of the OS,
which are responsible for its stability and the cooper-
ativity. But in doing so, besides the singled out level
1 of the unstable state |1⟩, all the remaining states
|𝑖 = 2, ...,𝑀⟩ should be combined into one single
level 2 such that the kinetics of transitions of the
reduced two-level OS and the generic multilevel OS
would be almost the same just on the transition time
scale. This is what we did in Section 3 within a ki-
netic framework introduced in Section 2, cf. (1)–(6),
(12)–(20).

Let us discuss some consequences following from a
quantitative approach used here to describe the de-
gree of cooperativity of the OS among other more
qualitative approaches. First is an implication of the
hypothesis about the correspondence between the sta-
bility and the cooperativity. The direct implementa-
tion of this idea blunders into difficulties with de-
scribing the complex dynamics of a few-level OS in
the presence of fluctuations and reducing it to the
far simpler two-level kinetics on the multiple time
scales. To overcome these difficulties, we employ a
model of the nonequilibrium OS weakly interacting
with the EE and exhibiting energy level fluctuations
(1)–(4) within the microscopic approach [46–51]. An
advantage of this approach is the possibility to op-
erate with the unified expression (13) for the aver-
aged probability 𝑊𝑖𝑗 of transitions between the en-
ergy levels of different dimensionalities 𝑑𝑖 (17) in the
frame of the kinetic equations for level populations
𝑃𝑖(𝑡) as relevant state variables for different cases (12)
and (16). Having 𝑊𝑖𝑗 (13) and knowing a relation be-
tween the reduced intensities 𝛾𝑖𝑗 of fluctuations and
the natural frequencies |Ω𝑖𝑗 | of oscillations of the lev-
els, one is able to rigorously find 𝑊𝑖𝑗 for two limit-
ing cases of largely extended |Ω𝑖𝑗 | ≫ 𝑘B𝑇/~ ≫ 𝛾𝑖𝑗
and nearly degenerate |Ω𝑖𝑗 | ≪ 𝛾𝑖𝑗 ≈ 𝑘B𝑇/~ energy
levels (14),(15). Thus, one can correctly differenti-
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ate between the enthalpic and entropic factors of the
two-level OS, which guarantees either its stability or
the instability (so being responsible either for unit or
fractional cooperativity) in the correspondence to the
quantum and classical limits above, respectively, cf.
(18)–(22).

The second consequence concerns with the bounds
for the degree of cooperativity of the two-level
OS (23). A question arises: Can such degree ℎ be
larger than 1 and lower than 2/𝑒? In the context
of maximal stability of the OS, it would only be a
convention to take the maximum degree of cooper-
ativity equal to unity. However, there are many re-
alistic OSs, where ℎ < 0.7 and even ℎ ≈ 0.2–0.3
[62, 63]. But, in the latter case, at least three-body
phenomena come into play leading to the anticoop-
erative effects with very low ℎ [64, 65]. On the other
hand, the Michaelis–Menten reaction, known to cor-
respond just to the irreversible kinetics of the two-
level OS, is well-recognized as a straightforwardly im-
plemented mass-action law showing any realization of
cooperative behavior [56, 66]. Relation (23) demon-
strates the emergence of cooperativity quite for the
Michaelis–Menten case. In this regard, bounds (23)
established for the fractional degree of cooperativity
could even be considered as universal in a sense of
the very fact of the presence of an irreversible kinetic
stage in the two-level OS (cf. Figs. 1, b and 3). Note
that the damped two-level OS might also have an
analogy with the one-level limit for a two-state ver-
tex model of the multipartite networks [67].

The third consequence deals with the dependence
of the degree of cooperativity on the context, in which
it is determined. In the context-dependent analysis,
one links the strengths of the non-additive thermo-
dynamic interactions with their most likely contri-
butions to the kinetics of the OS [25]. In contrast,
we provide here a context-dependence with linking
ℎ𝑎(𝑏, 𝑘) to the controlled parameters by suggesting
the additivity of the total free energy when group-
ing degenerate states |𝑖 = 2, ...,𝑀⟩ to a single level
2 of dimensionality 𝑑 = 𝑀 − 1, cf. (12), (13), (16),
and (17). We observe that this effect reveals itself
if only to drive the input kinetic parameter 𝑎 (or,
equivalently, the dimensionality 𝑑) as running, while
the backward 𝑏 and output 𝑘 parameters are tuned
(see Fig. 3), and otherwise is not sighted. Therefore,
in terms of the context-dependence, the “negative”
or fractional degree of cooperativity of the OS can-

not be enthalpically driven, but rather entropically
driven. This corresponds to the stable OSs as only
those, which obey the principle of microscopic re-
versibility with respect to enthalpically driven tran-
sitions between the energy levels, but do not possess
entropically driven changes in the number of levels.
Obviously, the latter will lead to the fractional coop-
erativity of the OSs and, hence, to the loss of their
stability.

Finally, the fourth consequence regards the plausi-
ble applications of the approach presented to quan-
tify the cooperativity of the OS viewed here as of
a physical-chemical-biological molecular structure to
the wider class of the social-economic-informational-
game agencies or organizations. It is common to rep-
resent an agency as a long-standing well-managed sys-
tem [68] that constantly changes in time due to a
coupling to the environment to provide an exchange
of energy (force efforts) and matter (material or non-
material agents) with it. Thus, an agency is very close
to a few-level nonequilibrium OS. For it, one directly
relates the cooperativity to the stability by referring
a control over the latter to the some degree factor, in
favor of which the levels and the number of states
of the OS are being able (or managed) to collec-
tively correlate (or cooperatively interact) with one
another so that to provide an uttermost stable struc-
ture. Hence, there is a one-to-one correspondence be-
tween the lowering of a degree of cooperativity of
the OS and the damping of a control over its stabil-
ity. Moreover, when properly normalized, there are
universal bounds for this degree ℎ (23); under down-
side of which ℎ < 2/𝑒 ≈ 0.74, the OS breaks down
as a stable structure. However, this is the case only if
the cooperativity will be entropically driven with the
input control parameter 𝑎 is running. The backward
and output parameters are tuned as small 𝑏 → 0,
while nonzero 𝑘 > 0 (Figs. 1, b and 3). To return
the controllability, it is sufficient to regularize either
these instabilities by making the backward control
positive 𝑏 > 0 or cutting off the output control 𝑘 → 0
(Fig. 3). The latter corresponds to the cancellation of
an irreversible kinetic stage in Fig. 1, b, which pro-
vides, by definition, the OS with a well-controlled re-
versibility.

In summary, the non-stationary kinetics of a few-
state nonequilibrium open system (OS) weakly in-
teracting with a noisy equilibrium environment (EE)
depends on the energy-level spectrum of the OS, as
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well as on the interaction parameters, noise inten-
sity, and temperature of the EE. All factors above
in turn impact the degrees ℎ of both the cooperativ-
ity and the stability of the OS. To answer the ques-
tion about how to relate these quantities, one ap-
peals to the reduced scheme of the damped two-level
OS (Fig. 1). In this case, one starts from the pair
of fluctuating energy levels of different dimensional-
ities, for which one chooses the initial condition of
population of the first level and sets the two rates of
reversible transitions between the levels and the one
rate of irreversible decay of the second level. Then, to
operate with this pair, one uses four independent pa-
rameters united in the quadruples, either Ω,Φ, 𝑑, 𝑘 or
Ω, 𝑎, 𝑏, 𝑘 (16), (17). Here, Ω is the frequency of oscilla-
tions between largely extended energy levels of the OS
put fast relative to a thermal vibrational frequency
𝜔𝑇 = 𝑘B𝑇/~ ≈ 4 × 1013𝑠−1 of the EE, Φ is the far
slower rate limit for reversible kinetics of relaxation
transitions, 𝑑 is the relative level dimensionality (log-
arithmic entropy), 𝑎 is the reversible input rate, 𝑏 is
the reversible backward rate, and 𝑘 is the irreversible
output rate. Finally, to involve a controlled guide in
the cooperativity (or stability) of the OS, one consid-
ers two scenarios for it to display a dependence on the
context of their use. In the first scenario, one fixes Ω
and Φ so that Φ ≪ 𝜔𝑇 ≪ Ω, which is equivalent to fix
𝑏, then runs 𝑎 given 𝑘, and finally plots the degree of
cooperativity ℎ𝑎(𝑏, 𝑘) as a function of the tuned 𝑏 and
𝑘 (20). The corresponding 3D graph is depicted in
Fig. 3. Obviously, if 𝑘 = 0, then the OS is stable and
non-cooperative; while, at 𝑘 > 0, it becomes both un-
stable and fractionally cooperative. Therefore, con-
trolling 𝑘 is the necessary condition impacting the
emergence and/or the disappearance of the fractional
cooperativity in the OS. But the degree of coopera-
tivity depends on tuning 𝑏 too. Moreover, down to
the limit 𝑏 → 0, ℎ𝑎(𝑏, 𝑘) (20) attains its lower bound
ℎ𝑎(0, 𝑘) = 2/𝑒 (23) sighted in Fig. 3. At this bound,
the OS turns out to be critically unstable such that
to return its normal stability requires to make both
zero 𝑘 = 0 and nonzero 𝑏 > 0. Thus, to realize the
scenario above stipulates, in fact, the use of quite
radical means for stabilizing the OS that would other-
wise be unstable. Conversely, in the second scenario,
if running 𝑏, while tuning both 𝑎 and 𝑘, one observes
no noticeable change in the corresponding degree of
cooperativity ℎ𝑏(𝑎, 𝑘) comparing to unity (data not
shown). This directly points to the non-cooperative

case respectively implying that when to run 𝑏 and
else to tune 𝑎, the OS remains stable irrespective of
tuning 𝑘. Thus, for that scenario, the irreversibility,
if being present in the OS, does not destroy its con-
trollability, keeping the OS almost stable without any
need to restore it.
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ДРОБОВА КООПЕРАТИВНIСТЬ
СИСТЕМИ З КIЛЬКОМА СТАНАМИ
В ОТОЧУЮЧОМУ СЕРЕДОВИЩI

Р е з ю м е

Кооперативнiсть репрезентує тип недостатньо добре визна-
чених величин, якi знаходять застосування в рiзних галу-
зях фiзики, хiмiї, бiологiї, iнформатики, тощо. В цiй робо-
тi ми визначаємо кооперативнiсть з фiзичної точки зору,
пов’язуючи її з наявнiстю стабiльностi для системи з кiль-
кома станами по вiдношенню до необоротностi. Спочатку
ми редукуємо розвинення у часi такої системи до еволюцiї
її двох ефективно флуктуюючих енергетичних рiвнiв рiзної
розмiрностi за початкового заселення одного рiвня, деяких
вiдмiнних ймовiрностей мiкроскопiчно зворотних переходiв
мiж двома рiвнями, та деякою ймовiрнiстю необоротного
розпаду iншого рiвня. Потiм проводимо для редукованої си-
стеми усереднення за енергiями флуктуацiй рiвнiв, що до-
зволяє для швидкостей мiжрiвневих переходiв точно вра-
хувати вплив зовнiшнiх чинникiв, що контролюють поло-
ження рiвнiв та їх розмiрнiсть. Нарештi, ми демонструємо
появу в цiй системi дробової кооперативностi, нормований
ступiнь якої знаходиться в межах вiд 2/𝑒 до одиницi за умо-
ви, що перехiд через його нижню границю сягає нестабiль-
ної системи, вiдновлення стабiльностi котрої потребує упо-
вiльнення в нiй швидкостi необоротного розпаду або при-
швидшення її оборотних переходiв у зворотному напрямку.
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