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CORRELATION FUNCTIONS OF COULOMB PAIR

The correlation functions of two electrostatically interacting particles have been obtained for the
first time, by using the direct algebraic method for finding the cross-correlation functions. The
efficiency of this method has been demonstrated by finding almost all unknown elements of the
decomposition matrices in the second-order approrimation.
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1. Introduction. Direct Algebraic
Method to Determine Correlation Functions

This work is aimed at forming a basis for the exact
theory of a Coulomb pair, i.e. a pair of free particles
interacting electrostatically with each other. It is im-
portant to bear in mind that the particle pairing is
a mere quantum-mechanical effect, and its descrip-
tion requires the development of exact methods for
the solution of the corresponding nonlinear equations
of motion for the creation and annihilation operators
for each particle. The nonlinear component of such
equations has the simplest form — with only one non-
linear operator — just in the case of a system consist-
ing of two particles. This system is chosen below to
avoid extra complications emerging at the solution of
an obtained system of equations. We will consider a
modification of the direct algebraic method (DAM)
for the determination of correlation functions, which
was proposed in work [1]. We recall that this method
is based on the expansion of operator equations in a
certain operator basis, which is selected with regard
for the specific features of the problem concerned.
Let us consider the simplest case of expansion in the
two-operator basis. After obtaining the equations for
the operators and their commutators or anticommu-
tators with the help of the decomposition matrices K
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and K T, we will pass to the analysis of basic relations
for correlation functions, which play the major role in
the implementation of the direct algebraic method for
the determination of correlation functions. For this
purpose, we will consider two decomposition forms for
the average values of operators with the help of matri-
ces F, '+ and G, G, whose elements will be found
by solving the obtained equations. The DAM is exact,
because it enables the effective linearization of all op-
erator equations and, as a result, the change from
operator equations to a system of algebraic equations
for unknown elements of the corresponding decompo-
sition matrices to be performed. Those equations can
be solved exactly, so that it is possible to find exact
expressions for the correlation functions depending on
the Hamiltonian parameters for the examined phys-
ical system. In this work, the results obtained with
the use of the DAM are published for the first time.

2. Operator Equations

Let us consider a modification of the direct algebraic
method for the determination of correlation func-
tions, which was proposed in work [1]. For this pur-
pose, the equations of motion for the creation and
annihilation operators are used. In what follows, a
system consisting of two particles interacting electro-
statically is considered. The Hamiltonian of this sys-
tem in the secondary quantization representation [2]
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looks like
H = H, + Hy + Hio, (1)

where
o - ata.
H, = E EipQ;pQip
p

is the Hamiltonian of a free particle of the i-th sort,
and

_ + ot
Hyp = E : Upipypapr @1 Gapy 42p> A1p,

p1+p2=p}+ph

is the interaction Hamiltonian. Here, €;, is the kinetic
energy, al‘-; are the creation operators, a;, the anni-
hilation ones, and p = (s, p), where p = (pz, Py, D-)
are subscripts indicating the spin projections and the
momenta of the particles. The quantity U, Pyp,p1 1S
the interaction potential in the momentum represen-
tation. Let the both particles be fermions, for which

the following anticommutation relations hold:

+ + _

A5, 0iq t QigQyy, = dpgs (2)

AipQiq + AiqQip = 0, (3)
+ o+ | gttt —

a’ipa’iq + aiqaip - 07 (4)

where §,, is the Kronecker symbol. From the Hamil-
tonian, we obtain the following equations of motion,
which form the basis of the method:

[aqu H] = Kﬁzﬂjq + K:gz;qua (5)
(bjo H] = K505 + Kiybsa, (6)
+ _ (7) + () p+
[ajq’ H] = —K11407q — Kiggbly, (7)
+ _ gt + +()p+
[qu’H] - K21q] Qjq + KQ?(JJ qu' (8)
Here,
1 N
bjq = KD Z Ut phpaps (52j5p’2qa1p/1+
12q p1+p2=p]+ps
+ 61j5p’lqa;p/2)a2p2a1p17 (9)
1
+ _ + o+
qu -0 Z Upﬁpémpl 1;,/1(121;’2 X

12q p1+p2=p}+ph
X (A2p,01j0p,q + A1p, 02j0p,q),
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(10)

Kﬁ; = Eja» ng; =1, Kéﬁy K2(]231a K;lg)v and K;_2(q])
are sought functions, and [..., ...] is the commuta-
tor. The main point of the direct algebraic method
is the expansion of operators in a two-operator basis,
which is similar to the vector expansion. In our case,
the equations for the annihilation and creation opera-
tors are expanded in the bases (a;p, bjq) and (ajp, b%),
respectively. Using the Jacobi identity for three oper-
ators,
[[A’BLC]+HBvc]aA]+HC’A]78] =0, (11)
we obtain the following equations for the commuta-
tors ([...,...]—) and anticommutators ([...,...]+):

[[aipa ajq}iv H} = (Kl(]121 + Kﬁ)p)[aim ajq]i +

+ Ky aip byl + K3y [bip: o] (12)
([aips bsa) H] = (KD, + K))laip, bl +

+ Ky laip, ajly + K35, bip bjal . (13)
(i @)s H| = (L5, + K0) bigs 0ol +

+ K51 aip, aja) . + K13y bip: bia) (14)
[bip byl H| = (K, + K5, bips byl +

+ Kgiplaip, bjal ¢ + K51y bip: ajal . (15)
[0 @il H | = (K, = K9, a0+

+ Kigylag, bal , = Kioplbis azal (16)
[0 byal oo H | = (K8, = K{D)ladh b, +

+ Kiiylad, ajol , = Kig,[bd:bial (17)
108 azal o H| = (K + Kb a5l +

+ Koy [y, azal , + Kbyl byl (18)
68 bial o H| = (K83, + Ky b bl +

+ K [t bial .+ Ksiylbi ajal (19)
0y afy) o H| = (K, + KDl af ], —

— Kiglai bl — Kin,[bhaly), (20)
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o Ut H| = (K — K)o, b, +

+ K5\ af o], — K{5 0,65, (21)
haf), H] = (K5 — K bhal,], +

+ Koy g, aty) = Kibylbi, b (22)
06, H = (K + K b b ], +

+ K50 lad b7+ KD el (23)
[aips ol H| = (K(D, = K)laip, af, ],

— Ky laip, i), + Ko lbin afy] (24)
[aips b, H | = (K15, + K50 iy, b7, +

+ Ko laip, @], + Koy lbin, b, (25)
[bips @) 1| = (K35, = KD bips a ], +

+ Ky laip, )], — Kidylbin, b3, (26)
b byl H| = (K + K85, ) [bips b, +

+ K laip, bl + K5 i ], (27)
Since

[a1p, azq] =0, (28)

a number of important relations can be obtained. In
particular, Eq. (12) yields

1 2
Kfz;[blpv azq) + K1(221 [@1p, b2g) = 0. (29)
Now, calculating once more the commutator of
Eq. (29) with the Hamiltonian, we obtain

1 2
)

p

2 1
Kfl) + Kézzy

[blpa b2q] = . 1 (30)
2Ky

[alpa bQQ]'

Finally, calculating once more the commutator of
Eq. (30) with the Hamiltonian, we obtain

K8 0N o
() - g+

2
K(2) _ K(Q)
+ <22¢]211q = const.
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1 1
KL +

P

(31)

In a similar way, the relation

(a1, a3,] =0 (32)

yields

2 q
2)+ 2)\2
KT+ K3
— f = const.

In addition, the relation

2
K+ K
1 1)+ 22 11 2 2)+
K3 K (” 2) = K3 K

(33)

[aii_p’ a2q] =0,

yields the formula

2
Ky + K1) 2) (2
( ) ~Ki KT~

2 2)\2
K, - K, ,
5] = const’.

When comparing Eqgs. (35) and (33), one can see
that they are valid, if we put Kg);_ = ngZI and
Kéggf = —KQ%BI. Swapping the subscripts 1 <> 2 in
Egs. (28), (32), and (34), one can see that we may
put Kyt = —K§) and Ki)" = —K§). In addi-
tion, const’ = —const. Let us calculate the commu-
tator of relation (2) with the Hamiltonian. Then it
follows from Eq. (16), where ¢ = j, that

1) 1)+
SR A

(35)

biag + agh) = a; by + byat. (36)

Hereafter, in order to simplify the formulas, we omit
the subscripts denoting the sort of particles if they
are identical. Calculating the commutator of relation
(36) with the Hamiltonian, we obtain

2(b,y by + beb,) = 2K51,0p¢ + (Kaop +

+ Kazq — K11p — Ki19)(a)f by + bgal). (37)

3. Basic Relations

The following operators can be introduced for an ar-
bitrary operator A:
A=pt4p (38)

1157



V.I. Vaskivskyi (B.I. Bacvkiscoruil)

and
A=pAp™, (39)

where p is the statistical operator of the system. Then
the following expansions can be used:

Qip = Fl(liyalp + F1(2) bip, (40)
Eip = FZ(i)paiP + F229b1p7 (41)
aip = G aip + G\ bip, (42)
= G4, aip + Gi3,bip, (43)
.+ = POt 1 bt (44)
b+ = Fi\Wat + FHObE (45)
Gy = GHDah + G (46)
E; = GiWal + GIIbE (47)

which play the essential role in applications of the
method. Here, as well as in Eq. (8), the sign + marks
those matrix elements that correspond to the creation
operators and does not denote the conjugation ! For
the averaged operators, we obtain

(@ip) = Firpaip) + Figy{bin), (48)
(bip) = Faup(ai) + Fya(bip), (49)
and

(@) = Gy laip) + G, (bip), (50)
<3ip> = Géil)p< zp> + G22p<b > (51)
Here, the notation

(A) = Sp(p4), (52)

where Sp is the operator trace, is used. In view of the
relation

Sp(AB) = Sp(BA), (53)
we obtain

(@ip) = F{i){aip) + Fiop(bip) = (aip), (54)
(bip) = Fiiy(aip) + Fyop (bip) = (bip), (55)
(@ip) = G {aip) + G13, (bip) = (aip), (56)
1158

(bip) = Gy aip) + Gy (bip) = (bip)- (57)
From whence, we immediately find that
1—-FY 1-GY)
{bip) = %wiﬁ = Tm<aip> (58)
F12p G12p

provided the following conditions for the decomposed
matrices:

FyL R = (1— Fi)(1— Fi), (59)

%ﬁdgzuf®mufamx (60)

1- Fl(i)p o Gllp 61
OO (61)
F12p ] G12p'

147Fg;47147Gg; 0
F21p G21p

Simple combinations give rise to

FiGY3, = (1- F5))(1 - GYY) (63)

and

Gyl iy, = (1= G5 ) (1 — F{}). (64)

For the Hermitian-conjugate creation operators, we
obtain

1— Fht 1- G
(b)) = S—(at) = ———"(a},) (65)
Y Gy
so that
FROFED = (1m0 (1 - FO), (66)
GIVGHY) = (1 -G (1 - GHY), (67)
+( +(
1-FY -6l 68)
o at@
12p 12p
+( +(i
1-FHD 1 G ©9)
o e O
2p o Cwe |
FRV6l = (1 - mp) 1 - 610, (70)
GIWFEY = (1 -G - FiY). (71)

Using relation (53), it is possible to find the following
relations for the products of two operators:
(BA) = (AB) =

(AB). (72)
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These basic relations between the correlation func-
tions can be used to determine the unknown matrices
F and G.

Let us consider the case of non-zero correla-
tions. For example, in the case where (a,a,) # 0 and
i =j, we have

—(apaq) = (aqap) =(apaq) = Fiip(apaq) + Fizp(bpay),

(73)
—(apaq) =(aqap) = (apaq)=Grig(apaq) +Gizq(apby).
. (74)
From whence, we obtain
1+ F;
<bpaq> = *Finpwpaq% (75)
12p
1+G
(apbq) = _Gim<apaq>~ (76)
12q
Using the remaining relations
(aghp) = Faiplapaq) + Fazp(bpag) =
= G114{bpag) + G124(bpby), (77)
(bgap) = Frip(apbq) + Fizp(bpbe) =
= Gaig(apaq) + Gazq{apby), (78)
we have
(bpbg) = L= SpF = Fogy + Gag(1+ Fay) (apaq)
Fi9,G124
79
and (79)
1—SpG — Fiip(1
(bpby) = SpG ~ Gag + Fiay(1 + Gun) (apaq)-
F12pG12q
(80)
From whence, we obtain
SpG = SpF (81)
and F. G Fi1,G
1 — Foop — Gagg + F11,G11
(bpbg) = L I 2 1 (apag). (82)
Fi2,G124
Finally, we obtain
1—SpF —F
(agby) = F—m<apaq>’ (83)
12p
1-SpG -G
(byay) = 0~ (qa,), (34)
12¢q
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(Gagq + SpG' — 1)G11p — 1= Ghg
G12pG124

(bgbyp) = (apag).

(85)

In a completely identical way, we can determine
the following relations for the matrices F'*© and G if

(afag) #0:

1+
W af) =~ lafal), (56)
12p+
1+ G
(o) =~ o), (57)
12q
SpEFt = SpG™ (88)
and + + +
1 = Fy, — Goyy + F11,GTy
R
. 12p™~12q
1 —Spl+ — Fyfy
(@) = g e, (90)
p
1—SpGt — G,
<b;a;> = GB d <a;a;>, (91)
q
+ A + +
(b = (Gooq +5pGT — )Gy, — 1 - Cita 4 4y
q°p Gii_2pGii_2q P q
(92)
From the expression
(apaq) = Friglaqap) + Fi2q(bgap), (93)
we obtain the relation
Ghag(1+ Fi1g) + (Gazg 4+ SpG — 1) Fiay = 0. (94)
Moreover, the expression
(apaq) = Griplaqay) + Gizp(aghy) (95)
yields the relation
F12q(1 + Gllq) + (F22q + SpF - 1)G12q =0. (96)
From whence,
G12q = —Flgq (97)
and
(1 — Fa24)G12g = (1 — Gazq) Fi24, (98)
which gives rise to
G22q + F22q =2, (99)
1159
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Gaag + SpG —1=1 + g,
Fggq + SpF —1=1+ G11q~

(100)
(101)

Finally, it follows from Eqs. (61) and (97) that

Grg—1=1-Fp, (102)

Hence, Eq. (100) yields

Gaag + SpG — 1 = 2G99, + Gr1g — 1 =

=2G2g — Fiig+1 =1+ Fiyq. (103)

Ultimately, it follows from Eq. (103) that

Fi14 = Gagg. (104)
Similarly, Eq. (101) yields

Gi1q = Faag. (105)

From the last relations and Eqs. (100) and (101), we
have

SpF = SpG = 2. (106)
Analogously,

Gy = —Fihp, (107)
Gy + Foby =2, (108)
Gh,-1=1-F}, (109)
Fih, =G5, (110)
Gy = Fobyps (111)
SpFt =SpGt = 2. (112)

Now, let us use the following relations for a product
of two operators:

(AB)* = [Sp(pAB)]" = Sp{(AB)"p"} =
— Sp{(AB)"p} = Sp{p(AB)"} =

= ((AB)") = (BTA™). (113)
Then
(AB)t = (BT AY). (114)

Let us assume that all unknown matrix elements are
real. Then, from Egs. (83) and (86), we obtain

(1 + Fﬂp)FIQp = (1 - SpF - Fggp)Fngp.
1160

(115)

In turn, Egs. (84), (87), (97), and (107) yield

(14 Gy, Fiap = (1 — SpG — Ganp) Fif,. (116)
From whence, taking Eq. (106) into account, we ulti-
mately obtain

(1+ Gagy)(1+ Fh,) = (14 Fay)(1 4 Gy, (117)

if one of the following conditions is satisfied (we con-
sider only the versions, in which the non-diagonal el-
ements of decomposition matrices with a superscript
of 12 are non-zero):

1+ Faop # 0, (118)
1+ G, #0, (119)
14 Gagp # 0, (120)
1+ F, #0. (121)

Taking Eqs. (104), (105), (110), and (111) into ac-
count, Eq. (117) gives to

Fit, = Faap, (122)
F3h, = Fup, (123)
Gty = Gazy, (124)
Gap = Gip- (125)
Finally, from Eq. (115) with regard for Egs. (97) and

(107), we have
Fih, = —Fiap = Gigp = =Gy, (126)

This relation and Egs. (60), (63), (66), and (67) yield
the following useful relations:

Ga14G12q = —(1 — Fiyg)?, (127)

F14Gr2qg = (1 — F11q)2, (128)

Fz—ﬁprp =—(1- Fllp)27 (129)

G41,Grap = (1= Fi1p)*. (130)
We also have

Opg — <a;7raq> = <aqa;;r> = Fﬂp<a;aq> +

+ Flgp(b:aq) = G11q<a:aq> + G12q<a:bq>. (131)
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From whence, we obtain

dpq —(1+F )(a aq)

(bfa,) = =
p 4 Fl—gp
Opg + (F11p — 3)<a;'aq>
G12p '
<a+b > _ (qu B (]‘ + Gllq)<a;aq> _
G(12q

Opg + (F11g — 3)<a aq>
CT112q

From the formula

(a;aq> = Gﬂpwq > + G12p<aqb+> =

= F11q<aqa;> + F12q<bqap )

we obtain

(b a? ) Fiig0pqg — (1 + Fllq)<a;aq>’
Gl?q

Fi1,0 1+ F
<aqb;{> _ T11p%gq (G 11p)<a aq>
12p

Analogously, from formula

<bqa;> = Fﬂp<a;bq> + Flgp<b;bq>’
we have
(b+b )= FiipFiig— 3(Fiip+ Fiig)+ 5< n

G12pG12q
Moreover, the formula
<b;aq> = F11q<aqb;_> + F12q<bqb;>
yields

(baby) = {(Ffy, —
— FuipFuig){a) ag) } +(Gi2pGrag)-
Finally, from formula

(b;b )= F21q<aqb )+ Fagq(by b )
we obtain

Fiig=1.

By averaging Eq. (36), we find that

Gi2g = Gi2p = G12 #0

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No.

a, aq)-

1)dpg + (3 = Fiip — Frig —

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

11

are constants. At the same time, averaging Eq. (37),

we obtain

K21,G12 + 2(Kagp — K11p)
ata,) = P P LE .
< P q> 4(K22p _ Kllp) pq

(144)

Taking into account that the operators with different
indices marking the sort of particles commute and
repeating the previous calculations for the case j # 1,

we obtain the following general relations:

1—-FY
(ajqbip) = (bipajq) = FT)p<aipajq> =0, (145)
12p
1-GY),
(bjqaip) = {aipbjq) = GT@ipajO =0, (146)
12q
(1 - Fy)(1 - G
<qublp> <b1pqu> F(f) G(j) 1 <ai:0ajq> =0,
12p~12¢q
(147)
1-Fh®
<ajqb;;> = <b;;)a’jq> = %m;aﬂﬁ =0, (148)
12p
)
<qua;;> = (a;;qu> = Tmmz—‘;ajﬁ =0, (149)
12q
(1- )1 -G
+\ ity p q + N
<qubip>_<biprQ>_ FJr(l)G(J) < ipaJQ>_0>
12p 12q
(150)
_ Fl(i)Jr
+ 1+ + + p + ,+\
<ajqbi > <b1p jq> W(a’ipa’jq> - 07 (151)
12p
_ ngl)+
+ + + q + ,+\
<b zp> < 'Lpb]q> W<aipajq> - 07 (152)
12q
(1-Fi;,)(1-GYy)
+1+\ _ /it pt P q L
<qubzp>_<bzpqu> F( )+G(J)+ < ipa’jq> =0.
12p 12q
(153)

4. Energy of Elementary
Excitations in the Case of Triangular
Decomposition Matrices

We recall that it follows from Eqgs. (104), (105), (110),

(111), (122)—(125), and (142) that

Goo=Fo =G11=F11 = G;2:F2-5 = Gﬂ = F 11 = =1.

(154)
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Let us consider some consequences of the results ob-
tained. From Egs. (58) and (65), we obtain

(b3, = (big) = 0.

From Egs. (127)—(130), (142), and (143), it follows
that

(155)

Gor =G, = Foy = F5; = 0. (156)

Let us use formula (3.4.12) from work [1] written in
the form

K21p<apa;> + (Ka2p — Kllp)<apb;> - K12p<bpb;> =0.
(157)

From whence, in view of the results obtained above,
we have

K1,G12 + Koop — Ki1p

ala,) = . 158
{a ap) Ko1,G12 + 2(Kazp — K11p) (158)
Finally, from Eq. (144), we have

+ _ 617(1 159
<a’p aq> - 77 ( )
as well as
Ky = 0. (160)
Taking Eq. (31) into account, we obtain
K9 =K + K 161

22p 11p ) (161)

where K is an unknown constant.

Note that Eq. (158) is applicable only if K # 0.
Otherwise, if we put simultaneously Ks; = 0 and
Ky, = Ki1p in Eq. (157), it is satisfied automati-
cally, and (a}a,) remains indefinite! Therefore, we
will consider only one of the possible cases where
Eq. (159) is satisfied. Then, from Egs. (143), (154),
(156), and (160), we see that all decomposition matri-
ces are triangular in this case. According to author’s
concept of the DAM, the eigenvalues of the decom-
position matrix determine the energy of elementary
excitations of the Coulomb pair [1]. If the matrix is
triangular, its eigenvalues are equal to its diagonal el-
ements. From Eq. (161), one can see that the energy
of elementary excitations either is equal to the kinetic
energy of particles or differs from it by a constant.
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5. Conclusions

Since the quantity n;), = (aj];aip} corresponds to the
average number of i-th particles in the state with a
definite spin projection s, and a definite momentum
P = (Pz,Py,Pz), we see from Eq. (159) that there
are only two possible states for each of the particles
with a definite spin and a definite momentum of the
pair. We recall that, in this work, only the case of
non-zero anomalous distribution functions was con-
sidered, when (a;pa;q) 7# 0 and <a;;a;z> = 0, which is
a condition for the particle pairing. It is of interest to
pay attention to the case where the total momentum
of the pair equals zero, i.e. the momenta of the par-
ticles are directed oppositely. Then, the total current
of the pair will be different from zero, and we will
obtain a magnetic field as a result of the Coulomb
pairing.

The obtained results allow us to conclude that the
DAM is an effective method for the description of cor-
relations in a system of two particles, which interact
electrostatically. Even in the second order, it allows
almost all unknown components of the decomposition
matrices and a relation for the correlation functions
to be determined. However, for the determination of
the average energy of the system, the correlation func-
tions of the fourth order have to be known. Therefore,
only a basis of the exact theory for the Coulomb pair
was laid in this work. Note that the explicit form for
the potential energy of interaction — it is important
only for results obtained for the third, fourth, and
higher orders of correlation functions — has not been
used.
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B.I. Bacvkiscvruti
KOPEJISAILINHI ®YHKIIIT KYJIOHIBCHbKOI ITAPU
PezmowMme

Brepime my6iikyoThest pe3ysibraTd, M0 OTPUMAaH] IPSIMUM aJl-
rebpalTHUM METOMIOM, JJIs KOPEJIAMiNHNX DYHKIN IBOX YacTu-
HOK 13 KyJIOHIBCBKOIO B3aeMozi€o. EdexkTuBHICTD IIHOr0 MeTOLy
[IPOJEMOHCTPOBAHA 3HAXOAXKEHHSIM B IPYTOMY HMOPAIKY Maiirke
BCiX HEBIJOMMX MATPHYHHUX €JIEMEHTIB MaTPHIb PO3KJIaIaHH.
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