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The dispersion laws of coupled magnetoelastic waves have been calculated for all ground states
in a uniaxial ferromagnet. The magnetoelastic interaction is shown to take place not for all
sound modes in those ground states. The obtained dispersion laws testify that the magnetoe-
lastic interaction coefficient depends on both the magnetization direction and the wave vector
direction. It is demonstrated that the magnetoelastic interaction between sound and spin waves
in the uniaxial ferromagnet is characterized by the constants 𝐵44 and 𝐵66, whereas the other
magnetoelastic constants govern only the formation of a magnetoelastic gap in the spectrum
of coupled waves.
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1. Introduction

Researches of ferromagnets with uniaxial symmetry
is of special interest, because there exist degenerate
ground states for them, in which the magnetic mo-
ment is not directed along the easy axis [1, 2] and
the spectrum of spin waves in those ground states is
gapless. This phenomenon is responsible for the emer-
gence of Goldstone spin waves in a crystal and is
accompanied by a number of characteristic features
[2]. At the same time, it is well known that, in the
spectrum of spin waves in magnetically ordered ma-
terials, there appears a magnetoelastic gap as a result
of the interaction between spin and sound waves. In
work [3], the appearance of a magnetoelastic gap was
supposed to be associated with the violation of the
magnetic Hamiltonian symmetry due to the introduc-
tion of a magnetoelastic interaction. The correspond-
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ing calculations of spin spectra for this phenomenon
were carried out recently [4]; however, no comprehen-
sive study of the dispersion laws for coupled magne-
toelastic oscillations has been done.

Magnetoelastic interactions in uniaxial ferromag-
nets have been considered for rather a long time and
under various conditions [1,5]. However, the attention
was focused only on the ground state of the “easy
axis” type, which is not degenerate, whereas calcu-
lations for other magnetization directions were not
executed. Modern experimental data [6, 7] point to a
dependence of the elastic properties of materials on
the direction of an applied external magnetic field
and, accordingly, the magnetization direction of the
specimen. However, no consistent theoretical calcu-
lations for the dependence of the magnetoelastic in-
teraction on the magnetic state have been performed
for uniaxial ferromagnets as well. This fact stimulated
the author to carry out corresponding theoretical re-
searches.
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2. Dispersion Laws for Coupled
Magnetoelastic Waves in a Uniaxial
Ferromagnet

The phenomenological description of the dynamical
properties of a ferromagnetic crystal is based on the
expression for the free energy that reflects the corre-
sponding symmetry of a ferromagnet [1]. In order to
take the magnetoelastic interaction into account, the
total energy of the ferromagnet has to be written in
the form

𝐹 = 𝐹𝑚 + 𝐹𝑒 + 𝐹𝑚𝑒. (1)

Here, 𝐹𝑚 is the magnetic energy of the crystal. In
the case of uniaxial ferromagnet, it looks like [11]

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
− 1

2
𝐾1𝜇

2
𝑧 −

1

4
𝐾2𝜇

4
𝑧 −MH, (2)

where 𝛼 is the constant of the inhomogeneous ex-
change interaction (for simplification, the case 𝛼𝑖𝑘 =
𝛼 will be considered), 𝐾1 and 𝐾2 are the constants of
uniaxial anisotropy (all constants have a dimension-
ality of energy), M and H are the vectors of mag-
netization and external magnetic field, respectively,
𝜇 = M/𝑀0 is the normalized magnetization vector,
and 𝑀0 the saturation magnetization. The term 𝐹𝑒

in Eq. (1) is the elastic energy density, which looks
like [8]

𝐹𝑒 =
1

2
𝐶11(E𝑥𝑥 + E𝑦𝑦)

2 +
1

2
𝐶33E

2
𝑧𝑧 +

+𝐶13(E𝑥𝑥 + E𝑦𝑦)E𝑧𝑧 +

+2𝐶44(E𝑥𝑧 + E𝑦𝑧)
2 +

1

2
𝐶66(E

2
𝑥𝑥 + E2

𝑦𝑦 + 2E2
𝑥𝑦), (3)

where E𝑖𝑘 are components of the strain tensor,
and 𝐶𝑖𝑘 the elastic moduli of the second order for
the uniaxial crystal. Finally, the term 𝐹𝑚𝑒 in Eq. (1)
determines the interaction between the magnetic and
elastic subsystems [5, 9],

𝐹𝑚𝑒 =
1

2
𝐵11(𝜇

2
𝑥 + 𝜇2

𝑦)(E𝑥𝑥 + E𝑦𝑦)+

+
1

2
𝐵13𝜇

2
𝑧(E𝑥𝑥 + E𝑦𝑦) +

1

2
𝐵31(𝜇

2
𝑥 + 𝜇2

𝑦)E𝑧𝑧 +

+
1

2
𝐵33𝜇

2
𝑧E𝑧𝑧 +

1

2
𝐵44(𝜇𝑥𝜇𝑧E𝑥𝑧 + 𝜇𝑦𝜇𝑧E𝑦𝑧)+

+
1

2
𝐵66(𝜇

2
𝑥E𝑥𝑥 + 𝜇2

𝑦E𝑦𝑦 + 2𝜇𝑥𝜇𝑦E𝑥𝑦), (4)

where 𝐵𝑖𝑘 are the constants of magnetoelastic inter-
action in the case of uniaxial symmetry.

By minimizing the magnetic energy (2), it is possi-
ble to demonstrate that there are three ground states
for the magnetization vector in the uniaxial ferromag-
net without external magnetic field (H = 0):

(i) along the easy magnetization axis, M|| ⟨001⟩;
this is the “easy axis” phase; the corresponding con-
dition for its existence is 𝐾1 +𝐾2 > 0;

(ii) in the basis plane, e.g., M|| ⟨100⟩; this is the
“easy plane” phase; the corresponding condition of
existence is 𝐾1 < 0; and

(iii) at a certain angle with respect to the easy mag-
netization axis, which is determined by the expression
cos2 𝜃 = −𝐾1/𝐾2; this is the “angular phase”; the ex-
istence conditions are 𝐾2 < 0 and 0 < 𝐾1 < −𝐾2 [2].

The “easy plane” and “angular phase” ground states
are degenerate, and, without external magnetic field,
the spin wave spectra for them are gapless [2].

In real experiments aimed at studying the elastic
and magnetic properties, the external magnetic field
H is directed, as a rule, along the direction ⟨001⟩
or ⟨100⟩. Therefore, the corresponding ground states
“easy axis” and “easy plane” will be considered below.

In accordance with the standard phenomenological
description of the magnetic moment dynamics [1, 2],
small adiabatic oscillations of the magnetic moment
density 𝜇 of a ferromagnet are considered. In this
case, we may write

𝜇(r, 𝑡) = 𝜇0 +m(r, 𝑡), (5)

where m(r, 𝑡) are small deviations from the equilib-
rium value 𝜇0 owing to fluctuations, and the equilib-
rium value 𝜇0 of magnetization vector has the com-
ponents 𝜇0 = (0, 0, 1) in the “easy axis” case and
𝜇0 = (1, 0, 0) in the “easy plane” one.

Similarly to the magnetic moment 𝜇, the compo-
nents of the strain tensor E𝑖𝑘 can also be represented
as the sums of equilibrium values E0

𝑖𝑘 and correspond-
ing small deviations 𝜀𝑖𝑘:

E𝑖𝑘 = E0
𝑖𝑘 + 𝜀𝑖𝑘. (6)

The equilibrium values E0
𝑖𝑘 of the strain tensor com-

ponents for the ground states of a uniaxial ferro-
magnet can be easily determined from the condition
𝜕𝐹/𝜕E𝑖𝑘 = 0. Below, they will be presented for each
ground state separately. The inhomogeneous part of
the elastic strain tensor can be expressed in terms
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of the particle displacement vector U using the for-
mula [10]

𝜀𝑖𝑘 =
1

2

(︂
𝜕𝑈𝑖

𝜕𝑥𝑘
+

𝜕𝑈𝑘

𝜕𝑥𝑖

)︂
. (7)

The dispersion laws for coupled magnetoelastic
waves can be calculated with the help of the dynam-
ical equations for the magnetization vector 𝜇 (the
Landau–Lifshits equation),

𝜕m

𝜕𝑡
= −𝛾𝜇×Heff , (8)

and the particle displacement vector U [1, 8],

𝜌Ü = − 𝛿𝐹

𝛿U
, (9)

where Heff = −𝛿𝐹/𝛿M is the effective magnetic field,
𝛾 = 𝑔|𝜇𝐵 |/~ ≈ 2|𝜇𝐵 |/~ is the gyromagnetic ratio, and
𝜌 the material density.

For further calculations, let us expand the total
energy density (1) in a power series of small devia-
tions 𝑚𝑖 and 𝜀𝑖𝑘, substitute the result into the dy-
namical equations (8) and (9), linearize them, and
change to their Fourier transform components with
respect to the time 𝑡 and the coordinates r for
small deviations m = m0 exp {𝑖(kr− 𝜔𝑡)} and U =
= U0 exp {𝑖(kr− 𝜔𝑡)}, where 𝜔 is the frequency,
and k is the wave vector of collective waves. Then,
Eqs. (8) and (9) give rise to a system of six equations
for the components of the vectors m0 and U0. For
two ground states of a uniaxial ferromagnet, the cor-
responding systems are as follows.

The “easy axis” phase: H ‖ M ‖ ⟨001⟩.
In this ground state, there are the following non-

zero equilibrium values of components of the strain
tensor, which can easily be obtained from the condi-
tion 𝜕𝐹/𝜕E𝑖𝑘 = 0; namely,

E0
𝑥𝑥 = E0

𝑦𝑦 =
𝐵13𝐶33 −𝐵33𝐶13

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

,

E0
𝑧𝑧 =

−𝐵13𝐶13 −𝐵33(2𝐶11 + 𝐶66)

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

.

(10)

The system of dynamical equations looks like

(𝜌𝜔2 − (𝐶11 + 𝐶66)𝑘
2
𝑥 − 1

2
𝐶66𝑘

2
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2
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1
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1

4
𝐵44𝑘𝑧𝑚0𝑥 + 𝑖𝐵13𝑘𝑥𝑚0𝑧 = 0; (11a)

−
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1

2
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𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑥 +

+
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𝜌𝜔2 − 1

2
𝐶66𝑘

2
𝑥 − (𝐶11 + 𝐶66)𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑧 +

+ 𝑖
1

4
𝐵44𝑘𝑧𝑚0𝑦 + 𝑖𝐵13𝑘𝑦𝑚0𝑧 = 0; (11b)

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑥 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶44(𝑘𝑥 + 𝑘𝑦)
2 − 𝐶33𝑘

2
𝑧)𝑈0𝑧 +

𝑖
1

4
𝐵44𝑘𝑥𝑚0𝑥 + 𝑖

1

4
𝐵44𝑘𝑦𝑚0𝑦 + 𝑖𝐵33𝑘𝑦𝑚0𝑧 = 0; (11c)

− 𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑦 − 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑦𝑈0𝑧 +

+ 𝑖𝜔𝑚0𝑥 − 𝛾𝑀0𝜔𝑚‖𝑚0𝑦 = 0; (11d)

𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑧𝑈0𝑥 + 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑧 +

+ 𝛾𝑀0𝜔𝑚‖𝑚0𝑥 + 𝑖𝜔𝑚0𝑦 = 0; (11e)

𝑖𝜔𝑚0𝑧 = 0. (11f)

In expressions (11d) and (11e), the following notation
was introduced:

𝜔𝑚‖ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐾𝑚𝑒

𝑀2
0

+
𝐾1

𝑀2
0

+
𝐾2

𝑀2
0

, (12)

where 𝐾𝑚𝑒 = (𝐵11−𝐵13+𝐵66)E
0
𝑥𝑥+(𝐵11−𝐵13)E

0
𝑦𝑦 +

+(𝐵31 −𝐵33)E
0
𝑧𝑧.

The “easy plane” phase: H ‖ M ‖ ⟨100⟩.
The equilibrium values of strain tensor components

in this ground state look like

E0
𝑥𝑥 = − 𝐵66

4𝐶66
− 2𝐵31𝐶13 − 𝐶33(2𝐵11 +𝐵66)

4(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

,

E0
𝑦𝑦 =

𝐵66

4𝐶66
− 2𝐵31𝐶13 − 𝐶33(2𝐵11 +𝐵66)

4(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

, (13)

E0
𝑧𝑧 =

𝐵31(2𝐶11 + 𝐶66)− 𝐶13(2𝐵11 +𝐵66)

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

.
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The system of dynamical equations reads(︂
𝜌𝜔2 − (𝐶11 + 𝐶66)𝑘

2
𝑥 − 1

2
𝐶66𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑥 −

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑧 +

+ 𝑖(𝐵11 +𝐵66)𝑘𝑥𝑚0𝑥 + 𝑖
1

2
𝐵66𝑘𝑦𝑚0𝑦 +

+ 𝑖
1

4
𝐵44𝑘𝑧𝑚0𝑧 = 0; (14a)

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑥 +

+

(︂
𝜌𝜔2 − 1

2
𝐶66𝑘

2
𝑥 − (𝐶11 + 𝐶66)𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑧 +

+ 𝑖𝐵11𝑘𝑦𝑚0𝑥 + 𝑖
1

2
𝐵66𝑘𝑥𝑚0𝑦 = 0; (14b)

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑥 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶44(𝑘𝑥 + 𝑘𝑦)
2 − 𝐶33𝑘

2
𝑧)𝑈0𝑧 +

+ 𝑖𝐵31𝑘𝑧𝑚0𝑥 + 𝑖
1

4
𝐵44𝑘𝑥𝑚0𝑧 = 0; (14c)

𝑖𝜔𝑚0𝑥 = 0; (14d)

− 𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑧𝑈0𝑥 − 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑧 +

+ 𝑖𝜔𝑚0𝑦 − 𝛾𝑀0𝜔𝑚1⊥𝑚0𝑧 = 0; (14e)

𝑖
1

4𝑀0
𝛾𝐵66𝑘𝑦𝑈0𝑥 + 𝑖

1

4𝑀0
𝛾𝐵66𝑘𝑥𝑈0𝑦 +

+ 𝛾𝑀0𝜔𝑚2⊥𝑚0𝑦 + 𝑖𝜔𝑚0𝑧 = 0. (14f)

In expressions (14e) and (14f), the following notations
were introduced:

𝜔𝑚1⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
− 𝐾1

𝑀2
0

− 𝐾𝑚𝑒

𝑀2
0

,

𝜔𝑚2⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐵2
66

2𝑀2
0𝐶66

.

(15)

In the both cases, using the condition that the
determinant of the system of dynamical equations
should equal zero, we obtain the dispersion laws for
coupled magnetoelastic waves in the ground states of

a uniaxial ferromagnet. Let us consider a few direc-
tions for the wave vector of elastic waves, which are
used in experimental researches of sound waves in fer-
romagnets with uniaxial symmetry: along the “easy
axis” and in the “easy plane”.

The “easy axis” phase: H ‖ M ‖ ⟨001⟩.
The case k ‖ ⟨100⟩ or k ‖ ⟨010⟩:(︂
𝜔2− (𝐶11+𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2− 𝐶66

2𝜌
𝑘2
)︂[︃(︂

𝜔2− 𝐶44

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︃
= 0. (16)

The case k ‖ ⟨001⟩:(︂
𝜔2− 𝐶33

𝜌
𝑘2
)︂[︃

𝜔2

(︂
𝜔2− 2𝐶44

𝜌
𝑘2
)︂
(𝜔2− 𝛾2𝑀2

0𝜔
2
𝑚‖)−

−𝐵2
44

{︂
𝜔𝑚‖𝛾

2𝑘2

8𝜌

(︂
𝜔2 − 𝐶44

𝜌
𝑘2
)︂}︂]︃

= 0. (17)

The case k ‖ ⟨110⟩:(︂
𝜔2− (𝐶11+𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2− 𝐶66

2𝜌
𝑘2
)︂[︃(︂

𝜔2− 2𝐶44

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︃
= 0. (18)

The case k ‖ ⟨11̄0⟩ or k ‖ ⟨1̄10⟩:(︂
𝜔2 − (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2 − 𝐶66

2𝜌
𝑘2
)︂
×

×
[︂
𝜔2(𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︂
= 0. (19)

The “easy plane” phase: H ‖ M ‖ ⟨100⟩.
The case k ‖ ⟨100⟩ or k ‖ ⟨010⟩:(︂
𝜔2− (𝐶11+𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2− 𝐶44

𝜌
𝑘2
)︂[︃(︂

𝜔2− 𝐶66

2𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−𝐵2

66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︃
= 0.

(20)
The case k ‖ ⟨001⟩:(︂
𝜔2− 𝐶33

𝜌
𝑘2
)︂[︃

𝜔2

(︂
𝜔2− 2𝐶44

𝜌
𝑘2
)︂
×
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× (𝜔2− 𝛾2𝑀2
0𝜔

2
𝑚1⊥𝜔𝑚2⊥)−

−𝐵2
44

{︂
𝜔𝑚2⊥𝛾

2𝑘2

16𝜌

(︂
𝜔2 − 𝐶44

𝜌
𝑘2
)︂}︂]︃

= 0. (21)

The case k ‖ ⟨110⟩:(︂
𝜔2− 𝐶66

2𝜌
𝑘2
)︂(︂

𝜔2− 2𝐶44

𝜌
𝑘2

)︂[︃(︂
𝜔2− (𝐶11+𝐶66)

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−𝐵2

66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︃
= 0.

(22)
The case k ‖ ⟨11̄0⟩ or k ‖ ⟨1̄10⟩:

𝜔2

(︂
𝜔2 − 𝐶66

2𝜌
𝑘2
)︂[︃(︂

𝜔2 − (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−𝐵2

66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︃
= 0.

(23)

Hence, expressions (16)–(23) are dispersion laws
written in the general form for coupled magnetoe-
lastic waves in a ferromagnet with uniaxial symme-
try. By their structure, these dispersion equations are
standard [1, 10]. If the magnetoelastic interaction is
neglected (𝐵𝑖𝑘 → 0), they are transformed into the
classical dispersion laws for spin waves [1] and elastic
waves [8] in uniaxial crystals.

Interaction of sound modes with spin
waves in the ferromagnet with uniaxial symmetry

Sound mode and wave
vector direction

“Easy axis”
phase:

H||M|| ⟨001⟩

“Easy plane”
phase:

H||M|| ⟨100⟩

𝑠1
k|| ⟨100⟩ та k|| ⟨010⟩ 𝐵44 No interaction

𝑠2
k|| ⟨001⟩ 𝐵44 𝐵44

𝑠2
k|| ⟨110⟩ 𝐵44 No interaction

𝑠3
k|| ⟨100⟩ та k|| ⟨010⟩ No interaction 𝐵66

𝑠4
k|| ⟨110⟩ No interaction 𝐵66

𝑠4
k|| ⟨11̄0⟩ No interaction 𝐵66

3. Analysis of the Results
Obtained and Conclusions

The calculated dispersion laws for coupled magnetoe-
lastic waves in the ferromagnet with uniaxial sym-
metry [Eqs. (16)–(23)] make it possible to estimate
the influence of the magnetic subsystem on the elas-
tic properties of the crystal, namely, on the corre-
sponding elastic moduli. From those dispersion laws,
it follows that, in the uniaxial ferromagnet, the fol-
lowing sound modes interact with spin waves: 𝑠21 =
= 𝐶44/𝜌, 𝑠22 = 2𝐶44/𝜌, 𝑠23 = 𝐶66/2𝜌, and 𝑠24 =
= (𝐶11 + 𝐶66)/𝜌. At the same time, the sound mode
𝑠25 = 𝐶33/𝜌 does not interact at all with spin waves
in those ground states.

As a rule, the influence of the magnetoelastic inter-
action on any sound 𝑠𝑖 (and the corresponding elas-
tic modulus 𝐶𝑖𝑖) can be described by considering a
magnetoacoustic resonance at the corresponding fre-
quency 𝜔𝑝ℎ = 𝑠𝑖𝑘 [11, 12]. In this case, the dispersion
laws of coupled magnetoelastic oscillations are trans-
formed into the following dispersion equation, which
has a common form for all ground states and wave
vector directions:

(𝜔2 − 𝜔2
𝑝ℎ)(𝜔

2 − 𝜔2
𝑠𝑤)−𝐵2

𝑖𝑖𝜉 = 0, (24)

where 𝜔𝑠𝑤 is the spin wave frequency depending on
the magnetic state (𝜔𝑠𝑤 = 𝛾𝑀0𝜔𝑚‖ for the “easy
axis” ground state, and 𝜔𝑠𝑤 = 𝛾𝑀0(𝜔𝑚1⊥𝜔𝑚2⊥)

1/2

for the “easy plane” one), and 𝜉 ∼ 𝜔𝑚𝑖𝛾
2𝑘2

𝜌 is the co-
efficient of magnetoelastic interaction depending on
the direction of the magnetic moment in the crystal
and the wave vector direction of elastic vibrations.

For the uniaxial ferromagnet, as follows from
Eqs. (16)–(23), the dispersion laws are decomposed
in most cases into Eq. (24) and the spectra of the
sound mode, which, in the case concerned, do not
interact with spin waves. Hence, in those cases, the
estimation of the magnetoelastic interaction has no
frequency restrictions. Only in cases (17) and (21), it
is necessary to consider a magnetoacoustic resonance,
so that the frequencies should be selected close to
𝜔𝑝ℎ = (2𝐶44/𝜌)

1/2𝑘.
For the consideration to be more illustrative, let

us consider Table reflecting the presence of the mag-
netoelastic interaction for each sound mode depend-
ing on the direction of magnetic moment in the
uniaxial ferromagnet. If such an interaction takes
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place, the corresponding magnetoelastic constants are
indicated.

The solution of Eq. (24) looks like

𝜔2
± =

1

2

{︁
𝜔2
𝑝ℎ+ 𝜔2

𝑠𝑤± [4𝜉𝐵2
𝑖𝑖+ (𝜔2

𝑝ℎ− 𝜔2
𝑠𝑤)

2]1/2
}︁
. (25)

This dispersion law consists of two branches: quasi-
magnon and quasiphonon ones [11, 12]. From expres-
sion (25), we can easily see that, when the system ap-
proaches the magnetoacoustic resonance, 𝜔𝑠𝑤 → 𝜔𝑝ℎ,
it is the quantities 𝜉 and 𝐵𝑖𝑖 that govern the “re-
pulsion” between the quasimagnon and quasiphonon
branches.

From Table, one can also clearly see that the sound
modes 𝑠3 and 𝑠4 do not interact with spin waves in
the “easy axis” ground state, and the sound mode 𝑠1
with spin waves in the “easy plane” one. The mag-
netoelastic interaction between the sound and spin
waves is characterized exclusively by the constants
𝐵44 (the sound modes 𝑠1 and 𝑠2) and 𝐵66 (the sound
modes 𝑠3 and 𝑠4). All other magnetoelastic constants
correspond only to the formation of a magnetoelas-
tic gap in the spectrum of coupled oscillations [see
expressions (12) and (15)].

From expression (15), it also follows that the mag-
netoelastic interaction eliminates the degeneration of
the “easy plane” ground state [4]. The degeneration
disappears both in the absence of an external mag-
netic field and even in the case of isotropic magnet
(𝐾1 = 0), which is in complete agreement with gen-
eral principles expounded in work [3] and the results
obtained in work [4].

From the dispersion laws (16)–(23), it also follows
that the coefficient of magnetoelastic interaction 𝜉
can depend not only on the magnetic state, but also
on the direction of the wave vector of elastic vibra-
tions (i.e., in cases (17) and (21), the parameter 𝜉
has different values). Nevertheless, it is worth noting
that, in the case of uniaxial symmetry, this depen-
dence manifests itself to a less extent than in a cubic
ferromagnet [11, 12].
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О.Г.Данилевич

ВЗАЄМОДIЯ ПРУЖНИХ ТА СПIНОВИХ
ХВИЛЬ В ФЕРОМАГНЕТИКУ ОДНООСНОЇ СИМЕТРIЇ

Р е з ю м е

Розраховано закони дисперсiї зв’язаних магнiтопружних
хвиль для основних станiв “легка вiсь” та “легка площина”
феромагнетика одноосної симетрiї. Показано, що в даних
основних станах не всi звуковi моди взаємодiють iз спiно-
вим хвилями. Отриманi закони дисперсiї показують, що ко-
ефiцiєнт магнiтопружної взаємодiї залежить як вiд напрям-
ку магнiтного моменту феромагнетика, так i вiд напрямку
хвильового вектора пружних коливань. Показано, що ма-
гнiтопружна взаємодiя мiж звуковими та спiновими хвиля-
ми в одноосному феромагнетику характеризується виклю-
чно константами 𝐵44 та 𝐵66, iншi магнiтопружнi константи
вiдповiдають тiльки за формування магнiтопружної щiли-
ни у спектрi зв’язаних коливань.
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