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WAVES IN A UNIAXITAL FERROMAGNET

The dispersion laws of coupled magnetoelastic waves have been calculated for all ground states
in a uniazial ferromagnet. The magnetoelastic interaction is shown to take place not for all
sound modes in those ground states. The obtained dispersion laws testify that the magnetoe-
lastic interaction coefficient depends on both the magnetization direction and the wave vector
direction. It is demonstrated that the magnetoelastic interaction between sound and spin waves
in the uniazxial ferromagnet is characterized by the constants Bas and Beg, whereas the other
magnetoelastic constants govern only the formation of a magnetoelastic gap in the spectrum

of coupled waves.
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1. Introduction

Researches of ferromagnets with uniaxial symmetry
is of special interest, because there exist degenerate
ground states for them, in which the magnetic mo-
ment is not directed along the easy axis [1, 2] and
the spectrum of spin waves in those ground states is
gapless. This phenomenon is responsible for the emer-
gence of Goldstone spin waves in a crystal and is
accompanied by a number of characteristic features
[2]. At the same time, it is well known that, in the
spectrum of spin waves in magnetically ordered ma-
terials, there appears a magnetoelastic gap as a result
of the interaction between spin and sound waves. In
work [3], the appearance of a magnetoelastic gap was
supposed to be associated with the violation of the
magnetic Hamiltonian symmetry due to the introduc-
tion of a magnetoelastic interaction. The correspond-
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ing calculations of spin spectra for this phenomenon
were carried out recently [4]; however, no comprehen-
sive study of the dispersion laws for coupled magne-
toelastic oscillations has been done.

Magnetoelastic interactions in uniaxial ferromag-
nets have been considered for rather a long time and
under various conditions [1,5]. However, the attention
was focused only on the ground state of the “easy
axis” type, which is not degenerate, whereas calcu-
lations for other magnetization directions were not
executed. Modern experimental data [6, 7] point to a
dependence of the elastic properties of materials on
the direction of an applied external magnetic field
and, accordingly, the magnetization direction of the
specimen. However, no consistent theoretical calcu-
lations for the dependence of the magnetoelastic in-
teraction on the magnetic state have been performed
for uniaxial ferromagnets as well. This fact stimulated
the author to carry out corresponding theoretical re-
searches.

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 11



Interaction of Elastic and Spin Waves

2. Dispersion Laws for Coupled
Magnetoelastic Waves in a Uniaxial
Ferromagnet

The phenomenological description of the dynamical
properties of a ferromagnetic crystal is based on the
expression for the free energy that reflects the corre-
sponding symmetry of a ferromagnet [1]. In order to
take the magnetoelastic interaction into account, the
total energy of the ferromagnet has to be written in
the form

F=F,+F +F,. (1)

Here, F,, is the magnetic energy of the crystal. In
the case of uniaxial ferromagnet, it looks like [11]

g, - 2o op 1
™9 Oy Oz 2

1
Kyp2 - ZKZM;L — MH, (2)

where « is the constant of the inhomogeneous ex-
change interaction (for simplification, the case ) =
a will be considered), K and K5 are the constants of
uniaxial anisotropy (all constants have a dimension-
ality of energy), M and H are the vectors of mag-
netization and external magnetic field, respectively,
uw = M/M; is the normalized magnetization vector,
and M, the saturation magnetization. The term F,
in Eq. (1) is the elastic energy density, which looks
like [8]

1 1
F, = iOll(Ew +E,,)% + 503313; +
+ 013(Ex;v + Eyy)Ezz +
+2C44(E,. +E )2+10 (E2, +E2, +2E2), (3)
44\ Lz Yz 9 66\ Dy Yy xy /)

where E;; are components of the strain tensor,
and C;, the elastic moduli of the second order for
the uniaxial crystal. Finally, the term F,,. in Eq. (1)
determines the interaction between the magnetic and
elastic subsystems [5, 9],

1
Fine = §Bll(ﬂi + ﬂz)(EIm + Eyy) +

1 1
+ 5313U3(Em +Eyy) + 5331(,“92: + N;)Ezz =+

1 1
+ §B33/~L§Ezz + §B44(,U/x,u/zsz + ,U/y,u/zEyz) +

1
+ 5 B (12 B + 15 Byy + 24ttty Bay), (4)
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where B;i are the constants of magnetoelastic inter-
action in the case of uniaxial symmetry.

By minimizing the magnetic energy (2), it is possi-
ble to demonstrate that there are three ground states
for the magnetization vector in the uniaxial ferromag-
net without external magnetic field (H = 0):

(i) along the easy magnetization axis, M]|| (001);
this is the “easy axis” phase; the corresponding con-
dition for its existence is K + Ko > 0;

(ii) in the basis plane, e.g., M|| (100); this is the
“easy plane” phase; the corresponding condition of
existence is K; < 0; and

(iii) at a certain angle with respect to the easy mag-
netization axis, which is determined by the expression
cos? § = — K /Kj; this is the “angular phase”; the ex-
istence conditions are Ky < 0 and 0 < K < —Kj [2].

The “easy plane” and “angular phase” ground states
are degenerate, and, without external magnetic field,
the spin wave spectra for them are gapless [2].

In real experiments aimed at studying the elastic
and magnetic properties, the external magnetic field
H is directed, as a rule, along the direction (001)
or (100). Therefore, the corresponding ground states
“easy axis” and “easy plane” will be considered below.

In accordance with the standard phenomenological
description of the magnetic moment dynamics [1, 2],
small adiabatic oscillations of the magnetic moment
density p of a ferromagnet are considered. In this
case, we may write

,u(r7 t) = Mo + m(r, t)a (5)

where m(r,t) are small deviations from the equilib-
rium value py owing to fluctuations, and the equilib-
rium value pg of magnetization vector has the com-
ponents g = (0,0,1) in the “easy axis” case and
o = (1,0,0) in the “easy plane” one.

Similarly to the magnetic moment p, the compo-
nents of the strain tensor E;; can also be represented
as the sums of equilibrium values E; and correspond-
ing small deviations &;;:

Eir. = E?k + €ik- (6)

The equilibrium values EY, of the strain tensor com-
ponents for the ground states of a uniaxial ferro-
magnet can be easily determined from the condition
OF /OE;;, = 0. Below, they will be presented for each
ground state separately. The inhomogeneous part of
the elastic strain tensor can be expressed in terms
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of the particle displacement vector U using the for-
mula [10]

1 /0U; oUy
Z‘ = — . 7
The dispersion laws for coupled magnetoelastic
waves can be calculated with the help of the dynam-

ical equations for the magnetization vector u (the
Landau-Lifshits equation),

Oom
M i X Heg, 8
5 = 0 x Hea (8)
and the particle displacement vector U [1, §],

.. OoF

=2 9
p 50 (9)

where Hog = —0F'/0M is the effective magnetic field,
v = glup|/h ~ 2|up|/his the gyromagnetic ratio, and
p the material density.

For further calculations, let us expand the total
energy density (1) in a power series of small devia-
tions m; and g;, substitute the result into the dy-
namical equations (8) and (9), linearize them, and
change to their Fourier transform components with
respect to the time t and the coordinates r for
small deviations m = mgexp {i(kr — wt)} and U =
= Ugexp{i(kr — wt)}, where w is the frequency,
and k is the wave vector of collective waves. Then,
Egs. (8) and (9) give rise to a system of six equations
for the components of the vectors mg and Ujy. For
two ground states of a uniaxial ferromagnet, the cor-
responding systems are as follows.

The “easy axis” phase: H || M || (001).

In this ground state, there are the following non-
zero equilibrium values of components of the strain
tensor, which can easily be obtained from the condi-
tion OF /0E;, = 0; namely,

E0 _ g0 — By3C33 — B33Chs
WY 2(202 — C33(2011 + Cee))’

—B13C13 — B33(2C11 + Ceg)
2(2075 — C33(2C11 + Cg))

(10)

B, =
The system of dynamical equations looks like
(pw? — (C11 + Cog)kz — %CGGki — Cuak2)Uos —
- ((Cn " ;066) ok, + cmi) Uy~

1128

— ((C13 + Caa)kyk, + Cuakyk,)Uo, +

1
+ i1B44kzmo$ + iBi3kymo, = 0;

1
- ((Cn + 2066> kyky + 044]?3) Uo, +

1
+ pr - 5056]{920 — (011 + Cﬁﬁ)kz — O44k§) on -

(11a)

—((C13 + 044)ky/<iz + Cyakyk,)Uo, +
+ iiB44kzmoy + iB13kymo. = 0; (11b)
— ((C13 + Caa)kyk, + Cuakyk,)Upy —

— ((C13 + Cua)kyk, + Caakyk.)Uoy +

+ (pw? = Cua(ky + ky)? — C33k2) U, +

1 1
i1B44kzm0I + 11B44kym0y + ingkymoZ = O, (11(3)

1 1
— i——~Busk Uyy — i———~vBask, U
Z4MO’Y 44 Oy Z4M0W 44kyUg, +

+iwmoge — Y Mowy, Moy = 0; (11d)
. o1

14MO’YB44/€ZU0:C + Z4MOVB44ka0z +

+ Y Mowy,mog + iwmgy = 0; (11e)
twmg, = 0. (11f)

In expressions (11d) and (11e), the following notation
was introduced:

Oék/’Q + H + Kme Kl K2
ME M, T ME T MZ T ME

Wrn|| = (12)

where K, = (B11—Bis+Bgs)E,+(Bi11—Bis)Ej, +
+ (Bs1 — Bs3)E?,.

The “easy plane” phase: H | M || (100).

The equilibrium values of strain tensor components
in this ground state look like

o _ _ Bes  2B51Chs — C33(2B11 + Beo)
e 4C%6 4(20123 — 033(2011 + 066)) ’
po _ DPes _ 2B51Cis — C33(2B11 + Beo)

YW 4Ces  4(2C%; — C53(2C11 + Cge))
_ B31(2C11 + Ces) — C13(2B11 + Bee)
= 2(20% — C33(2C1 + Ces))
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The system of dynamical equations reads

(pw2 — (C11 + Cgp)k2 — %CGGICZ - 044k§> Uoe —
- ((cn T ;cﬁﬁ) Kok, + 044k:§> Uny ~
— ((C13 + Caa)kzk, + Cuakyk,)Uo, +
+i(B11 + Beg)kemog + i%BGkamOy +
-HiB44kzm0z = 0;

_ ((cn + ;c%) koky + 044k§> Uos +

(14a)

1
+ (pw2 _ icﬁﬁkg - (011 + C66)k§ - C44k§> on _

— ((Clg + C44)/€ykz + C44kzkz)U0z +

1
+iB11kymogz + 7;§B66kwm0y =0 (14b)
— ((C13 + Caa)kyk, + Cuaakyk.)Uoy —
- ((CIS + C44)kykz + C44kzkz)UOy +
+ (pw? — Cua(ky + ky)* — Cs3k2) Uy +
1
+iB31k,mog + iZB44k:meZ =0; (14C)
twmog = 0; (144)
1
—1 B kz r ——B kx z
Z4M07 14k-Uo Z4MOW 14k Uo +
+iwm0y — vMome_moZ = 0; (148)
L BogkyUne + i——~Bogkaloy +
Z4MO’Y 667y U0z Z4M0V 6672 Uoy
+7M0wm2Lm0y + iwmg, = 0. (14f)

In expressions (14e) and (14f), the following notations
were introduced:

OLkQ H Kl Kme

R V- T VA 15
ak? H B2 (15)
Wm2l = == + — + 575 ~—-
M2 My  2M2Cee

In the both cases, using the condition that the
determinant of the system of dynamical equations
should equal zero, we obtain the dispersion laws for
coupled magnetoelastic waves in the ground states of
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a uniaxial ferromagnet. Let us consider a few direc-
tions for the wave vector of elastic waves, which are
used in experimental researches of sound waves in fer-
romagnets with uniaxial symmetry: along the “easy
axis” and in the “easy plane”.

The “easy azis” phase: H || M || (001).

The case k || (100) or k || (010):

(w2 ~ (C11+Cis) kz) <w2 C66k2> (w2 C44kz) %
p 2p p

2k2
x (W? = *Mgw?,) — Bl {wmw }1 =0.

16 (16)

The case k || (001):
C 2C.
(w2_ 331&) lw2 (wz_ 44 kz) (W= 2 MR, ) -
p p

21.2
WYk Cua
-B? {' (& _ k;z)} —0.
14 8p P

The case k || (110):

(w2 _ My) <w2 _ O%k2> (w2 2044 kz) "
P 2p P

2k2
X (w? — 'yQMgwan) - B {W}] =0. (18)

(17)

16p

The case k || (110) or k || (110):

(Uﬂ _ (CU"_C(“”)]{?) (w2 _ 066192> «
g 2 2.2
WYk

X [WQ(WZ — 7 Mgwr,) — By {1|6p}] =0. (19)

The “easy plane” phase: H || M || (100).
The case k || (100) or k || (010):

w?— 7(011+066)k2 w?— %lf w?— %kQ X
p p 2p

W 22
X (w2 — 'yQMgwmlele) - Bgﬁ {M’Y}] =0.

The case k || (001):

(w2 — C33k‘2> w? <w2 — 2Cu k;2> X
P p
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2 2272 2
- Mowmuwmu) -

271.2
Wm217Y k 2 C44 2
—p2 lrme 7 v By =0.
44{ 16p <w P >}] !

The case k || (110):

(o= S 250)
2p p

Wi 2k2
X (w2 — szgwmu_wng_) — Bge {Uﬁ}] =0.

X (w

p

The case k || (110) or k || (110):

w2 (w2 _ C66k2) (WQ _ (CH_FC%)kQ) «
2p p

W 2k2
X (w2 — 72M§wmu_wmu) — BgG {m}] =0.
(23)

Hence, expressions (16)—(23) are dispersion laws
written in the general form for coupled magnetoe-
lastic waves in a ferromagnet with uniaxial symme-
try. By their structure, these dispersion equations are
standard [1, 10]. If the magnetoelastic interaction is
neglected (B — 0), they are transformed into the
classical dispersion laws for spin waves [1] and elastic
waves [8] in uniaxial crystals.

Interaction of sound modes with spin
waves in the ferromagnet with uniaxial symmetry

“Easy axis” “Easy plane”
Sound mode and wave . .
. . phase: phase:
vector direction H|[M]|| (001) H|[M]| (100)
S1
k|| (100) Ta k|| (010) Baa No interaction
52
k|| (001) Bua By
52
k|| (110) Bua No interaction
S3
k|| (100) Ta k|| (010) No interaction Bgs
S4
k|| (110) No interaction Bess
5S4
k|| (110) No interaction Bes

1130
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3. Analysis of the Results
Obtained and Conclusions

The calculated dispersion laws for coupled magnetoe-
lastic waves in the ferromagnet with uniaxial sym-
metry [Eqgs. (16)—(23)] make it possible to estimate
the influence of the magnetic subsystem on the elas-
tic properties of the crystal, namely, on the corre-
sponding elastic moduli. From those dispersion laws,
it follows that, in the uniaxial ferromagnet, the fol-
lowing sound modes interact with spin waves: s3 =
= Cu/p, s5 = 2Cu/p, 55 = Cos/2p, and si =
= (C11 + Cs6)/p- At the same time, the sound mode
sg = (Cs3/p does not interact at all with spin waves
in those ground states.

As a rule, the influence of the magnetoelastic inter-
action on any sound s; (and the corresponding elas-
tic modulus Cy;) can be described by considering a
magnetoacoustic resonance at the corresponding fre-
quency wpp = s;k [11,12]. In this case, the dispersion
laws of coupled magnetoelastic oscillations are trans-
formed into the following dispersion equation, which
has a common form for all ground states and wave
vector directions:

(w? —w?,)(@? —w?,) — B2 =0, (24)
where wy,, is the spin wave frequency depending on
the magnetic state (wsw = YMowm| for the “easy

axis” ground state, and wg,, = vMo(wmu_wmu)l/Z

for the “easy plane” one), and £ ~ “””%72]“2 is the co-
efficient of magnetoelastic interaction depending on
the direction of the magnetic moment in the crystal
and the wave vector direction of elastic vibrations.

For the uniaxial ferromagnet, as follows from
Egs. (16)—(23), the dispersion laws are decomposed
in most cases into Eq. (24) and the spectra of the
sound mode, which, in the case concerned, do not
interact with spin waves. Hence, in those cases, the
estimation of the magnetoelastic interaction has no
frequency restrictions. Only in cases (17) and (21), it
is necessary to consider a magnetoacoustic resonance,
so that the frequencies should be selected close to
wph = (2Caa/p)" k.

For the consideration to be more illustrative, let
us consider Table reflecting the presence of the mag-
netoelastic interaction for each sound mode depend-
ing on the direction of magnetic moment in the
uniaxial ferromagnet. If such an interaction takes
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place, the corresponding magnetoelastic constants are
indicated.
The solution of Eq. (24) looks like

Wi = 3 fudnt Bt EBR+ (W3- w212 (29)
This dispersion law consists of two branches: quasi-
magnon and quasiphonon ones [11,12]. From expres-
sion (25), we can easily see that, when the system ap-
proaches the magnetoacoustic resonance, wsy — Wph,
it is the quantities & and B;; that govern the “re-
pulsion” between the quasimagnon and quasiphonon
branches.

From Table, one can also clearly see that the sound
modes s3 and s4 do not interact with spin waves in
the “easy axis” ground state, and the sound mode s;
with spin waves in the “easy plane” one. The mag-
netoelastic interaction between the sound and spin
waves is characterized exclusively by the constants
Byy (the sound modes s; and s3) and Bgg (the sound
modes s3 and s4). All other magnetoelastic constants
correspond only to the formation of a magnetoelas-
tic gap in the spectrum of coupled oscillations [see
expressions (12) and (15)].

From expression (15), it also follows that the mag-
netoelastic interaction eliminates the degeneration of
the “easy plane” ground state [4]. The degeneration
disappears both in the absence of an external mag-
netic field and even in the case of isotropic magnet
(K; = 0), which is in complete agreement with gen-
eral principles expounded in work [3] and the results
obtained in work [4].

From the dispersion laws (16)—(23), it also follows
that the coefficient of magnetoelastic interaction &
can depend not only on the magnetic state, but also
on the direction of the wave vector of elastic vibra-
tions (i.e., in cases (17) and (21), the parameter &
has different values). Nevertheless, it is worth noting
that, in the case of uniaxial symmetry, this depen-
dence manifests itself to a less extent than in a cubic
ferromagnet [11,12].
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O.I. Jlanunresun

B3AEMO/IA ITPY2KHUX TA CIITHOBUX
XBWJIb B PEPOMATHETUKY OJHOOCHOI CUMETPII

Peszmowme

PoszpaxoBano 3akoHm jucrepcil 3B’siI3aHHUX MAarHITOIPYKHUX
XBUWJIb JIJIsi OCHOBHMX CTaHIB ‘Jierka Bich’ Ta ‘Jierka mjomuHa’
depomarseruka omHoocHol cumerpil. [lokazaHo, 1o B maHux
OCHOBHUX CTaHaX He BCi 3ByKOBI MOJIM B3a€MOIIOTH i3 CIIiHO-
BuM XBuisiMu. OTpuMaHi 3aKOHU JIUCIIEPCil TOKA3YTh, 110 KO-
edilieHT MarHiTONPY>KHOT B3a€MOZi1 3aJIE2KUTH SK BiJl HAIIPSIM-
Ky MarHiTHOrO MOMEHTY (bepOoMarHeTuKa, Tak i BijJ HAIIPAMKY
XBUJILOBOI'O BEKTOPA MPYXKHUX KOJMBaHb. [lokaszaHo, 1m0 Ma-
THITONIPY?KHA B3a€MO/Iisl Mi’K 3ByKOBHUMH Ta CIIIHOBUMU XBUJISI-
MH B OJJHOOCHOMY (DEPOMArHETHKY XapaKTEePU3YEThCsI BUKJIIO-
9HO KOHCTaHTaMu Bgg4 Ta Bgg, iHII MarsiTonpy»kHi KOHCTaHTH
BIJIIOBIIaIOTh TLIBKK 32 (POPMYBaHHS MArHiTONPY>KHOI IIiJIK-
HU y CIEKTPi 3B’sI3aHUX KOJIMBAaHb.
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