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STRUCTURE FUNCTIONS OF MANY-BOSON
SYSTEM WITH REGARD FOR DIRECT THREE-
AND FOUR-PARTICLE CORRELATIONS

On the basis of the expression for the density matrix of interacting Bose particles in the
coordinate representation with regard for the direct three- and four-particle correlations
[1.0. Vakarchuk and O.I. Hryhorchak, J. Phys. Stud. 8, 3005 (2009)], the two-, three-, and
four-particle structure factors of liquid * He in a wide temperature interval were calculated in
the approximation “one sum over the wave vector”. In the low-temperature limit, the expres-
ston obtained for the two-particle structure factor transforms into the well-known one. In the
high-temperature limit, the expressions for the two-, three-, and four-particle structure factors
are reduced to those for the ideal Bose gas. The results obtained can be applied to calculations
of the thermodynamic functions of liquid *He and to the determination of the temperature

dependence of the first-sound velocity in a many-boson system.
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1. Introduction

The researches of structure functions play an impor-
tant role in studying the Bose and Fermi systems, be-
cause the results obtained theoretically can be com-
pared directly with experimental data. The central
role in the structural researches of those systems be-
longs to the total scattering cross-section, which is
called the dynamic structure factor. This parameter
makes it possible to determine both the spatial struc-
ture of the substance and the structure of its energy
spectrum [1,2]. With its help, as well as with the help
of its derivatives, a lot of different systems are studied
today, e.g., the Bose gas in a trap [3], liquid *He [4]
and *He [5] in two dimensions, solid *He [6], thin films
[7], Lennard-Jones rarefied gas [8], superfluid helium
[9], parahydrogen [10], models with turbulence [11],
and so forth.

Besides the dynamic structure factor, not less im-
portant is its zeroth moment or the static struc-
ture factor, which has been measured a lot of times
in a wide temperature interval. The researches were
carried out at the saturated vapor pressure within
the neutron [12] and X-ray [13] diffraction meth-
ods. Experimental works on the structure factor mea-
surement were analyzed, e.g., in work [14], where cor-
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rections were also proposed in order to coordinate
results of various authors. The Monte-Carlo method
was applied to study the region around the structure
factor peak in a Bose condensate, and the peak was
shown to locate higher than the theoretical value ob-
tained in the framework of the low-density approxi-
mation [15]. The contribution of three-particle corre-
lations to the structure factor of liquid *He was found
in work [16], and a procedure of calculation of the
effective pair potential on the basis of experimental
data obtained for the structure factor and with the
help of the Monte-Carlo simulation scheme was pro-
posed in work [17]. Among structure functions, we
also mention the pair correlation function, which is
one of the key quantities characterizing the coherent
properties of a Bose condensate [18].

In this work, we aimed at finding not only the pair
structure factor, but also expressions for the three-
and four-particle structure factors in the approxi-
mation “one sum over the wave vector”. This result
should help us, in turn, to simplify calculations of
the thermodynamic functions of a Bose system in the
approximation “two sums over the wave vector” and
to facilitate the solution of the still unsolved task to
describe such a system as liquid “He in a wide tem-
perature interval and, especially, in a vicinity of the
A-transition.
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The structural properties of liquid *He at low tem-
peratures have been discussed for a long time in the
framework of the collective variable approach [19-
23]. However, a theoretical calculation of the pair
structure factor in a wide temperature interval has
been carried out only recently in work [24], by taking
advantage of the averaging with the density matrix
of interacting Bose particles. Later on, the structure
functions in a wide temperature interval were also
described in other works [25]. However, the authors
of the cited works calculated the average values in
the framework of the density matrix approach and
in the pair correlation approximation, so that the
pair structure factor was obtained in the same ap-
proximation. The agreement with experimental data
for the pair structure factor [12, 13, 26] is good in
this case, but incomplete, because, as is known, the
contribution of many-particle correlations to the ob-
served quantities of a many-boson system can turn
out rather substantial [22, 27, 28].

In works [25], the irreducible two-, three-, and four-
particle structure factors, as well as the pair distribu-
tion function, were calculated in a wide temperature
interval making allowance for only the indirect three-
and four-particle correlations. The obtained theoret-
ical results can be improved by taking direct correla-
tions into account as well. However, in this case, the
indicated quantities have to be calculated with the
density matrix containing not only the pair, but also
three- and four-particle direct correlations. This task
is a purpose of this work. In our calculations, we will
base on the approaches proposed in our earlier works
[29, 30] and the results obtained there; in particular,
these are the expressions for the density matrix and
the partition function for a many-boson system in a
wide temperature interval and the methods of their
calculation in the approximation “two sums over the
wave vector”.

An important feature of this work is a graphic pre-
sentation of the results obtained. As a rule, numeri-
cal calculations are carried out for this purpose. The
input data at such calculations include experimental
results for the structure factor extrapolated to the ab-
solute zero temperature. The general scheme of spec-
ulations on this topic and the corresponding results
can be found in work [31]. Continuing the issue of nu-
merical calculations, it is worth paying attention to
work [32], where the interatomic interaction poten-
tials were restored on the basis of experimental data
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(as was done in work [31]), and the thermodynamic
and structural properties of *He were studied.

The numerical calculation of the pair structure fac-
tor was carried out taking the effective mass into ac-
count. The expression for the latter was given in work
[33]. A necessity of its introduction was substantiated
in work [25].

The expression obtained for the two-particle struc-
ture factor transforms into an already found one
for the low-temperature limit [21]. In the high-
temperature limit, the expression for the two-, three-,
and four-particle structure factors are reduced to
the corresponding structure factors of the ideal Bose
gas. The two-particle structure factor obtained in the
approximation “one sum over the wave vector” also
opens a way to finding the temperature dependence
of the first-sound velocity in liquid “He and to com-
paring it with experimental data.

2. n-Particle Structure
Factors for a Many-Boson System

According to the definition, the n-particle structure
factor equals

S(n)(pqu XD pqn) = Nn/z_l(ﬂqr-voqn),

where N is the Pqg =
= \/iﬁ Z;vzl e~ are collective variables, and the

number of particles,

notation (...) means the averaging with the density
matrix of interacting Bose particles. In the calcula-
tions to follow, the density matrix in the approxima-
tion “two sums over the wave vector” with the fac-
torized density matrix of the ideal Bose gas will be
used. This approximation involves the direct three-
and four-particle correlations, and the matrix itself
looks like

R(plp') = R (r[r") Por(plp") P(plp"),

where RY (r|r’) is the density matrix for noninter-
acting Bose particles, P,.(p|p’) a factor taking into
account pair correlations, and P(p|p’) a factor taking
the direct three- and four-particle correlations into
account. In particular,

1 N
0 / _
By (i) = 3 (27rﬁh2) .
X Z exp
Q

N
m
T 93n2 § :(r; —rq,)% |,
J=1
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where the summation over ) means the summation
over all permutations of particle coordinates. The fac-
tor which makes allowance for pair correlations looks
like [34]

Py (plp') = exp [bo + ) bi(9)pg'p-q—
a70

- % Z b2(Q)PqP—q}

q#0
where
BE

1 ag tanh ( 5 q)
boz—ﬁE(ﬁ-*Zln +

2 q#0 tanh (65(1)

1 — e Pea

Jern <1 — eﬁEq>’

1 o 1
bi(q) = 3 (sinh(;Eq) B Sinh(ﬁsq))
= % (aq coth(BE,) — coth(Bey)),

:\/1+qu
2.2

Eq=eq0q =

—
om v

vy = /e‘iq”q)(r)dr

is the Fourier coefficient of the pair interaction energy
between particles, and = 1/T is the inverse tem-
perature. An expression for P(p|p’) was presented in
work [29]. Its simplified version can be found in Ap-
pendix 1. As a result, we obtain

)= %/drl.../drNx

X R (r[7) Por (p0) P(pl0) payy P, =

1
= E/drl.../drNR?V(Hr)pql...pqn X

X exp [bo— Z AgPaP— q—i—C’o—l—QZ Ca(q
q#0 q#0

\F Z Z Z Cs( Q1,QZ,Q3)Pq1Pq2an +

a170 9270 q3#0
q1+q2+q3=0

<pq1 --Pay

a)pap—q+
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2
+N Z Z 04((11aQQ)pqlp_qlqup_q2‘|, (1)

170 g2#£0

where

Ag = 2ba(q) — bi(q) =

= oy tanh (gEq) — tanh (gaq).

Explicit expressions for the quantities Cy, Co(q1),

C3(d1,492,493), and Cy(qi,qz) are given in Ap-
pendix 2. They can be obtained using the data quoted
in Appendix 1.

3. Pair Structure Factor

In the case of pair structure factor (n = 2), expression
(1) can be rewritten in the form of a derivative with
respect to the parameter A,:

ln{/drl /drNRO r|r) x
X exp lbo ~3 Z AgPaP—q P(p|p)}.

q#0
In the adopted approximation “two sums over the
wave vector” this expression can be written as fol-

lows:
m{/ dry.. /drNRO

X €xp [bo 3 Z AgPaP—q } + % In {(P(plp))}-
a#0

(Pap—a)

<Pq,0 q

The expression for the first term was given in works
[25]. The average (P(p|p)) looks like

(P(plp)) =

_ Jdry... [deyRY (v, ..., rN|r1, ...
Jdry... [drn RS (rq, ...,

It can be obtained on the basis of work [30] as follows:

So(q1)

;N ) Ppr(plp) P(plp)
rn) By (plp)

rylry, ...,

(P(olp)) xp{ . g ()
2 Sola) _ So(az)

+ — C , n
ngoq%;o a(a Q2)1+/\q150(q1) 1+, 50(g2)
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2 C’s(ql,CI2,Q3)S((]3)(Q1,Q2>QB)
DI ; +

Q170 270 q3#0 [T11+ Mg, So(as)]
q1+92+q3=0 i=1
12 3
+NZ Z ZC:?(%,Q%OB H 1+>\ So(q )]}
q17#0 q27#0 q3#0 1:1 qi i
q1+q2+q3=0

Therefore, using the explicit form for (P(p|p)) and
the results of works [25], we obtain

S(ql) = <p€hp7q1> =
__ Sola) 1
14+ Mg, So(q1)  [14+ Ag, So(q1)]?
@ B
% (2}\] Z )‘kzsol(%): ;3117:2, ks) n
ka0 + Ak, So(k2)
)\kz )\kg
+ N X
¥ o TS T @)
q1+ka+kz=0

(3) 2 2
% [587 (a1, ke ks)| 4+ 4Ca(an) SEan) +

n Z Z Cs Q1,k2,k3)5(§3)(Q1,k2,k3)
1+ Mgy So(k2)][1 + Ay So(ks)]
ko7#0 kg #0 2 8
q1+ka+k3=0

8
+NS§(Q1) Z Calar, k)
K2 #0

+~ Sofhzz

ko#0 k3 £0
q1+ka+kz=0

So(k2)
L+ A, So(kz)

C3(ar, ko, k3)So(k2)So (ks ))
[L+ Ak, So (K2)|[14 kg So (K3)] )

+

(2)

Supposing the terms with a single sum to be small
in comparison with the quantity corresponding to
the pair correlation approximation, the two-particle
structure factor can be written in the form

50(Q1)

S = , M, =107 + 112,
D)= T, T )Soa) d
where
1 Ak S (Qh —q1, ko, —k2)
an o 2 ) B
2N S§(q1) Z L+ Ak, So(kz)

ko0

Akg Aks [S (q1, ko, k3)} i

1
"~ 2NS3(q1) kgo kz?éo [14+ Ak, So(k2)][1+ Ak, So(g3)]

q1+ka+k3=0
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is the contribution of indirect three- and four-particle
correlations, and

8 Z Ca(ai, ko)So(k2)
N 1+ AkQSO(kQ)

Z Z Cs(qn, ko, k) S8 (an, ke, ks) _
NSO Q1 ka0 k3 £0 1+Ak2S0 kz)][l‘f’)\k&S()(k'g)]
q1+ko+ks=0
Z Z C3 Q17k27k3)50(/€2)50(k3)

q1+ka+k3=0

Hgl = —402((11) —

ko0

is the contribution of direct three- and four-particle
correlations.

Expression (1) for the three-particle structure fac-
tor can be presented in the form

VN §In(P(plp))

<pQ1pQ2pCI3> - 2 503((11aQQ,Q3).

A direct calculation on the basis of the previous for-
mula gives the following result:

5(3)((11&2,(13) = \/N<p<11pq2pqa> =

_ { 583)(Q1,Q27Q3)
(14 Agy So(qu)][1 + Az So(g2)][1 + Ags So(gs)]
12C5(a1, a2, 93)50(q1)50(92) 50 (g3) }
[1+ Xgy So(qu)][L + Agz So(g2)][1 + Ags So(a3)] )

_|_

The irreducible four-particle structure factor takes
the form

5(4)((11; —q1,492, *Q2) =

=N [<pOI1p—Q1pQ2p—CI2> - <pCI1p—Q1> <Pq2p—q2>}-

The average (pq, p—q, ) Was found earlier, and we have
to calculate (pq, P—q; Pqs P—qs)- Again, on the basis of
formula (1), it can be shown that

1 d?I,

<Pq1 P—qiPqsz P—qz> = Kma

where

A:/m“/mmmmmx

1
X exp |bo — 5 Z Agpap—a | Plplp).

q#0
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Then,

<pQ1p*Q1pQ2p*CI2> - <p(hpfcn> <pqu*Q2> =

d2
S dry... | dryRS
T n{/ tr. [ dew R (rlr) %

1 d*In (P(p|p))
X exp |f)0 — 2%;0)\qpqpq } + m

The first term in the expression above was also found
earlier [25]. The second one is easy to calculate taking
the explicit expression for (P(p|p)) into account. As
a result, we obtain

1
5(4)(Q1>_Q17QQ»_Q2) = m X
q1

1 @)
X S ’ ) s -
[1 I )\q2 So(qg)]Q { (ql —q1,92 QQ)

2
3
2 gy +as| [Sé N(ar, a2, —a1 - qz)}

_"_
L+ Aqy+q2S0(lar + az2|)
+4850(Q1)SO(Q2)S(§3)(Q1, q2,—q1 — q2) X
Cs(q1, 92, —q1 — q2)

1+ )‘\Q1+Q2|SO(|q1 + Cl2|)

+1653(¢1)55 (¢2) | Ca(ar, az) +

C3 (a1, 92, —a1 — q2)So(la1 + qz|)

+18
1+ )‘|Q1+Q2\SO(‘q1 + q2|)

}.

4. Two-, Three-, and Four-Particle Structure
Factors in the Low-Temperature Limit

In the low-temperature limit, the pair and three-
particle structure factors equal unity, and the irre-
ducible four-particle one equals zero. Their deriva-
tives with respect to the inverse temperature vanish
in this limit. One may verify it directly by analyzing
the corresponding expressions.

050(q)
B

So(q) =1, =0,

955" (a1, 2, q3)

Ség)(q17q27q3) = 1) 5[3 207

4
S} Y(a1,—4q1,q2,—q>)
B
ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 11

554)(%7—(11, q2,—q2) =0,

=0.

A straightforward verification also demonstrates that

, 1
ﬁlggo Co(qr) = §a2(ql),

. 1
lim C3(q1,q92,93) = ~az(qi, d2,q3),
B—o0 6

. 1

lim Cy(qi,q2) = sas(qr, —q1,92, —d2),

B—ro00 8
where the quantities a2(q1), as(qi,q2,4q3), and
as(q1, —q1,q2, —q2) are the known expressions [19]

and look like

2(an) NZ[

q17 Q17CI2»_QQ)+

qz27#0 2q1aq1
(d2,q1 + q2)
+ =5 —"a3(q1,d2, —q1 — q2)},
q1a<Z1
> (gigy)(ag, — 1)(ag, — 1)
1<i<j<3

a3(Q1aQ27QS) = - 3 )
2 Z q?aqj
j=1
1

as(q1, —q1,d2, —q2) =

2 2
qi g, + G300,

X {(q1 +q2)%a3(q1 + a2, —q1, —q2) +

+ (a1 — q2)%a3 (a1 — q2, —d1,q2) —

— (a1, a2 + a1)(ag — 1) + (a2, a1 + a2)(ag, — 1)] X
x az(q1 +dz2, —q1, —qz2) —

—[(a, a1 —az)(ag, — 1) + (a2,q2 — q1)(ag, — 1)] x

x az(q1 — gz, —qu, QQ)}-

Taking the aforesaid into account, we obtain the
following expression for the pair structure factor in
the low-temperature limit:

Y e

1
S(ql) Oé2
q1

k2¢0k3?£0
Q1+k2+k3 0 )
sy as(qi, ko, ks
x =2 L+ 2as(a) ¥
ks k270 k370 k2 Cka
q1+ka+ks=0
a4 Q17k2 a3 (q1, ks, ks)
+ 5 Z +* > . (3)
N0 N Fnazo ks
q1+ka+k3=0

where a4(qi,ks) is an abbreviated notation for the
quantity as(q1,—q1, ke, —ks). In the adopted ap-
proximation ‘two sums over the wave vector” the
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structure factor can be written in the form similar
to that in work [21],

S(q) = 1/[1 - 2a2(q) — %(q)],
where
1 ay (ka _ka q, _q) 2
s - Ly alka ) 2,
N K20 1-— 2@2([{,‘) N
XX:EZ@z ao(k2)+as(q, ki, ko)[1+a3(q, ki, ko) J}
1 — 2a2(k1))(1 — 2a2(k:2))
k1 #0 k2 #0
q+ki+k2=0
5 1
az(q1) = _5(04111 -1+
S B (ar,—a1, 42 —2) +
N Zq%aql 4 1, 1,42, 2
270
,q1 +
+ @62117(12)@3((117(12, —q1 — q2)|.
qlath

Analogously, we obtain the following expressions
for the three- and four-particle structure factors in
the low-temperature limit:

5(3)(Q1>Q27Q3) = {1 +2a3(Q1aCI2>QS)}7
q1 X2 Qg

: [
2 2 |
a‘]l qu2

Q|qy+qz| — 1

5(4)(CI1»—(117(127_Q2) +
4
+ ———a3(qi,q2, —q1 —
¥|q;+q2|

g1 +qq|

q2) +

4
+as(qi,q2) + aiag(m,(h, —qi — 0&)}

lq1+qz]

5. Two-, Three-, and Four-Particle Structure
Factors in the High-Temperature Limit
Using the explicit expressions

. = —0 — —0

ties C2(q1), Cg(‘ll%, C3(q1,92,93), Cg((hanOB),
C4(q1,92), and C4(q1,q2) (see Appendix 2), we
can easily obtain that, in the high-temperature limit
(T — o0 or 8 —0),

-0 16N Z

hm Co(qr) = hm 02 d1)
Q270 q3#0

q1+az2+q3=0

for the quanti-

Z Q1 Q2Q3

QQQB
. — . —0

élﬂ% C3(d1,q2,93) = éli% C3(d1,492,93) = oL
.= . =0

éﬂ% Cy(dr,q2) = é;rrloC4(q1,qz) =3
1120

so that
élﬂ% Oz(ql):gig}) Cs(ql,qz,Qs)):ég Ci(q1,92) = 0.

Therefore, in the high-temperature limit, the two-,
three-, and four-particle structure factors for a many-
boson system transform into the corresponding ex-
pressions for the ideal Bose gas:

li
lim S(g) = So(a),
lim S®(q1,q2,q3) = 563)((11,012&3)7
B—0
i (4) (4)
lim S ((117 —q1,92, — ) S ((l17 —q1,92, Q2)
B—0

6. Numerical Calculations

The numerical calculation of the two-particle struc-
ture factor (2) will be carried out taking the effec-
tive mass into account [33]. In order to not exceed
the calculation accuracy, the effective mass will be
used only in the terms that reproduce the pair cor-
relation approximation. At the same time, the ex-
pressions containing the sum over the wave vector
will contain a “bare” mass. Here, the following re-
mark is worth making: in the structure factors of
the ideal Bose gas which enter the expressions with
a sum over the wave vector, the effective mass is
used only to shift the critical point owing to the ac-
tivity renormalization zg = exp[Bu], where p is the
chemical potential. The introduction of effective mass
makes it possible to avoid infra-red divergences in the
non-renormalized four-particle structure factor of the
ideal Bose gas.

To calculate the quantities with a single sum over
the wave vector, we should change from summation
to integration according to the well-known rule [35]

B
2 Ty fa

After the corresponding transformations and the re-
quired changes in variables, we obtain the following
rule for the change from summation to integration in
our case:

oo lq1+k2|
Yy = / kodks ksdks,
4m? pqy
k2#0 k3#0 0 lqr—ka|
q1+ka+kz=0
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OO il L L L L J
0.0 1.0 2.0 3.0 4.0 5.0
qlA
Fig. 1. Structure factor of liquid *He at the temperature
T=10K

where p is the equilibrium density in the Bose sys-
tem. For such quantum liquid as “He, the latter pa-
rameter equals p = 0.02185 A ~3 [36]. The next step
consists in calculating the quantities o, with the use
of a pair structure factor at the zero temperature ex-
trapolated on the basis of experimental data. The cor-
responding information is taken from work [31].
Now, let us rewrite Eq. (3) in the form

— = 5P(q1) —
an
« 1« 1
[ I T
g, k70 k3#0 ks
Q1+kz+k3 0
a ks, k
+2a2 Oh Z Z 3 31,a2, 3)+
k70 k320 ka Clea
Q1+k2+k3 0
a4 Q17k2 a3(an, ky, ka)
> =D (@)
Ny 20 N Z0ks20 (ke Qks
2 2 3
q1+ka+ksz=0

This is an iterative equation for ay. In the zero-order
approximation, we have ay = 1/5%P(g). Substituting
this a-value into the right-hand side of equality (4),
we obtain the a4-value in the first approximation, and
so forth. However, this iteration process does not con-
verge, which is most likely connected with an insuf-
ficient number of terms in the series expansion for
the structure factor (3). Therefore, the consideration
will be confined only to the zero-order approximation
for ajg.

The results of numerical calculations for tempera-
tures of 1.0, 1.38, 1.67, 2.2, 2.5, 3.0, 3.5, and 4.24 K

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 11

0.0 I I I I )
0.0 1.0 2.0 3.0 4.0 5.0

alA™
Fig. 2. The same as in Fig. 1, but at T =1.38 K

0.0 I I I I )
0.0 1.0 20 3.0 4.0 5.0

alA™
Fig. 3. The same as in Fig. 1, but at T'= 1.67 K

0.0 . . . . )
0.0 1.0 2.0 3.0 4.0 5.0

qlA
Fig. 4. The same as in Fig. 1, but at T =2.2 K
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qA™"

Fig. 5. The same as in Fig. 1, but at T =2.5 K

0.0 1.0 2.0 3.0 4.0
q[AT]

Fig. 6. The same as in Fig. 1, but at T =3.0 K

5.0

0.0 ‘ ‘ ‘
0.0 1.0 2.0 3.0 4.0
q[A™"

Fig. 7. The same as in Fig. 1, but at T =3.5 K
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5.0

0.0 I I I I )
0.0 1.0 2.0 3.0 4.0 5.0

alA™
Fig. 8. The same as in Fig. 1, but at T'=4.24 K

are exhibited in Figs. 1 to 8, respectively. Experimen-
tal data for the structure factor at those temperatures
were taken from works [12, 13]. In the presented fig-
ures, the solid curves correspond to the structure fac-
tor calculated with regard for the direct three- and
four-particle correlations, the dashed curves to the
pair correlation approximation, and the circles to the
experimental structure factor values.

7. Conclusions

In this work, expressions for the two-, three-, and
four-particle structure factors in a wide temperature
interval were found in the approximation “one sum
over the wave vector” with regard for the direct three-
and four-particle correlations. In the low-temperature
limit, the expression obtained for the two-particle
structure factor transforms into the well-known one
[21]. The same is valid for the high-temperature limit.

The derived expressions are rather cumbersome.
They were analyzed, by using numerical methods,
and graphic representations of the pair structure fac-
tor at various temperatures of liquid “He were plot-
ted. The calculation of the internal energy and the
determination of the temperature dependence of the
first-sound velocity in the many-boson system will be
a subject of our next papers.
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1.0. Baxapuyx, O.I. I'puzopuax

CTPYKTYPHI ®YHKIIII
BATATOBO30OHHOI CUCTEMU

I3 BPAXYBAHHSIM IIPIMUX TPU-

TA YOTUPUYACTVHKOBUX KOPEJIALIIN

Pezmowme

Ha ocHoOBi Bupa3sy jjsi MaTpuili I'yCTUHUA B3a€MOiI0unx 0o03e-
YaCTHHOK B KOOPJAUHATHOMY 300paKeHHi i3 BpaxyBaHHSAM IIPsi-
MUX TpH- i YoTHMpm4IacTHHKOBHX Kopessaniit [I. O. Bakapuyxk,
O. L. I'puropuak, 2Kypu. ¢is. goca. 3, 3005 (2009)] Gymu pos-
paxoBaHi JBO-, TPH- 1 YOTHPUIACTUHKOBI CTPYKTYpHI ¢dakTo-
pu pigkoro *He B mabimkenni “ommiei CyMu 3a XBUILOBUM
BEKTOpOM” JJIsl IIIMPOKOrO iHTepBasly TeMmueparyp. B rpanmmi
HU3BKHUX TEMIIEPATYD OTPUMAHUN BUPaA3 JJIsi JIBOYACTUHKOBOI'O
CTPYKTYPHOIO (pbaKTOpa IIEPEXOUTh B y2Ke Biomuii. B rpanumi
BHCOKHUX TEMIIEPATYP BHPA3U IJIS ABO-, TPU- 1| YOTUPUIACTUH-
KOBHUX CTPYKTYPHUX (DPAKTOPIB PeAyKYIOThCH JO CTPYKTYPHUX
dakrTopiB imeanbpHOro 603e-razy. Pesynbpraru poboTH MOXKYTH
OyTH 3aCTOCOBaHI JJIsi PO3PaXyHKY TepMOAUHAMIYHUX (DYHKIIIi
pimkoro 4He i 3HAXOIKEHHS TEMIIEPATYPHOI 3aJIE2KHOCTI IIIBHI-
KOCTI IepIroro 3ByKy B 6araTobO30HHIN cucTeMi.
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