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IN THE METABOLIC PROCESS OF GLYCOLYSIS

Within a mathematical model, the metabolic process of glycolysis is studied. The general
scheme of glycolysis is considered as a natural result of the biochemical evolution. By us-
ing the theory of dissipative structures, the conditions of self-organization of the given process
are sought. The autocatalytic processes resulting in the conservation of cyclicity in the dy-
namics of the process are determined. The conditions of breaking of the synchronization of
the process, increase in the multiplicity of a cyclicity, and appearance of chaotic modes are
studied. The phase-parametric diagrams of a cascade of bifurcations, which characterize the
transition to chaotic modes according to the Feigenbaum scenario and the intermittence, are
constructed. The strange attractors formed as a result of the funnel effect are found. The com-
plete spectra of Lyapunov indices and divergences for the obtained modes are calculated. The
values of KS-entropy, horizons of predictability, and Lyapunov dimensions of strange attractors
are determined. Some conclusions concerning the structural-functional connections in glycol-
ysis and their influence on the stability of the metabolic process in a cell are presented.
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Feigenbaum scenario.

Glycolysis is one of the oldest systems of biochemical
reactions that split hexoses. Possibly, it was formed
in protobionts, which were primary cells of the Earth
(3.5-4 bln years ago). Those cells were anaerobic het-
erotrophs. As a nutriment, they used organic sub-
stances of the abiogenic origin, which were created
by chemo- and phototrophs. Moreover, they got the
energy for themselves from the oxidation and the
fermentation in Earth’s primary oxygenless atmo-
sphere. At the present time, the given biochemi-
cal process as a result of the evolution is present
practically in all cells, which indicates its relict ori-
gin. Namely from glycolysis starts the metabolic pro-
cess of anaerobic catabolism of glucose, which is com-
pleted by the formation of pyruvate. Then the prod-
uct of glycolysis can be used in three ways: the com-
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plete oxidation to CO5 and water under aerobic con-
ditions and the fermentation to lactate or ethanol un-
der anaerobic ones. Glycolysis includes 10 successive
reactions, which are running under the action of en-
zymes in the cytoplasm of cells and are not connected
with membrane systems.

But the following questions permanently arise:
How was the unique stable sequence of the reactions
of glycolysis running in cytoplasm, amorphous at first
glance, formed from the huge number of organic sub-
stances present in the primary broth and which mech-
anism of their selection was? In author’s opinion, the
answers should be sought on the basis of the general
theory of chemical evolution by Professor A.P. Ru-
denko [1-3].

This theory allows one to solve the problems re-
lated to the moving forces and the mechanism of evo-
lution in catalytic systems. On this way, the laws of
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the chemical evolution and the selection of elements
and structures, as well as their causal dependence,
are studied. The complexity of a chemical organiza-
tion and a hierarchy of chemical systems are a con-
sequence of the evolution. With reagents, catalysts
form an intermediate (multiplet) complex possessing
the properties of a transient state. Such complex ex-
ists in the form of continuously varying configurations
on some small section of the reaction path. However,
in the course of the catalytic reactions accompanied
by a constant inflow of new portions of reagents and
an outflow of ready products, the complexes are mul-
tiply reproduced. They take the status of elemen-
tary open catalytic systems (EOCSs). Rudenko in-
dicated the particular dynamical type of stability of
such systems. It can be quantitatively characterized
in terms of the intensity of exchange of substances
and the energy of the basic reaction, which is equal
to the product of the activity of a catalytic cen-
ter by the elementary chemical affinity of the basic
reaction.

Thus, Rudenko made conclusion that there occurs
the natural selection of the catalytic centers with the
highest activity in the process of self-development of
EOCSs. On those centers, the basic reaction is con-
centrated more and more. The centers with lower ac-
tivity are gradually eliminated from the kinetic con-
tinuum and “do not survive”. At the multiple succes-
sive changes in EOCSs, the transition to a higher level
of steadiness is accompanied by the evolution of the
mechanism of the basic reaction due to changes in the
composition and the structure of a catalyst operating
at the beginning of the reaction, as well as due to
the division of the chamical process into elementary
stages and the appearance of new catalysts of these
stages due to changes in EOCSs.

The above consideration allows us to make the fol-
lowing conclusion. The validity of Rudenko’s theory
of chemical evolution of elementary open catalytic
systems is supported by its correspondence with
the general theory of dissipative structures [4]. Just
the dissipative structures arising in open nonlinear
systems of the Nature are the reason for the self-
organization in it. At the appearance of an autocat-
alytic oscillatory process in such dissipative system,
the system becomes self-developing. Those paths of
evolutionary changes are formed with the highest rate
and the probability, on which the absolute catalytic
activity increases maximally.
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During the chemical evolution on the Earth at the
appearance of favorable conditions for the creation
of organic substances, the enzymatic reactions re-
placed rapidly and completely the inorganic cataly-
sis. In the primary broth, the almost infinite num-
ber of open biochemical systems were formed. But
only those of them were evolved, in which the au-
tocatalysis was most intense. As a result of the self-
organization of the given elementary biochemical pro-
cesses, the metabolic networks with the ability to
a self-assembling were formed in larger intercon-
nected open nonlinear systems. This occurred un-
til a cell was created. One of the biochemical pro-
cesses conserved from the previous metabolism is gly-
colysis.

A lot of experimental and theoretical works are de-
voted to the study of glycolysis. The researchers were
expecially interested in the glycolytic oscillations ob-
served in yeast cells [5]. The experimental character-
istics were obtained, and a number of mathematical
models of this process were constructed [6]. Sel’kov
proposed a fine theoretical model [7], in which the en-
zyme phosphofructokinase is activated by its. Then
Goldbeter and Lefever developed a more detailed
model [8], in which the allosteric nature of phospho-
fructokinase was taken into account.

The other mathematical models of biochemical pro-
cesses can be found, for example, in [9-14]. The ob-
tained results enrich our knowledge about the given
processes.

The study presented in this work will be based on
the mathematical model of glycolysis and gluconeoge-
nesis constructed by Professor V.P. Gachok [15-17].
A specific feature of his model consists in the consid-
eration of the action of such factors as the adeninenu-
cleotide cycle and the feedback of gluconeogenesis on
the allosteric enzyme phosphofructokinase. This al-
lowed him to analyze more qualitatively the reasons
for the appearance of an oscillatory dynamics in gly-
colysis.

In what follows, the model is improved so that
the complete chain of the whole metabolic process
of glycolysis from start to end under anaerobic con-
ditions is modeled. This enables us to study the
positive feedbacks of the process, which create a
stable autocatalytic process of the given section of
metabolism irrespective of other metabolic processes
in a cell. Glycolysis is considered as an open part of
the biosystem, which is self-organized by itself due to
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Fig. 1. General scheme of the metabolic process of glycolysis

the input substances and output products of the re-
action in a cell, ensuring the condition of its survival
and evolution.

1. Mathematical Model

The general scheme of the process of glycolysis is
presented in Fig. 1. According to it, the mathemati-
cal model (1)—(16) is constructed with regard for the
mass balance and the enzymatic kinetics.
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Here, we will describe the process of catabolism of
glucose to lactate under anaerobic conditions. The in-
significant changes in Eq. (8) and the replacement of
the enzyme lactate dehydrogenase by pyruvate de-
carboxylase allow the application of this model to
the study of the process of alcoholic fermentation. In
this case, the model will describe the formation of
ethanol instead of lactate. The internal dynamics of
process given by the solution of Eq. (1)—(16) remains
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invariable.
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Here, V(X) = X/(1 + X) is the function accounting
for the adsorption of the enzyme in the region of local
coupling. The variables of the system of equations are
made dimensionless [15-17].

We take the following values of parameters:

l1 =0.0535; 1y =0.046; I3 =0.0017;

ly =0.01334; 5 =0.3; Ils=0.001; I7=0.01;

lg =0.0535; 19 =0.001; %k =0.07; ke =0.01;

ks = 0.0015; k4 = 0.0005; ks = 0.05;

ks = 0.005; k7 =0.03; kg =0.005; my =0.3;
mo = 0.15; mg =1.6; my4 = 0.0005; ms = 0.007;
mg = 10;  m7 = 0.0001; mg = 0.0000171;

mg =0.5; Go=184; L =0.005; S =1000;
A=0.6779; M =0.005; S;=150; o =184.5;
B8=250; 0=03; ~=79.7.

The mathematical model is given by the system of
nonlinear differential equations. The equations cor-
respond to basic sections of the metabolic process,
which define the sequence of reactions and affect the
stability of glycolysis. Some parts of the metabolic
network, which affect insignificantly the self-organi-
zation of the process, are described generically. In
Fig. 1, we show the parts of the metabolic network
(from 1 to 16) corresponding to the number of a dif-
ferential equation: (1)—(16).

On the first stage (1), the incoming substance Gy
(glucose) is phosphorylated with the help of the en-
zyme hexokinase to glucose-6-phosphate. The donor
of a phosphorylic group is a molecule ATP (T") (1),
(9). This reaction is running irreversibly. The molecu-
les of glucose-6-phosphate cannot leave a cell. In this
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case, they are a product of the reaction and an al-
losteric inhibitor. When the concentration of glucose-
6-phosphate in the cell exceeds the normal level, glu-
cose-6-phosphate inhibits temporarily and reversibly
hexokinase (1) (F1), so that the rate of its formation
is put in correspondence with the rate of its consump-
tion in the subsequent reaction. Then, with the par-
ticipation of the enzymes phosphohexoisomerase (or
phosphoglucoseisomerase), the reversible isomeriza-
tion of glucose-6-phosphate in fructose-6-phosphate,
which does not influence the irreversibility of the pro-
cess, occurs.

Equations (2), (3) describe the process of forma-
tion of fructose-6-phosphate (Fy) and its transfor-
mation into fructose-1,6-biphosphate (F3). This hap-
pens under the catalytic action of the key enzyme of
glycolysis — phosphofructokinase. This enzyme cat-
alyzes the irreversible transfer of a phosphorylic
group from ATP (2), (9) to fructose-6-phosphate with
the formation of fructose-1,6-biphosphate. The sub-
strate fructose-6-phosphate is an activator, whereas
ATP is an inhibitor of the given process. In addi-
tion to such regulation, the given enzyme can be
regulated by the adeninenucleotidic cycle: ATP-
ADP-AMP (see below), which favors the support
of an optimal stable stationary state. We now de-
scribe the process of gluconeogenesis. At low con-
centrations of reagents, the reaction is reversible
Fy, — Fy (2), (3), and the positive feedback affecting
the stability of the process is created. The subsequent
splitting of fructose-1,6-biphosphate into two dif-
ferent triosephosphates (glyceraldehyde-3-phosphate
and dihydroxyacetonephosphate) occurs reversibly.

Equation (4) describes the formation of 1,3-biphos-
phoglycerate (11), which is the start of the sec-
ond stage of glycolysis. With the help of the enzyme
D-glyceraldehydephosphate dehydrogenase, glyceral-
dehyde-3-phosphate is oxidized and joins phospho-
ric acid. In this case, the role of an acceptor of
hydrogen is played by coenzyme NAD™. There oc-
curs the enzymatic reduction: NADT — NAD - H
(4), (16).

With the help of Eq. (5), we describe the process of
transfer of a high-energy phosphorylic group by the
enzyme phosphoglycerate kinase from a carboxyl of
1,3-biphosphoglycerate onto ADP. As a result, ATP
(11) and 3-phosphoglycerate 12 are formed.

Equation (6) describes the formation of 2-phospho-
glycerate with the help of the enzyme phosphoglyce-
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rate mutase. Then water is eliminated, which results
in the formation of phosphoenolpyruvate 3.

The formation of pyruvate P under the action of
the enzyme pyruvate kinase is presented by Eq. (7).
Here, the phosphorylation of the substrate occurs. As
distinct from reactions (4)—(5), where the reverse re-
action of gluconeogenesis at the synthetic absorption
of CO; is possible, we observe the powerful irre-
versible process: ADP — ATP.

Equation (8) characterizes the formation of the sec-
ond product of the process — lactate L. With the help
of the enzyme lactate dehydrogenase, there occurs the
enzymatic oxidation NAD -H — NAD™. The balance
between NADT and NAD - H holds (16).

Equations (9)—(11) describe the kinetics of changes
in the contents of ATP (9), ADP (10), and AMP
(11) according to the metabolic scheme of glycol-
ysis (see above). On the whole, the adeninenucleo-
tidic cycle of mutual transitions between the given
reagents arises: ATP-ADP-AMP. This cycle favors
the conservation of the optimum stationary state of
the metabolic process.

Equations (12)—(15) show the kinetics of changes in
the content of the allosteric enzyme phosphofructok-
inase. It is assumed that the enzyme has two active
forms (R (12) and R; (13)) and two inactive ones (T}
(14) and T (15)). In this case, we observe the mutual
transformation of forms 77 and Ry, T5 and Rs. The
equations present the general scheme of regulating
connections. Form R; (12) is created from form T}
as a result of the saturation of two allosteric centers
by molecules F} and from form R, at the expense of
two molecules D. The inactivation of form R; occurs
at the expense of T'(12) with the formation of form
Ry (13) and two molecules T'(12) with the formation
of form T3 (15). This invertible inactivation is inhib-
ited with increase in A according to the high level of
T (parameter «) (12). Equations (13)—(15) are con-
structed analogously.

Equation (16) describes the kinetics of changes in
the content of the reduced form nicotineamideadeni-
nenucleotide NAD - H, according to its consumption
and the reduction of oxidized form NADT (4). The
balance between the oxidized and reduced forms in
the glycolytic cycle is conserved in the invariable
form. In this case, the integral of motion NAD-H(¢) +
+NADT(t) = M is satisfied.

The study of solutions of the present mathemat-
ical model (1)—(16) is realized with the help of the
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Fig. 2. Phase-parametric diagram of the system for the variable G(t): a — Go € (16,18); b — Go € (17.1,17.4)

theory of nonlinear differential equations [18,19] and
the methods of modeling of biochemical systems used
earlier in works [20-40].

The numerical solution of this autonomous system
of nonlinear differential equations was made within
the Runge-Kutta—Merson method. The accuracy of
calculations was set to be 1078. For the reliability of
studies, namely for the system being on the transient
initial state to approach the asymptotic solution with
an attractor, the duration of calculations was taken
to be 10°. For this time, the trajectory “sticks” the
appropriate attractor.

2. Results of Studies

The given mathematical model is a system of non-
linear differential equations (1)—(16), which describes
the open nonlinear biochemical system. For it, the
input substance is glucose characterized by the coef-
ficient Gy. The output products of the reaction are
lactose, ATP, and H5O. Namely the flows of these
substances form the internal dynamics of the given
metabolic process. At the breaking of the mass bal-
ance between them, the continuity of the running
of glycolysis is violated as well. From the energetic
viewpoint, the transformation of glucose in pyruvate
means a significant decrease in the free energy of
the products of the reaction. Therefore, glycolysis is
the energy-gained irreversible process running in the
open nonlinear system far from equilibrium. In ad-
dition, the whole metabolic process of glycolysis is
embraced by a feedback formed by the redox reac-
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tions of transfer of electrons with the help of NAD
(16) (Fig. 1). Due to NAD, glycolysis includes the
autocatalytic process of catabolism of glucose. After
the successive splitting of a molecule of glucose and
the appearance of 2 molecules (ATP and a molecule
of pyruvate) on the output, the system returns in the
initial state. Thus, the metabolic process of glycolysis
in a cell can be separated as a united self-regulating
complex. The whole metabolic process of glycolysis
can be considered as the process of self-organization,
which is functioning in the cyclic mode. When the
evolution of metabolic processes in protobionts was
completed, glycolysis remains to be invariable in
all cells.

Let us study the dependence of the oscillatory
dynamics of the metabolic process of glycolysis on
Gy. Figure 2, a, b presents the constructed phase-
parametric diagrams of the system for the variable
G(t), when Gg changes in the corresponding inter-
vals. To construct the phase-parametric diagrams, we
used the method of cuts. In the phase space contain-
ing the trajectories of the system, we place a cutting
plane at Ry = 0.7. If the trajectory crosses this plane
in a certain direction, the value of the chosen variable
(in this case, G(t)) is placed on the phase-parametric
diagram. Such choice is explained by the symmetry of
oscillations of the active form of the allosteric enzyme
phosphofructokinase relative to this point in many
modes calculated earlier. For every given value of Gy,
we mark the intersection of this plane in a single di-
rection by the trajectory, when the trajectory has ap-
proached the attractor. In the case where a multiple

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12
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Fig. 3. Kinetic curves for the variables: G(t) (a), P(t) (b), L(t) (¢), and T(t) (d) in the 1-fold periodic mode for Gop = 19 (1)

and in the chaotic mode for Go = 16.7 (2)

periodic limiting cycle arises, we mark a number of
points on the plane. These points coincide in the pe-
riod. If a deterministic chaos arises, then such points,
where the trajectory intersects the plane, are posi-
tioned chaotically.

Consider the diagrams from right to left. It is
seen from the phase-parametric diagrams that, for
G} = 17.95, the period of oscillations is doubled. For
G%‘H = 17.39, we observe the repeated doubling of
the period. Then, for Gg+2 = 17.27, the period of au-
tooscillations is doubled once more. As Gy decreases
further, no doubling of the period of autooscillations
occurs, and a chaotic mode arises as a result of the in-
termittence. The determined sequence of bifurcations
satisfies the relation

Gj+1 _ Gj
; erolo W =~ 4.667.

0 0
This number is very close to the universal Feigenbaum
constant. Thus, as the parameter Gy decreases on
this section, the doubling of the period of autooscil-
lations occurs according to the Feigenbaum scenario

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12

[41]. This means that, in the given unstable modes
of the physical system, any arising fluctuation can
induce a chaotic cyclic mode.

For Gy = 17.129 (Fig. 2, b) and Gy = 17.041,
Go = 16.52 (Fig. 2, a), the windows of periodicity
arise. The deterministic chaos is destroyed, and pe-
riodic and quasiperiodic modes are established. Out-
side these windows, chaotic modes arise. The identi-
cal windows of periodicity are observed also on less
scales of the diagram. In other words, the phase-
parametric diagrams on small and large scales are
analogous. This indicates the fractal nature of the ob-
tained cascade of bifurcations in the metabolic pro-
cess of glycolysis.

In Fig. 3, a-d, we show, as an example, the ki-
netics of autooscillations for some components of the
metabolic process in the 1-fold periodic mode for
Go = 19 and in the chaotic mode for Gg = 16.7. The
synchronous autooscillations of glucose, pyruvate,
lactate, and AT P become chaotic.

According to the kinetics, the phase portraits of the
system are changed as well. In Fig. 4, a—d, we present,
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Fig. 4. Projections of the phase portrait of a strange attractor formed for Go = 16.7 in the appropriate plane: (P,G) a, (P,T)
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as an example, some projections of phase portraits of
the system for Gg = 16.7. The given chaotic mode
is a strange attractor formed as a result of the fun-
nel effect. Inside the formed funnel, we observe the
mixing of dispersing trajectories approaching one an-
other. Due to fluctuations, the stability of the cycle
is violated, and the cycle becomes chaotic. A deter-
ministic chaos is formed.

While studying the phase-parametric diagrams in
Fig. 2, a, b, it is impossible beforehand to determine,
at which values of the parameter Gy a multiple stable
(quasistable) autoperiodic cycle or a strange attractor
is formed.

For the unique identification of the type of ob-
tained attractors and for the determination of their
stability, we calculated the complete spectra of Lya-

1258

punov indices and their sums A = 2}6:1 Aj at
some chosen points. The calculation was carried out
by Benettin’s algorithm with the orthogonalization
of the perturbation vectors by the Gram—Schmidt
method [19].

A specific feature of the calculation of those indica-
tors consists in the complexity of the determination
of the perturbation vectors represented by 16 x 16
matrices on a personal computer.

The algorithm of calculation of the complete spec-
trum of Lyapunov indices is as follows. First, some
point on the attractor X, is taken as the input
one. Then the trajectory going out from the point and
the evolution of N perturbation vectors are traced. In
our case, N = 16 is the number of variables of the sys-
tem. The input equations of the system, which are

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12
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supplemented by 16 complexes of equations in varia-
tions, are solved numerically. As the initial perturba-
tion vectors, we set the collection of vectors b, b9, ...,
b0, which are orthogonal to one another and are nor-
malized to 1. In some time 7', the trajectory comes
to the point X7, and the perturbation vectors are b},

b3, ..., bls. Their renormalization and orthogonaliza-
tion by the Gram-Schmidt method are realized by
the following scheme:

E: E )
[B1]]
e oo o B
0 =0 - (R.O00, = 2
|7
oy
3

b = bYs — (b6, bP)b1 — (805, b3)03 — (brs, b3)05 — ..~
N
1B3611°

Then the calculation is continued, by starting from
the point X; and the perturbation vectors bi, bi, ...,

- (E>g)b%57 % =

bls- In the next time interval 7', a new collection of
perturbation vectors b?, b3, ..., b2, is formed. It is
again orthogonalized and renormalized by the above
scheme. This sequence of operations is repeated a suf-
ficiently large number of times M. In this case, in the

course of calculations, we determine the sums

M , M )
si=S ] s = m
=1 i=1

M .
Sie =) n b1
i=1

g eeey

in which the perturbation vectors before the renorma-
lization, but after the orthogonalization are present.
We evaluate 16 Lyapunov indices in the following

way:
Ny
MT
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j=1,2,..,16.

For comparison, we give the spectra of Lyapunov in-
dices for some modes of the system. For brevity with-
out any loss of information, the values of indices are
rounded to the 5-th decimal point.

The criterion of validity of the calculation is the
ratio of Lyapunov indices: A\; > Ag > A3 > ... > Ag6.
For a regular attractor, it must be: A\; &~ 0. The next
subsequent indices can be also ~0 in some cases. In
other cases, they are negative. The zero value of first
Lyapunov index indicate the presence of a stable lim-
iting cycle.

For a strange attractor, the presence of at least one
positive Lyapunov index is obligatory. Then the zero
index is positioned; the rest indices are negative. The
presence of negative indices means the compression
of the phase space in the corresponding directions,
whereas the positive indices indicate the divergence
of trajectories in some directions. Therefore, there oc-
curs the mixing of trajectories in narrow places of the
phase space, and the deterministic chaos arises. The
Lyapunov indices include obligatorily the zero in-
dex. This means the conservation of an aperiodic tra-
jectory of the attractor in some domain of the phase
space, which is the condition of existence of a strange
attractor.

As an example for comparison, we now give several
calculations of the complete spectrum of Lyapunov
indices.

For Gy = 17.25, the regular attractor 1-22 of a
quasistable autoperiodic cycle arises.

A1 — Aig are equal to: .00000, —00004, —00006,
—-.00008, —.00010, —.00054, —.00085, —.00129, —.00484,
—-.00562, —.00562, —.00562, —.00980, —.01002, —.01582,
—.02343. A = —.08373.

For Gy = 17.2, the strange attractor 1-2% arises.

A1 — Mg are equal to: .00004, .00000, —.00006,
—.00009, —.00013, —.00053, —.00085, —.00126, —.00483,
—.00556, —.00556, —00556, —.00972, —.00997, —.01588,
—.02329. A = —.08325.

For Gy = 16.8, the strange attractor 1-2% arises.

A1 — A1 are equal to: .00011, .00000, —.00008,
-.00009, —.00011, —.00057, —.00082, —00136, —.00480,
—-.005700, -.00570, —.00570, —.00937, —-.00997, —
.01565, —.02348. A = —.08329.

For Gy = 16.5, the strange attractor 1 - 2% arises.

A1 — Mg are equal to: .00009, .00000, —.00009,
-.00009, —.00009, —.00057, —.00082, —.00126, —.00475,
—-.00560, —.00560, —.00560, —.00903, —.00997, —.01581,
—.02325. A = —.08244.
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Fig. 5. Projections of the phase portraits of attractors on the plane (N,L): a — regular attractor 1 - 22 of a quasistable
autoperiodic cycle for Go = 17.25, A1 = 0; b — strange attractor 1- 2% for Go = 17.2, \; = 0.00004; ¢ — strange attractor 1 - 2%
for Gop = 16.8, A1 = .00011; d — section of the formation of a deterministic chaos in the mixing funnel (see Fig. 5, ¢)

For Gy = 16.3, the strange attractor 1 - 2% arises.

A1 — Mg are equal to: .00004, .00000, —00008,
—.00009, —.00011, —.00055, —.00081, —00108, —.00462,
—.00505, —.00505, —.00505, —.00917, —.00996, —.01676,
—.02213. A = —.08047.

In Fig. 5, a—d, we show the projections of the phase
portraits of attractors in the plane (N, L), which are
formed for the following values of Gg: 17.25, 17.2,
and 16.8. The larger the positive senior Lyapunov in-
dex A1, the more unstable is the system (compare
Fig. 5, a—c).

In Fig. 5, ¢, we separate a small rectangular section,
which cover the funnel of mixing of the given strange
attractor, and magnify it (Fig. 5, d). Let us calculate
the trajectory on a longer time interval. As is seen,
the character of the construction of trajectories of the
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given strange attractor is repeated on small and large
scales of the projection of a phase portrait. Every
arising curve of the projection of a chaotic attractor
is a source of the formation of new curves. Moreover,
the geometric regularity of the construction of tra-
jectories in the phase space is repeated. The given
geometric structure reminds a two-scale parametric
Cantor set.

By using the Lyapunov indices for strange at-
tractors, we determined the KS-entropy (entropy by
Kolmogorov—Sinai) [42]. According to the Pesin the-
orem [43], the KS-entropy hcorresponds to the sum
of all positive Lyapunov characteristic indices.

The KS-entropy allows one to judge about the rate
of loss of the information about the initial state of the
system. The positivity of the entropy is a criterion of
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it. This gives possibility to qualitatively estimate the
property of local stability of the attractor.

We determined also the quantity reciprocal to the
KS-entropy, tmin. It is the time of mixing in the sys-
tem, which indicates how rapidly the initial condi-
tions will be forgotten. For ¢ < ¢y, the behavior
of the system can be predicted with sufficient accu-
racy. For t > tyin, only its probabilistic description
is possible. The chaotic mode is unpredictable due to
the loss of the memory of initial conditions. The value
of tmin 1s called the Lyapunov index and characterizes
the “horizon of predictability” of a strange attractor.

To classify the geometric structure of strange at-
tractors, we calculated the value of their fractal-
ity. The strange attractors are fractal sets and have
a fractional Hausdorff-Besicovitch dimension. But its
direct calculation is a very laborious problem, which
has no standard algorithm. Therefore, as the quan-
titative measure of fractality, we calculated the Lya-
punov dimension of attractors by the Kaplan—Yorke
formula [44, 45]:

m
Ai

Dp, =m+ =L (17)

|)‘m+1|
where m is the number of the first Lyapunov indices
ordered by diminution, whose sum is 221 i = 0
m—+1 is the number of the first Lyapunov index, whose
value A\, 41 < 0.

For the above-presented strange attractors 2%, we
calculated the following parameters.

For Gy = 17.2: h = 0.00004, tmin = 25000, D,
= 2.667.

For Gy = 16.8: h = 0.00011, tpin = 9090.9, Dp, =
= 3.375.

For Gy = 16.5: h = 0.00009, t;, = 11111.1,
Dp. = 3.000.

For Gy = 16.3: h = 0.00004, tmin = 25000, Dp, =
2.500.

These results allow us to judge about the difference
of the geometric structures of the given strange at-
tractors. The largest value of KS-entropy is obtained
for Gg = 16.8. This indicates the highest chaotic mix-
ing of trajectories in a funnel. Respectively, the mix-
ing time, after which the unpredictable chaos arises,
will be minimal. The Lyapunov dimension for the
given attractor, which characterizes quantitatively
the fractality, is maximal in this case. This is con-
firmed by Fig. 5, ¢, d. By calculating successively the
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different strange attractors, we can determine a cer-
tain regularity in the hierarchy of their chaotic be-
havior. The geometric shape of attractors of the sys-
tem varies correspondingly to the change of these in-
dices. Thus, glycolysis in a cell is adapted at the vari-
ation of the amount of external glucose (Gg) to the
varying conditions of the external environment, by
preserving its functionality in this case.

3. Conclusions

With the help of the mathematical model, we have
studied the metabolic process of glycolysis arising
as a product of the biochemical evolution in pro-
tobionts. It is shown that glycolysis can be distin-
guished as a united self-regulating complex of the
metabolic network of a cell. The conditions of its self-
organization in the cyclic mode are determined. The
bifurcations of doubling of a cycle according to the
Feigenbaum scenario are discovered, and it is found
that the intermittence results finally in the appear-
ance of aperiodic modes of strange attractors. This
means that the intensity of the metabolic process
of glycolysis is adapted to the varying conditions
of the medium. The fractal nature of the obtained
cascade of bifurcations is demonstrated. The strange
attractors, which are formed due to the formation
of a mixing funnel, are found. The complete spec-
tra of Lyapunov indices and the divergences for var-
ious modes are calculated. For the strange attrac-
tors, the KS-entropies, “horizons of predictability,”
and the Lyapunov dimensions of attractors are de-
termined. The obtained results allow one to study
the structural-functional connections of the metabolic
process of glycolysis and their influence on the cyclic-
ity of metabolic oscillations in a cell, as well as to
clarify the physical laws of the self-organization in it.
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CAMOOPTAHIBALIA I ®PPAKTAJIBHICTD
B METABOJITYHOMY ITPOLECI T'VIIKOJII3Y

Pezmowme

Y poboTi 3a JOMOMOroI MAaTeMaTHYHOI MOJEJi JOCJIKYye-
ThCsI METabOJIIYHUN TPOIEeC IVIIKOMi3y. 3arajbHa cXeMa TJIKO-
Ji3y pPO3IIAgaeThCs sIK 3aKOHOMIpHUN pe3ysabraT 6ioximiunol
eBoutioliii. BukopucTroBytoun TeOpito JUCHUIIATUBHUX CTPYKTYD,
IIPOBEJIEHO TOIIYK YMOB CAaMOOPraHizallil JJaHOTO poIecy. 3Ha-
MIE€HO aBTOKATAJITHYHI MPOIECHU, 3aBIAKNA AKUM 30€piraeTbcs
MUKJIIYHICTh B AuHaMini ftoro nporikanusa. Jlocaigzkeno ymo-
BU IOPYIIEHHS CUHXPOHi3alil porecy, 301JIbIIeHHS KPaTHO-
CTi MUKJIIYHOCTI Ta BUHUKHEHHS XAOTUYHHUX pexkuMiB. OTpu-
MaHO da3omapaMeTpudHi giarpamMu kKackazny Oidypkariit, ski
BiJ[3€PKAJIIOIOTH IIepexiJ] 10 XaOTHYHUX PEXKUMIB BiJIOBIIHO
cuenapiio Peiirenbayma Ta mepeMexkaeMocTi. 3HalJIeHO IuB-
Hi aTTPaKTOpH, IO BUHUKAIOTH BHACJIJIOK BOpPOHKU. [106ymo0-
BaHi X arTrpakTopu. Po3dpaxoBaHi HMOBHI CIEKTPH IOKA3HUKIB
JlsamynoBa i muBeprenmiii mis 3HaiigeHux pekumis. Pospaxo-
Bani KC-eHTponil, Topu3oHTH nepeadbadyBaHOCTI Ta JISAIIYHOB-
CKi pO3MIPHOCTI JUBHUX aTTPAKTOPiB. 3pO6GIEHO BUCHOBKH IIPO
CTPYKTYPHO-DYHKIIOHAbHI 3B’ s13KU IVIIKOJI3Y Ta IX BILIUBY Ha
CTIfKiCTh MeTabOIYHOIO MPOoIECy KJITUHU.
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