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RAMAN SCATTERING
IN SUPERLATTICES WITH Ge QUANTUM DOTS

The studies of the Raman scattering in superlattices with layers of Ge quantum dots (QDs)
are carried out. A theoretical model describing the experimental spectra with regard for the real
crystal structures of both the QD and the surrounding matriz, as well as the phonon-phonon
interaction in the matriz and in the QQDs, is proposed. The intensities of Raman spectra are
calculated with the use of the secondary quantization procedure and Green’s functions. The
results obtained show that the crystal structure of the superlattice composed of alternating
silicon layers and layers with Ge quantum dots can be described as a mized crystal consisting of
a matriz with a certain distribution of “impurities” (“Ge-molecules”). A qualitative correlation
between the theoretically calculated and experimentally measured positions and intensities of
bands in the Raman spectra of QD superlattices is demonstrated, and the doublet character of

the bands is explained.
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1. Introduction and Statement
of the Problem

For two last decades, the electronic and optical prop-
erties of quantum-dimensional crystal structures have
been intensively studied, what created preconditions
for their practical application as promising materials
in modern nano- and optoelectronics [1-3]. If the di-
mensions of quantum dots (QDs) approach the Bohr
radius of excitons in them, the fundamental proper-
ties of QDs start to substantially differ from the corre-
sponding parameters of bulk crystals. In view of the
importance of understanding the physical processes
running in QDs and superlattices (SLs), they have
been studied for a long time both experimentally and
theoretically [1-16].

In earlier theoretical works [4,7], a linear chain was
taken as a basis for the description of the Raman
spectra experimentally measured from SLs consisting
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of quantum-dimensional layers. The appearance of a
number of additional bands in the interval of acous-
tic oscillations in the Raman spectra was explained as
the effect of growing a crystal unit cell. This model
was successfully used to calculate the dispersion rela-
tions for acoustic and optical phonons in GaAs/AlAs
and InAs/GaAs superlattices [6]. Numerical calcu-
lations of the dispersion of phonon branches (both
acoustic and optical) for SLs were carried out in
work [5].

The propagation of acoustic vibrations in a peri-
odic layered medium was considered for the first time
by S.M. Rytov [10]. In his model, the dispersion of
acoustic phonons coincides with the dispersion ob-
tained in the framework of the linear chain model
for phonons in a low-frequency spectral range. The
difference for high-frequency phonons is connected
with the nonlinearity of their dispersion in this in-
terval. More complicated theoretical researches of the
dispersion relations for vibrations in SLs and their de-
pendences on the SL parameters were performed in
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works [12,13]. However, vibrations in such structures
were described in the framework of the macroscopic
model, when the density and the elastic constants of
the medium change periodically in space.

The appearance of SLs with QD layers stimulated
the intensive researches of their properties [17-20].
One of the first studies in this direction was work
[17] dealing with CdSe nanospheres. The considera-
tion was carried out in the framework of a classical
model, in which nanospheres with radius r and di-
electric permittivity € were embedded into a matrix
with dielectric permittivity 4. In works [18,19], QDs
were considered as homogeneous spheres. Vibrations
in them were described by the Navier equations with
special boundary conditions. As a result, vibrations
of two types in QDs were obtained: spherical and
torsional ones.

Another approach to the problem was proposed in
work [20]. The QD was considered to be a homoge-
neous cylindrical disk with a circular or elliptic cross-
section oriented perpendicularly to the axis. Accor-
ding to the proposed model, QDs interact with one
another by means of acoustic vibrations [21, 25-29].
The calculations of the Raman scattering spectra
were made with the help of the deformation potential
of interaction between acoustic phonons and electron
states localized in the QDs. On the basis of the results
obtained, a conclusion was drawn that the bands ob-
served in the Raman spectra are associated with the
interference of light scattered by different QD layers
in the SL.

One more theoretical consideration of the spectrum
of optical phonons in QDs was carried out in the
framework of the valence force field model [22, 23].
This model is empirical and allows the phonon fre-
quencies in QDs consisting of several thousands of
atoms to be calculated. For the calculations in the
framework of this model, large data arrays are re-
quired, which makes the calculations rather laborious.

In work [24], the model of dielectric continuum was
applied to describe the Raman scattering spectra,
while studying SLs. However, this model is a macro-
scopic approximation.

Therefore, despite a considerable number of works
devoted to the simulation of Raman scattering spec-
tra obtained from superlattices with QD layers, the
problem of their description remains challenging. In
our research, the experimental Raman spectra will be
described at the microscopic level, i.e. the real atomic
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Fig. 1. TEM image of Ge quantum dots in a silicon matrix
(a), schematic diagram of a new cell in the SL with QDs: L
is the number of old unit cells in the new unit cell, and Lo,
the number of old unit cells in the QD (b)

structures of QDs and the matrix will be made al-
lowance for. Since the lattice constants a for Ge and
Si are close (in particular, Aa/a =~ 0.04 for the cor-
responding values) and the QD size d is rather big
(d > a), a new cell can be introduced, which in-
cludes a Ge quantum dot and, partially, the sur-
rounding Si matrix, as is illustrated in Fig. 1. The
new unit cell is large enough to include many of old
cells, each containing a QD in the Si matrix. Assu-
ming that the lattice constants are identical in the
zeroth-order approximation, we obtain a new crystal
with a different lattice parameter, a — La, where
L ={L;,Ly,L,}. It is important that the approxi-
mate equality between the Ge and Si lattice constants
means the same reciprocal lattice vector k = 27 /a for
the whole crystalline structure.

Dispersion curves of acoustic phonons for the ma-
jority of SL materials overlap in rather a wide fre-
quency interval. Therefore, acoustic phonons from
different layers propagate freely through the whole
crystal structure. The new crystal periodicity results
in the convolution of dispersion phonon branches in
the new Brillouin zone. If the dispersion branches
of optical phonons lie in different spectral ranges,
the optical phonons turn out localized in a certain
layer. In this case, the optical phonons inherent to
one material cannot propagate in layers of another
material and quickly fade out at a distance of one or
two monolayers from the interface. Such phonons do
not reveal a dispersion in the direction normal to the
nanostructure layers and can be regarded as standing
waves localized in each layer.
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Fig. 2. Change of phonon dispersion branches at the increase
in the lattice constant a — aL (the case L = 10 is shown)

A model proposed in this work allows the features
in the Raman spectra of phonons of all types to be
analyzed in the framework of the microscopic ap-
proach, using only the general parameters of real crys-
tals, including phonon frequencies, atomic masses,
and lattices constants. It is evident that, in the SL
with QDs, the number of optical phonons grows, be-
cause the new reciprocal lattice vector by, is shorter
than that determined in the wide Brillouin zone,
b= 2n/a — b, = 2n/(La). Therefore, every optical
dispersion branch in the wide Brillouin zone trans-
forms into several optical branches in the new zone,
and every acoustic branch transforms into one acous-
tic branch and several optical ones (Fig. 2). As a re-
sult, there appear a lot of new optical low-frequency
phonons in the Raman spectrum, which are caused
by the formation of large crystal cells. It should be
noted that the dispersion of optical phonons, as a
rule, is low; therefore, some new components may not
manifest themselves in the spectrum, but the phonon
band should become asymmetric (according to Fig. 2
toward the low-frequency side).

2. Theory
2.1. Hamiltonian of the crystal

The Hamiltonian of the crystal consists of several
components that characterize the electron subsystem
energy, Hej, the energy of vibrations, Hy,, and the
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energy of electron-phonon interaction, He—py. In this
work, the processes of non-resonant Raman scatter-
ing are analyzed. Therefore, the consideration can
be confined to the phonon part of the Hamiltonian
only. In the second-quantization representation and
the harmonic approximation, the Hamiltonian can be
written as follows:
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The Hamiltonian is written in such a form that the
real crystal structure is presented as two virtual Ge
and Si crystals, each with the volume V' = vy N, where
vo and N are the volume and the number of unit
cells, respectively [30]. The meaning of every term in
expression (1) is as follows: the first two terms de-
scribe the Hamiltonians of both crystals, Si and Ge,
characterized by the subscripts 1 and 0, respectively;
the third and fourth terms describe the excitation re-
lated to the kinetic energy of crystals, 7, AT
and ATW: and the last four terms are connected
with the potential energy of the real crystal struc-

ture, which is presented as a sum
V=VP4+ v 4 (AVY + AV 4 AVIO 4 AVOL).

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12



Raman Scattering in Superlattices

In the operators of normal coordinates,
1
Pa,s = ok

and corresponding momenta,

+ +
(b + b—q7 ) (p—q,sv

1
ﬁ(bz}ts - b—q,S) = _Triq,s?

of lattice vibrations, the wave vector ¢ looks like
q = g + ¢, where g is the wave vector of the new re-
ciprocal lattice, and the wave vector ¢ changes within
different limits (—nw/aLl; < G; < 7/alj, j = x,v, 2)
in this structure. The corresponding phonon branches
are enumerated by the index s; = so for the QD

and s; = s; for the matrix; the oscillating quanti-
Lo

L L 1 .
ties ag+q = °f s where f0. = L—Onz_:lexp[z(q—&—
=

+bg)n0), depend on the QD dimensions, i.e. on the
number ng of “old” crystal cells in the QD.

Tq,s =

2.2. Raman spectrum intensity
and the equation for Green’s functions

The intensity of Raman spectra can be expressed by
the imaginary part of the Fourier component of the
retarded Green’s function (GF) for the scattering ten-
SOT Xk, \,k/,\ [30*32],

Ty v pox ~ = [T () I (X 3 p 2 (), X 2 pa (0)) s
(2)
where

Xk k' /\’:Z ealk, Nes(k', N)xa,s(Q=k ~k),

3
Xa,5(Q ZXa,ﬂ n) exp(—iQn), )

and é,(k,\) and eg(k’,\) are the unit vectors of
the electric field vectors of the incident and scattered
light, respectively. It can be shown that, for the ana-
lyzed crystal structure with QDs, the tensor xq,3(Q)
looks like

Yous(@Q) = \/LNO{Z 2504 (by + Q)a 0gs a0 +

9,50

LY (b + Q) o—agﬂ]@gm,sl}, (4)

g;81

where N = LNy, and Ny is the number of new large
cells.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12

From Egs. (2)—(4), it is possible to find the spectral
dependence for the light scattering intensity, which is
expressed in terms of the Fourier component of the
GF for phonon operators. Below, in order to simplify
the understanding, we consider a case where only one
phonon branch (so = ap and s; = «aq) is actual for
the Ge and Si crystals. Then, the intensity of light
scattering can be expressed as follows:
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{ZXP' /\/p>\ —&—Q)agox

x ZXP’ A’p>\ (by’ +Q)G*LO %

X <<<pg+Q,ao (1) gr+Q,a0 () +

t Z X ar g (b + Q)ag® %
Zx;‘ﬁ&m (by + Q)00 — agr] x

x <<<P9+Q,ao( ) Py Quan (0w +

+Z>~<§?x p(by + Q)[dg,0 — ag®] x
Zx;;f&w by + Q) x

x <<<pg+Q,a1 () gr+Qua0 () +

+pr/ xpa(by T @050 — ag®] x

Zi;’ai’p)\ b ! +Q)[

*Lg]

00— a X

X (g (£ 05 0o <0>>>w}. (%)

Relation (5) shows that the intensity of light scat-
tering is expressed in terms of the Fourier components
of the retarded GF for phonon operators of the type
©g+Q,s, Where @ is the wave vector of incident radia-
tion. Below, we will use the phonon operators ¢, .«
where « characterizes the phonon branches of either
the QD (a = ) or the matrix (o = aq).

The GF is described by the following expression:

((Lptr,al(t); ¢;+k’,a 0))) =

= —iO(1)([Pp+h.a(t); Oy s ar (0)]), (6)
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where O(t) is the step function, [...;...] means
the commutator of two operators, (...) is the sta-
tistical averaging of operators, and ¢pirq(t) =
= exp(iHt)ptk,qa exp(—iHt). The equation for the
GF looks like

2 k0 ()5 58 0,00 (O) =

= 0(t)([Ppr.a(0); Ly s o (O]) +

i a0 55 0O @

where O (p+k),x cp;;_k,a, and the commutator
[¢p+k,a(0)5¢;+k/,a/ (0)] = 0. Since the first term in
expression (7) equals zero, only the last one gives a
contribution to the GF.

The operator derivative depends on Hamiltonian
(1) and is described by the expression

.0
Za(pp-l-k,a(t) = [SDP-HC,OL; Hy + AH]? (8)
o = {ab OéO}?
in which
Hy =Y wirgsbl g sbires B={s1 50} 9)
q,9,8

Other terms in expression (1) are a perturbation re-
sulting from the non-ideality of the initial crystal, and
they give rise to a system of coupled equations for
the GF.

Below, we will assume that, as was indicated above,
each of the matrix and the QDs (i.e. the crystals con-
sisting of the QD and matrix materials) has only
one (optical or acoustic) vibration mode, and the
constants characterizing the interaction between the
phonons with the wave vector g + k from the branch
« and the phonons with the wave vector p + k from
the branch S do not depend on the wave vectors,
LVi(8:5) = ver,

To analyze the equations for GF, the following no-
tations are introduced:

Gig,k,a’,purk/ =

_ Lo .

= Z agl+k<<‘P91+k,ao (t); Py +k o 0w,
g1

L—Lo _

aq,k,af p'+k" T
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(10a)
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Then, two equations for the Fourier components of
GF read

1
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where
" = 50, A k,ap) =
Wptk,ap = Wptk,aog » (va + vaO) -

= w? = 1Wptka0@p+k,a0s (M0 = 0), (12a)

(DP'HC,(M = Wp+tk,a; (1 - ago)a A(va + K, (Xl) =

= W — MWpth,ay@pth,ars (M = 1). (12b)

Relations (12) make it possible to obtain a system of
equations for all functions (10). Multiplying Eq. (10a)
by aﬁi . and summing up the result over the subscript
p, we obtain

(L= £ G, RV ooee] -

Lo
Ga07k70/7p/+k/
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L -
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From Eq. (11b), two other equations can be obtained
in the same way, which relate functions (10) With each
other. Multiplying Eq. (11b) by the factors a” ooy and

(a£+k — aﬁfrk), and summing up the result over p, we
obtain
— G i TEOE TR (w, )V 0 4

L Lo
+Ga1,k: o', p’+k’ LO’LO(w k)valal + G aq,k,af ,p'+k! X
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Note that the exact solution of the system of equa-
tions (13), (15), and (16) is rather cumbersome. To
simplify the expressions, we confine the numerator
and the denominator to the terms linear in the in-
teraction constants V11 and V9“0 and neglect the
constants V190 and Ve as rather small. As a re-
sult, we obtain

Lo a L
Gao,k ol p' k! T _m ag,k,a',p’+k:” (18a)
b
L—Lo B
ar,k,a p'+k" T
L ALo L-Lo
= A(w k) (b ay,k,af p'+k T Aa1,ka p+k’) (18b)
)
Lo
Gal,k alp' k! T
1 AL-L L
= m(d al,koa 0’ +k' - eAa?’k,a’,pLi’k)’)’ (18C)
’

Aw, k) = =[1 = floko(w, kyVooeo 4
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+f£1—L0,LU(w’k)VOL1041 +f£§’L(W7k)Vala1:|, (19)

where the following notations were used:

a =1+ fo ot (w RV + £ (w, k)Vere,
R

=14 [0t (@, RV 4 [0l (w, k)Veoee,
d= fhtow Ry,

e=[1+ fa ot (w k)Vere] + frobo(w, k)Veee.

Substituting Egs. (18) and (19) into Egs. (11), we
obtain the expressions for Fourier components of the
corresponding GF. The result of calculation shows
that the Fourier components of the GF are propor-
tional to the d-function, dy . Therefore, the conser-
vation law for the wave vector is fulfilled in this crys-
talline structure. As was marked in Introduction and
is shown in Fig. 2, the wave vector changes in the
narrower limits, —7/ (aL;) < k; < 7/ (aL;). In addi-
tion, it is clear that, owing to the corresponding an-
harmonic terms, the dispersion curves describing the
major vibrations have to split at the point of their
intersection, k; = 0.

3. Numerical Calculations
and Analysis of Experimental Results

The expressions obtained for the FG, if being sub-
stituted into Eq. (5), make it possible to obtain the
dependence of the Raman scattering spectra on the
frequency and crystal parameters. In order to sim-
plify expression (5) and to make the numerical simu-
lation more convenient, the dependence of the sus-
ceptibility tensor on the wave vector will be ne-
glected, assuming that X7 y, . \(bg + Q) = Xp NN
at k— k' = Q — 0. Then the Raman spectrum inten-
sity is a sum of four terms:

Iy v pa(w) ~ =1+ ”(w)]lm{fgp,x,p,x +

+IB/17)\/7P7A + 15/07)\/71)7)\ + I;/{)\/,Z)/)\}, (20)
where
IO’O/\On = Xp' A kAN A kL LO’LO(W>Q)+
Ve
Ko oyas @ Q) fay " (w, Q) 21a
R B QU Q) (210)
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f ( Alw, Q, 1) f (w 7Q)>]}>
(21d)

This formula is more exact than the formula pre-
sented in our work [30], because it includes the terms
Va2 and V0% not only in the constants in ex-
pressions (18) and (19), but also in the denominator
A(w, Q). The following limiting cases can be distin-
guished for expression (20):

a) If the constants V¥ and V1% of interac-
tion between phonon branches are small, Eq. (20) is
reduced to a simpler form, and the intensity, as in
work [30], is described by two terms

00 11
Ip’)\’,p,)\ + Ip’)\’
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A T

Lo,Lo ~oq ~xQ
= Xk’ Nk, /\Xk’ ,\' kad ao (w vQ)+Xk',,\',k,,\Xk',,\',k,,\ X

(1- aéo - QSLO)WahQ
A( uQ7a1)

b) If V020 >» Ver.e1 - the scattering intensity is
described by an equation similar to Eq.(22a), but
the first term in Eq. (22a) changes and, in accordance
with Eq. (20), is equal to

+fart (@, Q), (22a)

00 Lo,L
Iy v ox = Xt s ka X s kafad ™0 (w, Q)/

J[1 = Voo fLoko(w, Q)] =

~aq ~*QQ
Xk Ak AXE A A X

Z ap+Q p+QwP+Q @0

, (22b)
Vao,ao Z ap+Qap+pr+Q ag

c) If the QD size is close to the dimensions of new
crystal cell (Lyg — L), we obtain

wQ,a0
2 b)

(22¢)
~YQ,a0

00 ~Qg ~ %
Lo 3 p AXr A e AX K N oo o2

d) If Ly — 0, all terms in Egs. (21), (22a), and
(22b), which are proportional to a;iQ — 0, van-
ish. Only the term corresponding to the matrix — this
is the second term in Eq. (22a) — survives.

It is worth to note that the obtained relations for
the Raman scattering intensity can describe the pro-
cesses with participation of both acoustic and optical
phonons. The scattering regularities depend on the
dispersion character of phonon branches. In the fol-
lowing part, we analyze the results of numerical calcu-
lations only for light scattering by phonons provided
that the convolution of the acoustic phonon branches
takes place, and compare the corresponding results
with experiment data.

As one can see from Egs. (21), (22a), and (22b),
the intensity of Raman scattering spectra depends on
functions of the types foelo’LO( , Q) and fLO’LO( ,Q),
and has resonance (12) near a certain value of
the frequency that enters into A(w,g + Q,«)
= w? — NWy+Q.aWg+qQ.a- The dimensions of Ge quan-
tum dots in the SL satisfy the condition L., L, >
> L,. Therefore, as was shown in Appendix 1 of
our work [30], only the coordinate z in the functions
fcff’LU (w, Q) is important. For acoustic phonons, the
bulk crystal branches can be well described by the

a(bz,g"‘QZ)]
2

expression wgig,a = |Wo,q SN , where a
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Fig. 3. Experimental Raman spectrum (1) for a multilayer
structure with Ge quantum dots and the corresponding theo-
retical spectrum (2) calculated on the basis of the proposed
model with the fitting parameters V*1@1 = V®0%0 = 4 cm—?2
(a). Schematic explanation of the emergence of a doublet in
Raman spectra (b)

is the lattice constant, ) the wave vector of light,
and g a new reciprocal lattice vector (b, , = fT”ng,i,
L <g., < L g = 0,41, 42). If the light wave
vector is neglected, i.e. Q — 0, the peak of reso-
nance (22a) should take place at g, ;. As is seen from
Fig. 3, b, the positions and intensities of both peaks
should be identical for +¢, ; and @ — 0. However, the
positions and the intensities of two peaks described
above are different if @@ # 0. Really, £b, 4 + Q. =
= fT”z(j:g“- + “LTZ”) Therefore, if L, or the refrac-
tive index n is large, the contribution of the second
term in the parentheses is considerable, and the band
doublets rather than single bands should be observed
in the spectrum in this case, which is well illustrated
in Fig. 3, b. The doublet splitting depends on the
parameters A\, L., and n. The numerical analysis of
some cases calculated at a variation of main parame-
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Fig. 4. Theoretical Raman spectra of multilayer structures
with QDs with a fixed height of 1.5 nm and the thickness of a
Si layer varying from 10 (curve 1) to 16 nm (curve 4 ). For the
sake of comparison, experimental Raman spectra are shown for
the first two theoretical spectra
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Fig. 5. Theoretical Raman spectra of multilayer structures
(the thickness of Si layers is fixed) with QDs (the height of
QDs is fixed) for various exciting radiation wavelengths: 350
(1), 450 (2), 650 (3), and 750 nm (4)

ters and the comparison of the obtained results with
experimental data are exhibited in Figs. 3 to 5.

In Fig. 3, a, the experimental (curve 1) and cal-
culated (curve 2) Raman spectra for a 10-layer SL
with Ge quantum dots are shown. One can see that
the intensities of doublets and the frequency posi-
tions of bands are well described by the theoretical
spectrum. Other theoretical curves in Fig. 4 illustrate
the influence of the Si layer thickness, provided that
all other SL parameters are identical. When the layer
thickness increases from 10 to 16 nm, the spectrum
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center-of-mass shifts toward lower frequencies and the
distance between the bands in the doublet slightly in-
creases. Such spectral variations are explained in the
framework of the proposed model by the growth of
the parameter L. Therefore, they are associated with
the increase in the number of intersection points in
the dispersion curve (Fig. 2). Hence, provided that
the wavelength of exciting laser radiation that cor-
responds to phonons with analogous wave vectors is
fixed, the frequencies of corresponding spectral bands
change according to the dispersion curve variations.

Figure 5 illustrates the effect produced by a vari-
ation of the exciting radiation wavelength Aey.. One
can see that, when the excitation energy changes from
1.65 €V (Aexe = 750 nm) to 3.55 €V (Aexe = 350 nm),
the distance between the doublet bands decreases,
but the position of the doublet center remains invari-
ant. It should be noted that the best fitting of theoret-
ical spectra to experimental ones is obtained at rather
small values of interaction constants (V00 /w, and
Ve /i, < 0.05).

It should also be emphasized that, as was shown
in works [33, 34], the real QDs have a mixed Si-Ge
composition, which is caused by a giant interdiffu-
sion of Si from the silicon substrate owing to non-
uniform stresses in vicinities of QDs. One can evalu-
ate the component composition in QDs from the Ra-
man spectra of scattering by optical phonons. Really,
the frequencies of the Ge—-Ge, Si—Ge, and Si—Si vibra-
tion modes in the Si—Ge solid solution substantially
depend on the content of each component. The ac-
count of the effect of component mixing allows the
Raman spectra of light scattering by the convolu-
tions of acoustic phonon dispersion branches to be
described more precisely.

4. Conclusions

A theoretical simulation of Raman spectra exper-
imentally obtained in multilayered structures with
quantum dots is carried out. It is shown that the
theoretical description of the Raman spectra (or ab-
sorption ones) for such structures should consider the
growth of the number of phonon modes. A model
for the description of experimental Raman spectra
of the structures concerned is proposed, which in-
volves the real crystal structure in both the QDs and
the surrounding matrix, as well as the interaction
between the QD vibrations and matrix phonons. By
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using the secondary quantization procedure and the
Green’s function method, the frequency dependence
of the Raman spectrum intensity is calculated. The
obtained results show that the crystal structures of
superlattices with quantum dots can be described as
mixed crystals with a certain distribution of impu-
rities assembled in large “Ge molecules” (QDs). It is
shown that a qualitative correlation between the po-
sitions and the intensities of bands in theoretical and
experimental Raman spectra is observed at certain
values of SL parameters. The emergence of charac-
teristic band doublets is explained.

The authors are grateful to A.V. Novikov (the In-
stitute for Physics of Microstructures of the Russian
Academy of Sciences) for experimental specimens.
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FO.A. Pomanrox, A.M. Spemxo,
B.M. /[ocazan, B.O. Oxumuyk

KOMBIHAIIIMHE PO3CIIOBAHHSA CBITJIA
B HAJITPATKAX 3 Ge KBAHTOBUMU TOYKAMMU

Pesmowme

IIposezeno nocnimpkenns vaarparok (HI') 3 mapamu Ge kBa-
ToBux TouoK (KT) mMeromom KoMbiHAIIHHOrO po3ciloBaHHs CBi-
mia (KPC) Ta 3anporioHOBaHO TEOPETHHUHY MOJEJIb, 10 OIUCYE
eKCIIepUMeHTaJIbH] crrekTpu. Mogenb BpaxoBye peajyibHY KpH-
crajiiuay cTpykTypy KT Ta HaBKOJIHIIHBOI MaTpPHIll, a TaKOXK
donon-donouny B3aemonito KT 3 marpunero. InrencusHoCT
crrekTpiB KPC po3paxoByBaJIucs 3 BUKOPHUCTAHHSM IIPOIELY DU
BTOPUHHOTO KBaHTyBaHHs Ta MeToay ¢dyHkiiii ['pina. OrTpu-
MaHi pe3yJIbTaTH TOKa3aJId, [0 KPHCTAJidHa CTPYKTypa Ha-
ATPaTKH, MO CKIAJAETHCA 3 KPEMHIEBUX IIapiB Ta mapis 3 Ge
KBAHTOBUMU TOYKAMU, MOXKE OyTH OIHUCAHA K 3MIIIAHUN KpU-
craj 3 HeBHUM posnoginom “momimok” (Ge-“mosekyi”). ITpo-
JEMOHCTPOBAHO SIKICHY KOPEJISIIO B IIOJIOJKEHHI Ta IHTEHCHB-
HOCTI CMyT ¥ TEOPETHYHO PO3PAXOBAHUX Ta €KCIIEPUMEHTATIHLHO
orpumanux cuekrpax KPC Big naarparok 3 mapamu Ge (SiGe)
KBAHTOBHMX TOYOK Ta IOSICHEHO JyOJIeTHUI XapaKTep CMyT.

1233



