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Two-parameter models of fractional statistics aimed at finding an expression for the occupa-
tion numbers of free anyons have been considered. Virial coefficients are found for statistics
of several types: 𝜅-deformed Polychronakos and Haldane–Wu statistics, Polychronakos and
Haldane–Wu statistics modified with the 𝑞-exponential in the bosonic limit, and incomplete and
nonadditive Gentile statistics for various level-filling maxima. A relation between the anyonic
statistics and various statistics of fractional types is found and analyzed.
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1. Introduction

Quantum-mechanical systems described by fractional
statistics have been intensively studied in the last
decades. A number of approaches to this problem
are known [1, 2]. Methods associated with fractional
statistics turned out successful, when being applied to
the study of many phenomena in the physics of con-
densed systems, e.g., the fractional quantum Hall ef-
fect [3], high-temperature superconductivity [4], low-
dimensional interacting systems [5, 6], as well as in
such unexpected domains as dark matter models [7].

In 1924, Bose [8] derived the Planck distribution by
applying the combinatory approach to light quanta.
Lately, Einstein [9, 10] used Bose’s idea and obtained
a distribution for the ideal quantum gas of particles
with a nonzero mass of rest.

In 1926, Dirac [11] and Fermi [12] obtained a dis-
tribution function for particles that obey the Pauli
exclusion principle. In quantum-mechanical systems,
the distribution is expressed as a function of en-
ergy, degeneracy order, and the number of particles
in the system. For particles, whose number is un-
bounded in any state, the specific statistics is de-
scribed by the Bose-Einstein distribution, and the
corresponding particles are called bosons. If the par-
ticles obey the Pauli exclusion principle, i.e. only one
particle is allowed in a certain state, the Fermi–Dirac
distribution is relevant, and the particles are called
fermions.
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In 1940, Gentile [13] made a first attempt to gen-
eralize those statistics. His model is characterized by
a specific filling of energy levels. Namely, the number
of particles on the same energy level is restricted by
a finite number 𝑠, which is called the statistics order.

In 1977, Myrheim and Leinaas [14] showed that the
phase of a wave function in a two-dimensional system
can accept an arbitrary value, when two particles are
swapped. Those particles were coined anyons (from
the English word “any”). The term was proposed by
Wilczek in 1982 [15]. The swapping of two such quasi-
particles results in that |𝜓1𝜓2⟩ = 𝑒𝑖𝜋𝛼|𝜓2𝜓1⟩, where
𝛼 is the parameter of anyonic statistics, which is a
real number: 𝛼 ∈ [0, 1] (mod 2).

Anyons compose a class of quasiparticles which are
observed only in two-dimensional systems, and their
properties are distinct from those of fermions and
bosons. Anyons of two types are considered: Abelian
and non-Abelian [16, 17]. Excitations corresponding
to Abelian anyons were discovered experimentally;
they play an important role in the fractional quan-
tum Hall effect [18]. Non-Abelian anyons remain hy-
pothetical objects, although actively studied ones.

In 1991, Haldane proposed an interpolation expres-
sion between the bosonic and fermionic limits, and
introduced a generalization into the Pauli exclusion
principle, which now can concern not a single, but
several states [19]. In 1994, Wu [20] obtained a distri-
bution function for the fractional exclusion statistics.

Two-parameter statistics were considered, e.g., in
works [21, 22]. It was shown there that the inter-
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acting gas of composite bosons (consisting of two
fermions or two bosons) can be algebraically real-
ized with the help of the model of deformed Bose gas
with a structure function that is a combination of a
𝑞-deformation and a quadratic-polynomial deforma-
tion. In this work, the applied approach is based on
work [23], where the two-parameter fractional statis-
tics were used to model anyons.

The expression for the occupation numbers in an
ideal gas of anyons still remains unknown. This cir-
cumstance complicates the analysis of the thermody-
namics of anyons, and a statistical mechanical model
which would correspond to anyons is also absent [1].
The application of the two-parameter statistics al-
lows systems to be effectively described with an accu-
racy higher than conventional one-parameter statis-
tics do. Moreover, the considered models can be ap-
plied to the studies of interacting quantum gases
[5, 24].

In Section 2, the general relations for virial and
cluster expansions, as well as the virial coefficients for
anyons, are considered in brief. In Section 3, statis-
tics modifications are analyzed, and the results of nu-
merical calculations of virial coefficients for six statis-
tics are reported. In addition, a modified Polychron-
akos statistics with a 𝑞-exponential is analyzed in the
bosonic limit. Section 4 is devoted to finding the re-
lations between the parameters of anyonic statistics
and fractional statistics of other types. The results
obtained are summarized in Conclusions.

2. Virial and Cluster Expansions

2.1. General relations

The virial expansion for the equation of state of a
two-dimensional particle system can be written in the
form
𝑝

𝑇
= 𝜌2[1 + 𝑏2(𝜌2𝜆

2) + 𝑏3(𝜌2𝜆
2)2 + ...], (1)

where 𝑝 is the pressure, 𝑇 the absolute temperature,
𝜌2 = 𝑁

𝐴 is the two-dimensional density (concentra-
tion) of the system, and

𝜆 =

(︂
2𝜋~2

𝑚𝑇

)︂1/2
(2)

is the thermal de Broglie wavelength. The factors 𝑏𝑗
(𝑗 = 2, 3, ...) are the dimensionless 𝑗-th virial coeffi-
cients. Let us recall the form of the virial expansion

for the ideal two-dimensional gas obeying the Fermi
or Bose statistics [1]:

𝑝

𝑇
= 𝜌2

(︂
1± 1

4
𝜌2𝜆

2 + ...

)︂
, (3)

Here, the upper sign corresponds to fermions (F), and
the lower one to bosons (B). It is easy to show that
the second virial coefficients are as follows:

𝑏F2 = +
1

4
, 𝑏B2 = −1

4
. (4)

Let us use the cluster expansion to determine the
virial coefficients. The equation of state in terms of
the grand partition function Ξ looks like

𝑝

𝑇
=

1

𝐴
ln Ξ(𝑧, 𝑉, 𝑇 ), (5)

where 𝑧 is the fugacity, which is related to the chemi-
cal potential 𝜇 by the formula 𝑧 = 𝑒𝜇/𝑇 . The density
equals

𝜌2 =
𝑁

𝐴
= 𝑧

𝜕

𝜕𝑧

(︂
1

𝐴
ln Ξ

)︂
𝐴,𝑇

= 𝑇
𝜕

𝜕𝜇

(︂
1

𝐴
ln Ξ

)︂
𝐴,𝑇

. (6)

Applying the cluster expansion

𝑝

𝑇
=

1

𝐴
ln Ξ =

∞∑︁
ℓ=1

𝐵ℓ𝑧
ℓ (7)

to the equation of state, we obtain

∞∑︁
ℓ=1

𝐵ℓ𝑧
ℓ=

(︃ ∞∑︁
ℓ=1

ℓ𝐵ℓ𝑧
ℓ

)︃[︃
1 + 𝑏2𝜆

2

(︃ ∞∑︁
ℓ=1

ℓ𝐵ℓ𝑧
ℓ

)︃
+ ...

]︃
.

From whence, we can find a relation between the
virial and cluster coefficients.

The second, third, and fourth virial coefficients
look like [25]

𝑏2𝜆
2 = −𝐵2

𝐵2
1

, 𝑏3𝜆
4 = −2

𝐵3

𝐵3
1

+ 4
𝐵2

2

𝐵4
1

,

𝑏4𝜆
6 = −3

𝐵4

𝐵4
1

+ 18
𝐵2𝐵3

𝐵4
1

− 20
𝐵3

2

𝐵6
1

.

(8)

Expressions for higher virial coefficients can be anal-
ogously obtained by equating the coefficients in the
terms with identical power exponents of the vari-
able 𝑧.
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2.2. Virial coefficients of anyons

While finding the virial coefficients of anyons, we can
use the fact that the grand partition function can be
written as an infinite series of statistical sums 𝑍𝑁 ,
each for a system of 𝑁 particles:

Ξ =

∞∑︁
𝑁=0

𝑧𝑁𝑍𝑁 , 𝑍0 ≡ 1. (9)

From the cluster expansion (7), we obtain the cluster
integrals in terms of partition functions [1]:

𝐵1 =
𝑍1

𝐴
, 𝐵2 =

2𝑍2 − 𝑍2
1

2𝐴
,

𝐵3 =
3𝑍3 − 3𝑍2𝑍1 + 𝑍3

1

3𝐴
, ... .

(10)

With the help of formulas (8) and (10), the sec-
ond virial coefficient of the ideal anyon gas can be
calculated:

𝑏2 = − 𝐴

𝜆2
(2𝑍2 − 𝑍2

1 )

2𝑍2
1

. (11)

Below, the ideal anyon gas is regarded as an interact-
ing Bose gas [1]. From this viewpoint, let us rewrite
expression (11) in the form of two terms,

𝑏2(𝛼) = 𝑏2(0)−
𝐴

𝜆2
𝑍2(𝛼)− 𝑍2(0)

𝑍2
1

, (12)

where the parameters 𝑏2(0) and 𝑍2(0) correspond to
the ideal Bose gas, and the parameter 𝛼 ∈ [0, 1]. Here,
we used the fact that the one-particle partition func-
tion 𝑍1 does not depend on the statistics, i.e. it is
identical for fermions, bosons, and anyons. It is worth
noting that all expressions are considered only in the
thermodynamic limit 𝐴→ ∞.

For convenience, let the system be in an oscillator
potential with the frequency 𝜔 playing the regulator
role. The spectrum obtained in the one-particle prob-
lem, 𝐸𝑛 = (𝑛 + 1)~𝜔, and the spectrum obtained in
the one-anyon problem, which has two branches [1]:

∙ an (𝑛+1)-fold degenerate one with 𝐸(1)
𝑛 = (2𝑛+

+1 + 𝛼)~𝜔 and
∙ an 𝑛-fold degenerate one with 𝐸

(1)
𝑛 = (2𝑛 + 1−

−𝛼)~𝜔,
where 𝑛 = 0, 1, 2, 3, . . ., should be taken into ac-
count. Then, after some transformations, we obtain

an exact expression for the second virial coefficient of
the ideal anyon gas [1, 26]

𝑏anyon2 (𝛼) = −1

4
(1− 4𝛼+ 2𝛼2), (13)

where the second virial coefficient of the ideal Bose
gas 𝑏2(0) = −1/4 [see Eq. (4)] was used. An inter-
esting fact is that, at 𝛼 = 1, we obtain a correct
fermionic limit (4).

Unfortunately, the problem with a larger number of
anyons cannot be solved exactly. However, the results
of numerical calculations are available for the higher
virial coefficients. In particular, the third coefficient
for anyons looks like [26]

𝑏anyon3 (𝛼) =
1

36
+

sin2 𝜋𝛼

12𝜋2
+ 𝑐3 sin

4 𝜋𝛼, (14)

where

𝑐3 = −(1.652± 0.012)× 10−5.

The fourth virial coefficient for anyons equals

𝑏anyon4 (𝛼) =
sin2 𝜋𝛼

16𝜋2

(︃
ln(

√
3 + 2)√
3

+ cos𝜋𝛼

)︃
+

+ (𝑐4 + 𝑑4 cos𝜋𝛼) sin
4 𝜋𝛼, (15)

where

𝑐4 = −0.0053± 0.0003, 𝑑4 = −0.0048± 0.0009.

3. Statistics Modifications

3.1. Expressions for occupation numbers

Let us consider modifications of fractional statistics
on the basis of three following general expressions for
occupation numbers [23]. The first expression,

𝑛P𝑗 =
1

𝑧−1𝑋(𝜀𝑗) + 𝑌
, (16)

generalizes the standard Bose (Fermi) statistics at
𝑋(𝜀𝑗) = 𝑒

𝜀𝑗
𝑇 and 𝑌 = −1 (𝑌 = +1), and de-

fines the Polychronakos fractional statistics [28] at
𝑌 = −𝛾 = const ̸= ±1. The second expression is
the modified Haldane–Wu statistics [19, 20], which is
presented in the form

𝑛HW
𝑗 =

1

𝑤[𝑧−1𝑋(𝜀𝑗)] + 𝑔
. (17)
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Here, the function 𝑤(𝜉) is a solution of the transcen-
dental equation

𝑤𝑔(1 + 𝑤)1−𝑔 = 𝜉, (18)

which can be obtained with the help of a certain ex-
pression for the number of microstates in a many-
body quantum-mechanical system providing an inter-
polation between bosons and fermions. It is easy to
be convinced that we obtain 𝑤(𝜉) = 𝜉 − 1, i.e. the
Bose distribution, at 𝑔 = 0 and 𝑤(𝜉) = 𝜉, i.e. the
Fermi distribution, at 𝑔 = 1. In the limit 𝜉 → ∞, the
latter equation has the solution 𝑤(𝜉) ≃ 𝜉. It gives rise
to the Boltzmann distribution

𝑛𝑗 = 𝑒−(𝜀𝑗−𝜇)/𝑇 , (19)

which does not depend on the statistics parameter
𝑔. The third expression is the Gentile statistics [13]

𝑛G𝑗 =
1

𝑧−1𝑋(𝜀𝑗)− 1
− (𝑠+ 1)

𝑧−(𝑠+1)𝑋(𝑠+1)(𝜀𝑗)− 1
. (20)

One can easily be convinced that we have the Fermi
distribution at 𝑠 = 1 and the Bose one at 𝑠 = ∞. In
addition to the parameters 𝛾, 𝜅, or 𝑠, another de-
formation parameter can be introduced into each of
those models [23].

In this work, we consider only the following mod-
ifications: the 𝜅-exponential appears instead of the
ordinary Boltzmann factor 𝑒𝜀/𝑇 in 𝜅-deformed statis-
tics, and the factor 𝑒𝑞𝑥 instead of 𝑒𝑥 in incomplete
statistics [29, 30]. We will also consider two variants
of the so-called 𝑞-exponentials.

The 𝜅-exponential is written in the form [31, 32]

exp𝜅(𝑥) =
(︁√︀

1 + 𝜅2𝑥2 + 𝜅𝑥
)︁1/𝜅

. (21)

The series expansions of Eqs. (16), (17), and (20) in
the activity 𝑧 read [33]

𝑛P𝑗 =

∞∑︁
𝑙=1

(−1)𝑙−1𝑌
𝑙−1

𝑋 𝑙
𝑧𝑙 =

=
1

𝑋
𝑧 − 𝑌

𝑋2
𝑧2 +

𝑌 2

𝑋3
𝑧3 ∓ ..., (22)

𝑛HW
𝑗 =

∞∑︁
𝑚=0

(−1)𝑚
Γ[𝑔(𝑚+ 1)]

𝑛!Γ[𝑔(𝑚+ 1)−𝑚]

𝑧𝑚+1

𝑋𝑚+1
=

=
1

𝑋
𝑧 − (2𝑔 − 1)

𝑋2
𝑧2 +

(3𝑔 − 2)(3𝑔 − 1)

2!𝑋3
𝑧3 ∓ ..., (23)

𝑛G𝑖 =

∞∑︁
𝑙=1

(−1)𝑙−1 𝑧
𝑙

𝑋 𝑙
− (𝑠+ 1)

∞∑︁
𝑙=1

(−1)𝑙−1 𝑧
𝑙(𝑠+1)

𝑋 𝑙(𝑠+1)
=

=

(︂
1

𝑋
𝑧 − 1

𝑋2
𝑧2 +

1

𝑋3
𝑧3 ∓ ...

)︂
−

− (𝑠+ 1)

(︂
1

𝑋𝑠+1
𝑧(𝑠+1) − 1

𝑋2(𝑠+1)
𝑧2(𝑠+1) ± ...

)︂
. (24)

For simplicity, the summation over the levels,
∑︀

𝑗 , in
the equations

𝑁 =
∑︁
𝑗

𝑔𝑗𝑛𝑗 ,
𝑁

𝐴
=

1

𝐴

∑︁
𝑗

𝑔𝑗𝑛𝑗 =

∞∑︁
𝑙=1

𝑙𝐵𝑙𝑧
𝑙 (25)

is substituted by the integration over the energy. The
density of states of the function 𝐺(𝜀) in a two-
dimensional ideal gas of particles with the mass 𝑚
equals 𝐺(𝜀) = 𝑚𝐴

2𝜋~2 = const [34] (cf. also work [1,
p. 150] or [35, p. 22]), so that

∑︁
𝑗

... =

∞∫︁
0

𝑑𝜀 𝐺(𝜀)... . (26)

Using various representations for the function 𝑋,
the cluster integrals 𝐵𝑙 can be easily calculated, by
using expansions (22)–(24), and virial coefficients are
obtained from Eqs. (8). Below, we present the results
of calculations for virial coefficients in some statistics.

3.2. Results for Virial Coefficients
∙ 𝜅-deformed Polychronakos statistics (𝜅PS). For the
statistics of this type,

𝑋(𝜀) = 𝑒
𝜀
𝑇
𝜅 =

(︃√︂
1 + 𝜅2

𝜀2

𝑇 2
+ 𝜅

𝜀

𝑇

)︃1/𝜅
, 𝑌 = −𝛾. (27)

The cluster integrals equal

𝐵1𝜆
2 = − 1

𝜅2 − 1
, 𝐵2𝜆

2 = − 𝛾

𝜅2 − 4
,

𝐵3𝜆
2 = − 𝛾2

𝜅2 − 9
, ... .

(28)

The second and third virial coefficients are

𝑏𝜅PS
2 = −𝛾 (𝜅

2 − 1)2

(𝜅2 − 4)
;

𝑏𝜅PS
3 = 2𝛾2(𝜅2 − 1)4

[︂
2

(𝜅2 − 4)2
− 1

(𝜅2 − 9)(𝜅2 − 1)

]︂
.

(29)
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∙ 𝜅-deformed Haldane-Wu statistics (𝜅HWS). For
the statistics of this type,

𝑋(𝜀) = 𝑒
𝜀
𝑇
𝜅 =

(︃√︂
1 + 𝜅2

𝜀2

𝑇 2
+ 𝜅

𝜀

𝑇

)︃1/𝜅
. (30)

The cluster integrals equal

𝐵1𝜆
2 = − 1

𝜅2 − 1
, 𝐵2𝜆

2 =
(2𝑔 − 1)

𝜅2 − 4
,

𝐵3𝜆
2 = − (3𝑔 − 2)(3𝑔 − 1)

2!(𝜅2 − 9)
, ... .

(31)

The second and third virial coefficients are

𝑏𝜅HWS
2 = −(2𝑔 − 1)

(𝜅2 − 1)2

𝜅2 − 4
;

𝑏𝜅HWS
3 = (𝜅2 − 1)4

[︂
4(2𝑔 − 1)2

(𝜅2 − 4)2
− (3𝑔 − 2)(3𝑔 − 1)

(𝜅2 − 9)(𝜅2 − 1)

]︂
.

(32)

∙ Incomplete Gentile statistics (IGS). For the sta-
tistics of this type,

𝑋 = 𝑒
𝑞𝜀
𝑇 . (33)

Let us consider the cluster integrals and the second
and third virial coefficients for various 𝑠-values.
⋆ s = 2:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

4𝑞
, 𝐵3𝜆

2 = − 2

9𝑞
, ... . (34)

The second and third virial coefficients are

𝑏IGS2
2 = −𝑞

4
; 𝑏IGS2

3 =
25

36
𝑞2. (35)

⋆ s = 3:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

4𝑞
, 𝐵3𝜆

2 =
1

9𝑞
, ... . (36)

The second and third virial coefficients are

𝑏IGS3
2 = −𝑞

4
; 𝑏IGS3

3 =
𝑞2

36
. (37)

⋆ s = 4:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

4𝑞
, 𝐵3𝜆

2 =
1

9𝑞
, ... . (38)

The second and third virial coefficients are

𝑏IGS4
2 = −𝑞

4
; 𝑏IGS4

3 =
𝑞2

36
. (39)

∙ Nonadditive Gentile statistics (NGS). For the
statistics of this type, we used the so-called Tsallis
𝑞-exponential 𝑒𝑥𝑞 [36]. It equals

𝑒𝑥𝑞 = [1 + (1− 𝑞)𝑥]
1

1−𝑞 , (40)

if the quantity in the square brackets is larger than
zero and zero (𝑒𝑥𝑞 = 0) otherwise. Then,

𝑋(𝜀) = 𝑒
𝜀
𝑇
𝑞 =

[︁
1 + (1− 𝑞)

𝜀

𝑇

]︁ 1
1−𝑞

. (41)

Let us consider the cluster integrals and the second
and third virial coefficients for various 𝑠-values.
⋆ s = 2:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

2(1 + 𝑞)
,

𝐵3𝜆
2 = − 2

3𝑞(2 + 𝑞)
, ... .

(42)

The second and third virial coefficients are

𝑏NGS2
2 = − 𝑞2

2(1 + 𝑞)
;

𝑏NGS2
3 =

𝑞2

4

[︂
16

3(2 + 𝑞)
+

1

(1 + 𝑞)2

]︂
.

(43)

⋆ s = 3:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

2(1 + 𝑞)
,

𝐵3𝜆
2 =

1

3(2 + 𝑞)
, ... .

(44)

The second and third virial coefficients are

𝑏NGS3
2 = − 𝑞2

2(1 + 𝑞)
;

𝑏NGS3
3 = 𝑞4

[︂
1

(1 + 𝑞)2
− 2

3𝑞(2 + 𝑞)

]︂
.

(45)

⋆ s = 4:
The cluster integrals equal

𝐵1𝜆
2 =

1

𝑞
, 𝐵2𝜆

2 =
1

2(1 + 𝑞)
,

𝐵3𝜆
2 =

1

3(2 + 𝑞)
, ... .

(46)
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The second and third virial coefficients are

𝑏NGS4
2 = − 𝑞2

2(1 + 𝑞)
;

𝑏NGS4
3 = 𝑞4

[︂
1

(1 + 𝑞)2
− 2

3𝑞(2 + 𝑞)

]︂
.

(47)

It is clear that the Gentile statistics with 𝑠 ≥ 4 co-
incides with the Bose statistics at least to an accuracy
of the fourth virial coefficient.

3.3. 𝑞-exponential in the bosonic limit
of Polychronakos and Haldane–Wu statistics

In the problems dealing with the so-called 𝑞-deformed
commutators

[𝐴,𝐵]𝑞 = 𝐴𝐵 − 𝑞𝐵𝐴,

there arise deformed exponentials of a different type
as compared with those considered in the previous
sections [37]. We use the notation

𝐸𝑥
𝑞 =

∞∑︁
𝑗=0

𝑥𝑗
[𝑗]𝑞!

(48)

for them, where the 𝑞-factorial is defined by the for-
mula

[𝑗]𝑞! = [𝑗]𝑞[𝑗 − 1]𝑞 ... [1]𝑞, (49)

and the notation [𝑛]𝑞 stands for the 𝑞-analog of the
number 𝑛,

[𝑛]𝑞 =
𝑞𝑛 − 1

𝑞 − 1
= 1 + 𝑞 + 𝑞2 + ...+ 𝑞𝑛−1. (50)

The general formula for the series expansion of the
𝑞-exponential looks like

𝐸𝑥
𝑞 =

∞∑︁
𝑛=0

𝑥𝑛
(𝑞 − 1)𝑛

(𝑞𝑛 − 1)(𝑞𝑛−1 − 1) ... (𝑞 − 1)
=

=

∞∑︁
𝑛=0

𝑥𝑛
𝑞 − 1

𝑞𝑛 − 1

𝑞 − 1

𝑞𝑛−1 − 1
...

𝑞 − 1

𝑞2 − 1

𝑞 − 1

𝑞 − 1
. (51)

Therefore, 𝐸𝑥
𝑞 can be written in the form

𝐸𝑥
𝑞 =

∞∑︁
𝑛=0

𝑥𝑛
1

(1 + ...+ 𝑞𝑛−1)(1 + ...+ 𝑞𝑛−2) ... (1 + 𝑞)1
.

In the limit 𝑞 → 1, we expand the function 𝐸𝑥
𝑞 in

a series

𝐸𝑥
𝑞 = 𝑓0(𝑥) + (𝑞 − 1)𝑓1(𝑥) + (𝑞 − 1)2𝑓2(𝑥) + ... . (52)

Substituting 𝑞 = 1, we obtain the following expression
for 𝑓0(𝑥):

𝑓0(𝑥) =

∞∑︁
𝑛=0

𝑥𝑛
1

𝑛!
= 𝑒𝑥. (53)

It can also be demonstrated that the next expansion
terms give the following coefficient functions:

𝑓1(𝑥) = −𝑥
2

4
𝑒𝑥, (54)

𝑓2(𝑥) =
𝑥2

8

[︂
1 +

17

9
𝑥+

59

36
𝑥2 +

31

36
𝑥3 +

17

54
𝑥4 +

+
47

540
𝑥5 +

83

4320
𝑥6 + ...

]︂
. (55)

The Polychronakos statistics modified with this ex-
ponential is defined as follows:

𝑛𝑞P𝑗 =
1

𝑧−1𝐸
𝜀𝑗/𝑇
𝑞 − 𝛾

. (56)

The corresponding Haldane–Wu statistics looks like

𝑛𝑞HW
𝑗 =

1

𝑤[𝑧−1𝐸
𝜀𝑗/𝑇
𝑞 ] + 𝑔

. (57)

In the next section, those statistics will be analyzed
in more details.

4. Relationship between the Anyonic
and Other Statistics

Having described the statistics and having obtained
expressions for virial coefficients, we can establish the
correspondence between the anyonic statistics and
the fractional statistics of other types. For this pur-
pose, the following procedure has to be done. We
equate the second and third virial coefficients for the
anyonic and other corresponding statistics to obtain
a system of equations{︃
𝑏2 = 𝑏anyon2 ,

𝑏3 = 𝑏anyon3 .
(58)

Hence, we have two equations for two parameters
(𝜅, 𝛾, ...). Having calculated those statistical parame-
ters (𝜅, 𝛾, ...) at various anyonic parameters 𝛼 ∈ [0, 1],

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 2 173



M.Ya. Hornetska, A.A. Rovenchak

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.0 0.2 0.4 0.6 0.8 1.0

α

κ 
2

a

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

α

g

b
Fig. 1. Parameters 𝜅2 (a) and 𝑔 (b) as functions of the anyonic
parameter 𝛼 in the 𝜅-deformed Haldane–Wu statistics
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Fig. 2. Fourth virial coefficient in various statistics: anyons
(1), 𝜅-deformed Haldane–Wu statistics (2), 𝜅-deformed Poly-
chronakos statistics (3), Gentile statistics with 𝑠 > 3 (equiva-
lent to the Bose statistics) (4), Haldane–Wu statistics deformed
with the Tsallis exponential [23] (5 )

we can find a value for the fourth virial coefficient,
which will demonstrate how much the proposed two-
parameter statistics differ from the anyonic one.

Numerical calculations testify that the substitu-
tion of the Tsallis 𝑞-exponential by the 𝜅-exponential
brings about the results that qualitatively coincide
with those obtained in work [23] dealing with a modi-
fication of the Polychronakos and Haldane–Wu statis-
tics. It turns out that, in this case, 𝜅2 < 0, i.e. the
parameter 𝜅 has an imaginary value. However, this
result is not of surprise, because complex parameters
can arise in fractional statistics in various contexts
[34, 38, 39].

Figure 1 demonstrates the dependences of the pa-
rameters 𝜅2 and 𝑔 on the anyonic parameter 𝛼 in the
𝜅-deformed Haldane–Wu statistics.

In Fig. 2, the fourth virial coefficient is compared
in various fractional statistics. It is of interest that, in
all analyzed statistics, the behavior of 𝑏4 differs quali-
tatively from the result obtained for anyons. Namely,
they are of different signs in the bosonic limit. The
only exception is the Gentile statistics with 𝑠 = 4
and the Tsallis 𝑞-exponential, which is, in fact, the
deformed Bose statistics.

In the case of intermediate distribution, which cor-
responds to the Gentile statistics, where the maxi-
mum occupation number of the levels is confined by
the number 𝑠, we considered the values 𝑠 = 2, 3, and
4. Actually, each of the corresponding expressions for
the occupation number is a separate distribution, in
which the exponential deformation gives one parame-
ter. We associated it with the anyonic 𝛼 by equating
the second virial coefficients,

𝑏2 = 𝑏anyon2 . (59)

In this case, the third virial coefficient differs from the
anyonic one, as is shown in Fig. 3. However, as was
said above, the behavior of the fourth virial coefficient
at 𝑠 > 3 qualitatively coincides with the anyonic one,
which gives grounds to consider this model as a basis
for further modifications.

Now, let us consider numerical results for the
Polychronakos statistics with the 𝑞-exponential 𝐸𝑥

𝑞

(48). Expanding expression (56) in a 𝑧-series, we ob-
tain the following formulas for cluster integrals with
a second-order accuracy in small corrections 𝜃 and 𝜂
(𝑞 = 1 + 𝜃 and 𝛾 = 1 + 𝜂):

𝐵1 = 1 +
1

2
𝜂 + 𝜂2𝑃1,
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Fig. 3. Third virial coefficient in various variants of the Gen-
tile statistics with the Tsallis exponential: 𝑠 = 2 (dashed
curve), 𝑠 > 2 (dash-dotted curve), anyons (solid curve)

𝐵2 =
1

2

[︂
1

2
+

1

2
𝜃 +

1

8
𝜂 +

1

8
𝜂𝜃 + 𝜂2

(︂
9

64
+ 𝑃2

)︂]︂
,

𝐵3=
1

3

[︂
1

3
+

2

3
𝜃 +

1

3
𝜃2 +

1

18
𝜂 +

1

9
𝜂𝜃 + 𝜂2

(︂
1

27
+ 𝑃3

)︂]︂
,

𝐵4 =
1

4

[︂
1

4
+

3

4
𝜃 +

3

4
𝜃2 +

3

32
𝜂𝜃 + 𝜂2

(︂
15

1024
+ 𝑃4

)︂]︂
,

where

𝑃𝑗 = −𝑗
∞∫︁
0

𝑒−(𝑗+1)𝑥𝑓2(𝑥) 𝑑𝑥,

𝑃1 = −1.09993..., 𝑃2 = −0.181866...,

𝑃3 = −0.272799..., 𝑃4 = −0.0813217... .

Whence the virial coefficients are

𝑏𝑞P2 = −1

4
− 𝜃

4
+

3𝜂

16
+

(︂
3

16
𝜃𝜂 − 0.654347𝜂2

)︂
,

𝑏𝑞P3 =
1

36
+

𝜃

18
− 17

216
𝜂 +

(︂
𝜃2

36
− 17

108
𝜃𝜂 + 0.595426𝜂2

)︂
.

(60)

In Fig. 4, the dependences of the corrections 𝜃 and
𝜂 on the anyonic parameter 𝑎 are shown. It should be
noted that those corrections are small only in a close
vicinity of the bosonic limit 𝛼→ 0.

In Fig. 5, the dependence of the fourth virial coef-
ficient in the Polychronakos statistics modified with
𝑞-exponential on the anyonic parameter 𝛼 is exhib-
ited.
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Fig. 4. Dependences of small corrections on the anyonic pa-
rameter in the Polychronakos statistics with 𝑞-exponential (48)
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Fig. 5. Fourth virial coefficient in the Polychronakos statistics
with 𝑞-exponential (48): result for anyons (solid curve), linear
approximation in 𝜃 and 𝜂 (dash-dotted curve), quadratic ap-
proximation in 𝜃 and 𝜂 (dashed curve)
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Fig. 6. Fourth virial coefficient in the Haldane–Wu statis-
tics with 𝑞-exponential (48): result for anyons (solid curve),
quadratic approximation in 𝑔 and 𝜃 (dashed curve)
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Carrying out similar calculations for the Haldane–
Wu statistics with 𝑞-exponential 𝐸𝑥

𝑞 (48) and expand-
ing in the small parameter 𝑔 and the small deviation
𝜃 = 𝑞 − 1, we obtain

𝑏𝑞HW
2 = −1

4
+
𝑔

2
+ 0.00144676 𝜃 −

− 0.00289352 𝑔𝜃 − 0.459052 𝜃2, (61)

𝑏𝑞HW
3 =

1

36
+ 0.00145216 𝜃 −

− 0.00798148 𝑔𝜃 + 0.225433 𝜃2. (62)

A comparison of the fourth virial coefficient in this
statistics with the anyonic one is shown in Fig. 6.

Figures 5 and 6 testify that the fourth virial co-
efficient in two last considered statistics has a sign
that is opposite to the sign of anyonic 𝑏anyon4 . Despite
that, the results obtained in this work, similarly to
those of work [23], provide the reproduction of ther-
modynamic functions for anyons with an accuracy
that exceeds the available accuracy of experimental
measurements [40].

5. Conclusions

In this work, fractional statistics generalizing the
quantum-mechanical Bose–Einstein and Fermi–Dirac
distributions are considered. Information is reported
concerning the virial and cluster expansions and the
virial coefficients for anyons. Attention is focused on
the modifications of three statistics, namely, the Poly-
chronakos, Haldane–Wu, and Gentile ones.

Cluster integrals and virial coefficients are deter-
mined for statistics of seven types: incomplete and
𝜅-deformed Polychronakos statistics, incomplete and
𝜅-deformed Haldane–Wu statistics, and incomplete
and non-additive Gentile statistics for various 𝑠-va-
lues. The modified Polychronakos statistics with the
𝑞-exponential was also considered in the bosonic
limit.

Numerical results are reported for the following
statistics: 𝜅-deformed Haldane–Wu and Polychron-
akos statistics; Gentile statistics with the Tsallis ex-
ponential at 𝑠 = 2, 3, and 4; and small corrections
to the Polychronakos statistics with the 𝑞-exponen-
tial. It is shown that none of the generalized statis-
tics gives an exact correspondence with the anyonic
one [1]. Only some of them can be partially compared
with the latter, and only with a confined accuracy to

the third virial coefficient, inclusive, which confirms
the previous results [23].

The obtained conclusions open some prospects for
further studies of the problem concerned in sev-
eral directions. In particular, these are the study of
two-parameter modifications of the Bose (Gentile at
𝑠 > 3) statistics and the construction of an expres-
sion for the occupation numbers as a series in small
corrections.

The work was partially sponsored by the State
Fund for Fundamental Researches of Ukraine (project
F64/41-2015, state registration No. 0115U004838).
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ДВОПАРАМЕТРИЧНI МОДИФIКАЦIЇ
СТАТИСТИК ЕНIОНIВ

Р е з ю м е

У роботi розглянуто двопараметричнi моделi дробових ста-
тистик, якi спрямованi на встановлення виразу для чи-
сел заповнення вiльних енiонiв. Знайдено вiрiальнi кое-
фiцiєнти для таких типiв статистик: 𝜅-деформованi ста-
тистики Полiхронакоса i Голдейна–Ву, модифiкованi з 𝑞-
експонентою статистики Полiхронакоса i Голдейна–Ву в бо-
зоннiй границi, неповна та неадитивна статистика Джен-
тiле для рiзних значень максимального заповнення рiвня.
Встановлено та проаналiзовано зв’язок мiж рiзними типами
дробових статистик та статистикою енiонiв.
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