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The redistribution processes of non-equilibrium vacancies under the spinodal decomposition
in a continuously irradiated solid solution have been considered. The consideration is carried
out in the framework of the generalized Cahn–Hilliard model, which makes allowance for the
structural disorder formation under irradiation. As the defect production rate increases, the
spinodal decomposition processes are found to transform into the processes of vacancy pattern
formation. It is shown that the formation of vacancy clusters is accompanied by the pattern
selection processes. The decomposition and patterning kinetics, as well as the statistical dis-
tributions of solute and vacancy concentrations at various dose rates are studied.
K e yw o r d s: Cahn–Hilliard model, spinodal decomposition in binary systems.

1. Introduction

While considering the processes of microstructural
transformations in alloys subjected to irradiation,
there arises an important issue concerning the behav-
ior of an ensemble of defects, in particular, point ones.
Experimental and theoretical researches of the rear-
rangements of vacancies and interstitial sites demon-
strate that, at certain radiation exposure doses, those
defects can self-organize into the so-called spatial pat-
terns. Among them, the aggregates of vacancies (di-,
tri-, and tetra-vacancies) [1], separate voids, and void
lattices [2,3] can be distinguished. In addition, precip-
itation, defect wall formation [4], vacancy loop order-
ing [5,6], and some other phenomena become possible.

The majority of defects created by an external acti-
on are thermodynamically unstable and, consequent-
ly, their uniform distribution also becomes unstable.
This fact results in the self-assembling of defects ac-
companied by the emergence of dissipative structures.
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Since the mobility of interstitial sites considerably ex-
ceeds that of vacancies, interstitial atoms quickly mi-
grate to sinks, and the number of their clusters is
much smaller than the number of clusters of vacanci-
es. Accordingly, the formation of a considerable num-
ber of vacancy patterns results in the worsening of
mechanical properties of materials; e.g., in the swel-
ling and crumbling of irradiated alloys. In this con-
nection, the study of the vacancy subsystem dynamics
in both one-component crystalline systems and multi-
component ones (steels) becomes an important task.

It was found experimentally and theoretically (nu-
merical simulation) that the dynamics of an ensem-
ble of defects and the properties of the created defect
patterns depend on irradiation conditions (the dose
rate and the temperature) [7, 8]. This dependence is
explained, first of all, by a reduction of the diffusion
component contribution, when the defect distribution
in the system is obtained by the irradiation on accel-
erators in comparison with the case of reactor irra-
diation conditions [9, 10]. As a rule, the processes of
defect generation in cascades, defect annealing, and
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defect cluster formation are simulated in theoretical
researches by molecular dynamics methods. The dy-
namics of defects and their redistribution on the diffu-
sion time scale can be examined, by using the phase-
field crystal method (see, e.g., works [11,12]). On the
other hand, the effects of defect generation, migration
to sinks, interaction, and diffusion can be studied at
the mesoscopic level in the framework of the quasi-
chemical reaction rate theory [8,13–17]. In the frame-
work of this approach, where the analyzed ensemble
of defects is described by equations of the reaction-
diffusion type for the concentration of point defects,
it becomes possible to reveal specific features in the
change of the defect pattern type [18], to study the
dynamic and statistical properties of a defect redistri-
bution and their dependence on irradiation conditions
[9, 10], and to reveal the influence of fluctuation com-
ponents on the patterning [19]. In addition, accord-
ing to works [20–22], this approach together with the
nucleation theory were used to explain the abnormal
dynamics of grain growth in irradiated systems, when
the vacancies go beyond the grain boundaries [23].

The application of this approach to the study of
binary alloys allows the effects of defect self-organi-
zation into patterns in the course of phase precipi-
tation processes at the spinodal decomposition to be
analyzed in the framework of the Cahn–Hilliard the-
ory [24] and taking Darken’s scheme [25] into account.
Darken’s assumption consisting in that only the equi-
librium vacancies are available can be generalized to
the case of irradiation taking the rate theory into con-
sideration. The influence of non-equilibrium vacan-
cies on the phase separation processes was studied in
works [26–30]. Darken’s approximation was demon-
strated to be valid, if the diffusion length substan-
tially exceeds the mean free path of vacancies. It
was established that, in real alloys undergoing the
spinodal decomposition, the diffusion length (the pe-
riod of a lamellar structure at the initial decomposi-
tion stage; it is equal to about 10−8 m) is substan-
tially shorter than the mean free path of vacancies
(about 10−7–10−6 m). Therefore, the description of
the phase precipitation should made allowance for the
contribution of non-equilibrium vacancies at their dis-
tribution between the lamellae owing to the discrep-
ancy between the atomic self-diffusion coefficients of
alloy components. It is of importance that, in the sys-
tem under irradiation, the non-equilibrium vacancies
will always be created as a result of the structural dis-

order generation (radiation-induced damages). Those
vacancies are directly accounted for with the help of
the rate theory.

Studying the redistribution of vacancies in the sys-
tem that reached a certain concentration of radiation-
induced damages remains rather a challenging prob-
lem at present. Its solution in the case of one-compo-
nent system was discussed in works [9, 10, 18, 19, 23],
where the supersaturation with vacancies was shown
to result in their assembling into stable spatial pat-
terns. The slow-down of the decomposition process in
non-irradiated systems at its initial stage by non-equi-
librium vacancies was studied in work [30]. However,
no scenario was proposed there for the spinodal de-
composition and the self-organization in the vacancy
subsystem under constant irradiation. Therefore, this
work is aimed at developing the Cahn–Hilliard ap-
proach by considering the kinetics of point defects
produced in cascades, as well as their redistribution
with the formation of dissipative patterns. In our re-
search, the Cahn–Hilliard theory is generalized, by
introducing “quasichemical” reactions of defects and
by assuming an interaction between vacancies in the
fields of elastic stresses induced by the defects them-
selves. We will demonstrate that the ordinary decom-
position processes take place at low irradiation doses.
For slightly higher dose rates (increase in the number
of non-equilibrium vacancies), the decomposition pro-
cesses are slowed down, whereas, at high dose rates,
the vacancies are capable of forming spatial patterns
and changing the lamella morphology. We will show
that processes of pattern selection become possible in
this system, when the irradiation dose rate grows. We
will also analyze the results of numerical simulations
and find differences between the vacancy redistribu-
tions obtained at various dose rates.

The structure of the work is as follows. In Section 2,
a model of the examined system is proposed, and the
basic assumptions are discussed. In Section 3, the sta-
tionary states and their stability are analyzed, and
the conditions for the processes of pattern selection
are determined. The results of numerical simulations
are discussed in Section 4. Conclusions are made in
the final section of the work.

2. Master Equations

Let us consider a binary crystalline system composed
of atoms A and B with the concentrations 𝑐𝐴 and
𝑐𝐵 , respectively (𝑐𝐴 + 𝑐𝐵 = 1). When constructing a
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model of the system, we proceed from the definition
of corresponding diffusion fluxes for each of the solid
solution components, j{𝐴,𝐵} = −𝐿{𝐴,𝐵}∇𝜇{𝐴,𝐵},
where each of the quantities 𝜇{𝐴,𝐵} is associated with
the corresponding chemical potential for atoms of the
definite sort (A or B), 𝐿{𝐴,𝐵} = 𝑐{𝐴,𝐵}𝐷

*
{𝐴,𝐵}/𝑇

are the transport coefficients for atoms A and B,
𝐷*

{𝐴,𝐵} are their self-diffusion coefficients, and 𝑇 is
the temperature in energy units. The main assump-
tion consists in a substantial difference between the
self-diffusion coefficients for the atoms of two sorts,
i.e. 𝐷*

𝐴 ̸= 𝐷*
𝐵 .

According to the Gibbs–Duhem relation 𝑐𝐴d𝜇𝐴 +
+ 𝑐𝐵d𝜇𝐵 = 0 for the chemical potentials 𝜇𝐴 and
𝜇𝐵 , the diffusion fluxes can be written as follows:
j𝐴 = 𝑐𝐵𝐿𝐴∇(𝜇𝐵−𝜇𝐴) and j𝐵 = −𝑐𝐴𝐿𝐵∇(𝜇𝐵−𝜇𝐴).
Taking the redistribution of vacancies into account,
those formula acquire the form j𝐴 = 𝑐𝐵𝐿𝐴∇�̃�+
+(𝑐𝐴𝐷

*
𝐴/𝑐𝑣)∇𝑐𝑣, j𝐵 = −𝑐𝐴𝐿𝐵∇�̃�+ (𝑐𝐵𝐷

*
𝐵/𝑐𝑣)∇𝑐𝑣,

where �̃� = 𝜕𝑓/𝜕𝑐− 𝛽0∇2𝑐𝐵 is a generalized chemical
potential that makes allowance for non-local interac-
tions in inhomogeneous alloys. Here, the free energy
density 𝑓 is taken according to the Bragg–Williams
theory of regular solid solutions. In this approxima-
tion, we have the standard expression 𝑓 = 𝑍𝑤0𝑐𝐴𝑐𝐵/
/2 + 𝑇 (𝑐𝐴 ln 𝑐𝐴 + 𝑐𝐵 ln 𝑐𝐵), where 𝑍 is the coor-
dination number, and the ordering energy 𝑤0 ≡
≡ 2𝑉𝐴,𝐵 − 𝑉𝐴,𝐴 − 𝑉𝐵,𝐵 is expressed in terms of
the interaction energies 𝑉𝐴,𝐴, 𝑉𝐵,𝐵 , and 𝑉𝐴,𝐵 . The
constant factor 𝛽0 in front of the squared gradi-
ent of concentration determines the squared inter-
action radius (the width of the interface between
the phases) expressed in terms of the Fourier trans-
form of the atom-to-atom interaction energy, 𝑣(𝑘),
in accordance with the Krivoglaz–Clapp–Moss ex-
pression 𝛽0 = 1

2
d𝑣(𝑘)
d𝑘2 . The diffusion flux of vacancies

is determined by the condition of flux conservation
j𝐴+j𝐵+j𝑣 = 0, which makes it possible to write that
j𝑣 = (𝑐𝐴𝐿𝐵 − 𝑐𝐵𝐿𝐴)∇�̃� − 𝑐−1

𝑣 (𝑐𝐴𝐷𝐴 + 𝑐𝐵𝐷𝐵)∇𝑐𝑣.
Owing to the Kirkendall effect, the difference between
the atomic self-diffusion coefficients invokes the mo-
tion of the lattice at a rate determined by the vacancy
flux j𝑣. Therefore, in what follows, we choose the lab-
oratory reference frame and rewrite the atomic flux
in the form J𝐵 = j𝐵 + 𝑐𝐵j𝑣. Substituting the expres-
sions for the fluxes j𝐵 and j𝑣, we arrive at the known
expressions [26, 30]

J𝐵 = −𝑐𝐴𝑐𝐵(𝑐𝐴𝐷
*
𝐵 + 𝑐𝐵𝐷

*
𝐴)

𝑇
∇�̃�+

+
𝑐𝐴𝑐𝐵(𝐷

*
𝐵 −𝐷*

𝐴)

𝑐𝑣
∇𝑐𝑣,

j𝑣 =
𝑐𝐴𝑐𝐵(𝐷

*
𝐵 −𝐷*

𝐴)

𝑇
∇�̃�−𝒟𝑣∇𝑐𝑣,

𝒟𝑣 ≡ 𝑐𝐴𝐷
*
𝐴 + 𝑐𝐵𝐷

*
𝐵

𝑐𝑣
. (1)

Here, the notation 𝒟𝑣 was introduced for the diffusion
coefficient of vacancies, which depends on the vacancy
concentration and the concentrations of the solid solu-
tion components. The cross terms in Eq. (1) describe
the exchange influence on the redistribution of solu-
tion components and vacancies, respectively. Under
normal conditions, the dynamics of the 𝑐𝐵 and 𝑐𝑣
fields are conserved, being described by the continu-
ity equations 𝜕𝑡𝑐𝐵 = −∇ · J𝐵 and 𝜕𝑡𝑐𝑣 = −∇ · j𝑣. In
addition, in general, the vacancy concentration is sup-
posed to be a quick mode in comparison with the
solution concentration.

When considering a binary system under irradia-
tion, we must consider the effects associated with the
generation of point defects in cascades, their relax-
ation at sinks, and annihilation. In the defect dynam-
ics, those effects are made allowance for in the form
of “quasichemical reactions”, provided that the atomic
fractions 𝑐𝐴 and 𝑐𝐵 must be preserved 1.

The corresponding equations for the point defect
dynamics are generalized by introducing the reac-
tion components responsible for defect sources and
sinks, as well as defect annihilation, into considera-
tion. Hence, in addition to vacancies, which can in-
teract with one another in the case of their supersat-
uration, by forming clusters, the model must include
the interstitial atoms of two sorts with the concentra-
tions 𝑐𝐴𝑖 and 𝑐𝐵𝑖 . As a result, if the processes indicated
above are taken into consideration in the framework
of the rate theory [8,13–17], the evolution of the whole
system will be described by the following system of
equations:
𝜕𝑡𝑐

𝐴
𝑖 = 𝐾𝑐𝐴 −𝒟𝑖𝜌𝑐

𝐴
𝑖 − 𝛼(𝑐𝑣 − 𝑐0𝑣)𝑐

𝐴
𝑖 −∇ · J𝐴

𝑖 ,

𝜕𝑡𝑐
𝐵
𝑖 = 𝐾𝑐𝐵 −𝒟𝑖𝜌𝑐

𝐵
𝑖 − 𝛼(𝑐𝑣 − 𝑐0𝑣)𝑐

𝐵
𝑖 −∇ · J𝐵

𝑖 ,

𝜕𝑡𝑐𝑣 = 𝐾 −𝒟𝑣𝜌(𝑐𝑣 − 𝑐0𝑣)−
−𝛼(𝑐𝑣 − 𝑐0𝑣)(𝑐

𝐴
𝑖 + 𝑐𝐵𝑖 )−∇ · J𝑣,

𝜕𝑡𝑐𝐵 = −∇ · J𝐵 .

(2)

1 If the generation of vacancies under irradiation is taken into
account, the conservation law 𝑐𝐴 + 𝑐𝐵 + 𝑐𝑣 = const, which
is obeyed in the equilibrium case, becomes violated, because∫︀
𝑐𝑣(r, 𝑡)dr ̸= const. In other words, the vacancy dynamics

is non-conserved.
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In the equations of defect evolution, the first terms
characterize the defect generation at the rate of
radiation-induced damages 𝐾 measured in the dis-
placement per atom per second (dpa/s) units. The
second terms describe the migration of defects to
sinks (these are dislocations with the concentration 𝜌
that are “smeared” over the system) characterized by
the diffusion coefficients 𝒟𝑖 = 𝜖𝒟𝑣, where the parame-
ter 𝜖 ≫ 1 involves the difference between the diffusion
coefficients for vacancies and interstices. The annihi-
lation of vacancies and interstices is determined by
the recombination coefficient 𝛼 = 4𝜋𝑟0(𝒟𝑖 + 𝒟𝑣)/Ω,
where 𝑟0 is the interaction radius, and Ω the atomic
volume (at 𝜖 ≫ 1, we may consider that 𝛼 ≃
≃ 4𝜋𝑟0𝒟𝑖/Ω). The quantity 𝑐0𝑣 is the equilibrium con-
centration of vacancies.

In the last equation, the components responsible for
the reactions, when the local concentration of the sub-
stance diminishes, are omitted. For example, when an
interstitial atom is formed, or an atom escapes from a
sink, or an interstitial atom transits into a proper site
position in the lattice owing to its interaction with
a vacancy. Those effects are supposed to take place
at distances considerably shorter than the size of a
spatial cell, in which the substance concentration is
recalculated, and the processes themselves are rapid
in comparison with the diffusion. That is why they
can be neglected.

The last terms in Eqs. (2) characterize the cor-
responding diffusion fluxes. Since the diffusion coeffi-
cients of interstitial sites and vacancies were adopted
to differ substantially from each other, we may con-
sider the interstitial atoms to be uniformly dis-
tributed, without any loss of generality. This circum-
stance makes it possible to omit the last terms in the
equations for 𝑐𝐴𝑖 and 𝑐𝐵𝑖 .

The total diffusion flux is introduced in the equa-
tion for the vacancy concentration. This parameter
involves the flux j𝑣 and the flux of interacting va-
cancies jint𝑣 emerging, when the elastic fields ap-
pear in vicinities of vacancies. This interaction is
described by the well-known relation between the
elastic fields and the concentration of their carriers,
where the corresponding interaction potential looks
like 𝑈 = −𝜅𝜛∇ · u. Here, the displacement vector
u satisfies the relation ∇ · u ∝ 𝜛𝑐𝑣, where 𝜅 is
the elastic constant, and 𝜛 the dilatation parame-
ter [20, 31, 32]. Therefore, there arises an additional
contribution to the vacancy flux, jint𝑣 ≡ v𝑐𝑣, where

v = −(𝐷*
𝐵/𝑇 )∇𝑈 is the flow velocity. Hereafter, the

condition of self-consistency [18,33–35] is accepted for
the interaction potential:

𝑈 = −
∫︁

�̃�(𝑟, 𝑟′)𝑐𝑣(𝑟
′)d𝑟′,

where −�̃�(𝑟) is an attractive potential, for which∫︀
�̃�(𝑟)𝑟2𝑛+1d𝑟 = 0. Assuming that 𝑐𝑣(𝑟) changes

slowly over the distance 𝑟0 ≃ Ω1/3, we can use the
expansion

1

𝑇

∫︁
dr′�̃�(r− r′)𝑐𝑣(r

′) ≃ 𝜃(𝑐𝑣 + 𝑟20∇2𝑐𝑣), (3)

where 𝜃 = 𝑇−1
∫︀
𝑢(𝑟)d𝑟 is a parameter describing

the interaction between vacancies. The second term
in Eq. (3) corresponds to the microscopic processes
of vacancy interaction at a distance of the interac-
tion radius 𝑟0. Under normal conditions, this term is
substantially smaller in comparison with the diffusion
one. However, it cannot be neglected, because it pre-
vents a divergence in this approximation, while ap-
proaching the vapor supersaturation [9, 10,18,19,34].

For the further consideration, it is expedient to in-
troduce dimensionless quantities by putting 𝑐 ≡ 𝑐𝐵 ,
𝜀 ≡ 𝑍𝑤0/𝑇 , 𝛽 ≡ 𝛽0/𝑇 , �̃� ≡ 𝐷*

𝐴/𝐷
*
𝐵 , 𝑡′ ≡ 𝑡𝐷*

𝐵𝜌,
and 𝑃 ≡ 𝐾/𝐷*

𝐵𝜌. The spatial coordinates are de-
fined as r′ ≡ r/𝐿𝐷, where 𝐿𝐷 ≡ 1/

√
𝜌 is the diffu-

sion length, and ℓ ≡ 𝑟0/𝐿𝐷. Then, by introducing the
scaling parameter 𝛾 ≡ 4𝜋𝑟0/Ω𝜌, let us determine the
rapid variables 𝑥𝐴,𝐵

𝑖 ≡ 𝛾𝑐𝐴,𝐵
𝑖 , which can be adiabat-

ically omitted from consideration, provided the con-
dition 𝜕𝑡′𝑥

𝐴,𝐵
𝑖 ≃ 0. Hence, by introducing 𝑥𝑣 ≡ 𝛾𝑐𝑣,

we obtain the expressions

𝑥𝐴
𝑖 ≃ 𝑃 (1− 𝑐)

𝜖[�̃� + 𝑐(1− �̃�)]

𝑥𝑣

1 + 𝑥𝑣 − 𝑥0
𝑣

,

𝑥𝐵
𝑖 ≃ 𝑃𝑐

𝜖[�̃� + 𝑐(1− �̃�)]

𝑥𝑣

1 + 𝑥𝑣 − 𝑥0
𝑣

.
(4)

Substituting them into the equation of vacancy evo-
lution in system (2) and dropping the prime on the
time variable, we obtain the system of equations

𝛾−1𝜕𝑡𝑥𝑣 =
𝑃

1 + 𝑥𝑣 − 𝑥0
𝑣

− [�̃� + 𝑐(1− �̃�)]
𝑥𝑣 − 𝑥0

𝑣

𝑥𝑣
−

−∇ ·
{︂
(1− �̃�)𝑐(1− 𝑐)

[︂
−𝜀∇𝑐+

∇𝑐

𝑐(1− 𝑐)
− 𝛽∇3𝑐

]︂
−

− �̃� + 𝑐(1− �̃�)

𝑥𝑣
∇𝑥𝑣 + 𝜃𝑥𝑣∇(𝑥𝑣 + ℓ2∇2𝑥𝑣)

}︂
, (5)
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𝜕𝑡𝑐 = ∇ ·
{︂(︁

1− 𝑐(1− �̃�)
)︁
𝑐(1− 𝑐)×

×
[︂
−𝜀∇𝑐+

∇𝑐

𝑐(1− 𝑐)
− 𝛽∇3𝑐

]︂
− (1− �̃�)𝑐(1− 𝑐)

𝑥𝑣
∇𝑥𝑣

}︂
.

Let us take Ω = 4𝜋𝑎3/3 and 𝑟0 ≃ 𝑏/2, where 𝑎
is the lattice constant and 𝑏 the magnitude of Bur-
gers vector, and let the parameters 𝑟0 ∼ 10−9 m,
Ω ∼ 10−29 m3, and 𝜌 ≃ 1014 m−2. Then we obtain
𝐿𝐷 ≃ 10−7 m, ℓ ∼ 10−2, and 𝛾 ∼ 107. Therefore, the
vacancy concentration 𝑥𝑣 can be regarded as a rapid
variable in comparison with the solution concentra-
tion 𝑐. The estimation of the dimensionless dose rate
𝑃 made at 𝐾 ≃ 10−6 dpa/s, a neutron flux of about
1015 cm−2s−1, a neutron energy of about 0.5 MeV, a
defect formation cross-section of 3 × 10−24 cm−2 for
metal targets (with an energy of initially knocked out
atom of 22–25 eV), and a fixed temperature of about
770 K gives 𝑃 ≈ 0.01÷10. The main task of the fur-
ther research is to describe the scenario of the vacancy
ensemble self-organization at the spinodal decompo-
sition in a binary solid solution at various rates of
irradiation dose accumulation.

3. Stability Analysis
for the Linearized System

Let us analyze the stability of the stationary states.
For this purpose, it is worth noting that the quantity
𝑐 is conserved. Therefore, its stationary value corre-
sponds to the initial one, which was chosen from the
interval 𝑐0 ∈ (0, 1). The stationary value of dimen-
sionless vacancy concentration 𝑥𝑠𝑡

𝑣 is determined by
solving the equation 𝜕𝑡𝑥𝑣 = 0:

𝑥st
𝑣 = 𝑥0

𝑣 −
1

2
+

𝑃

2𝒟(𝑐)
+

+
1

2

(︂
1 +

𝑃

𝒟(𝑐)

[︂
𝑃

𝒟(𝑐)
− 2(1− 2𝑥0

𝑣)

]︂)︂1/2
, (6)

where the notation 𝒟(𝑐) ≡ �̃� + 𝑐(1 − �̃�) was in-
troduced. The dependence of the stationary vacancy
concentration on 𝑃 at various concentrations of com-
ponent B is shown in Fig. 1, a.

One can see that, starting from the equilibrium
value 𝑥0

𝑣, the quantity 𝑥𝑠𝑡
𝑣 grows by several orders

of magnitude, when the dose rate increases. At the
same time, a reduction in the stationary value of va-
cancy concentration is observed for systems with an
enhanced content of the phase with B atoms. This
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Fig. 1. Dependences of the stationary vacancy concentration
of vacancies (a) on 𝑃 and 𝑐0 at �̃� = 0.1 and (b) on 𝑃 at various
ratios �̃� = 𝐷*

𝐴/𝐷*
𝐵 between the self-diffusion coefficients and

𝑐0 = 1/2

result is explained by the fact that the intensity of
relaxation of non-equilibrium vacancies in phase B
is considerably higher than that in phase A owing to
the difference between their diffusion coefficients. The
variation of the stationary vacancy concentration un-
der irradiation of systems characterized by different
𝐷*

𝐴/𝐷
*
𝐵 ratios is depicted in Fig. 1, b. From whence,

it follows that the number of non-equilibrium vacan-
cies is smaller in the system with a smaller differ-
ence between the self-diffusion coefficients. It is so,
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Fig. 2. Dependences of the characteristic values of the Jacobi matrix on the wave number in a vicinity of the stationary
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because, in accordance with the Kirkendall effect, the
vacancy flux toward the phase with a higher diffusion
coefficient decreases as the self-diffusion coefficients
come closer to each other.

Now, let us consider the stability of the stationary
state (𝑐0, 𝑥

𝑠𝑡
𝑣 ), by assuming the deviations 𝛿𝑐 = 𝑐0 +

+ 𝑒𝜆(𝑘)𝑡+ikr and 𝛿𝑥𝑣 = 𝑥𝑠𝑡
𝑣 +𝑒𝜆(𝑘)𝑡+ikr to be small. Li-

nearizing the system of equations (5) in a vicinity of
the point (𝑐0, 𝑥

𝑠𝑡
𝑣 ), we can obtain the characteristic

values 𝜆(𝑘) of corresponding Jacobi matrix as the so-
lutions of a quadratic equation. One of them is always
negative, whereas the other can accept positive val-
ues, depending on the rate 𝑃 . In addition, the comp-
lex roots of this quadratic equation are also possib-
le. The presence of complex roots points to an os-

cillatory behavior of the concentration fields of the
solution, vacancies, and corresponding structural fac-
tors as the Fourier transforms of two point correlation
functions ⟨𝛿𝑐(r, 𝑡)𝛿𝑐(r′, 𝑡)⟩ and ⟨𝛿𝑥𝑣(r, 𝑡)𝛿𝑥𝑣(r

′, 𝑡)⟩.
Such an oscillatory behavior testifies to a pattern se-
lection, when, among structures with different sizes,
the system selects only that which corresponds to the
most unstable mode with the wave number 𝑘max. In
this case, 𝜆(𝑘max) turns out to be the maximum pos-
itive characteristic value of the stability matrix.

Let us consider the influence of the defect forma-
tion rate on the course of pattern selection processes,
by analyzing the characteristic values of Jacobi ma-
trix. The dependences 𝜆(𝑘) at various 𝑃 are exhibited
in Fig. 2. At 𝑃 = 0.1 (see Fig. 2, a), we have a single
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real positive root for 𝜆(𝑘) in the interval 0 < 𝑘 < 𝑘c,
where 𝑘c is the critical wave number that confines
unstable modes. Hence, if the defect formation rate
is low, the ordinary process of phase stratification
takes place, which is observed at the decomposition
of the non-irradiated system. As the defect formation
rate increases owing to the structural disorder gen-
eration, the number of unstable modes considerably
diminishes: the maximum of the positive characteris-
tic value, 𝜆(𝑘max), falls down, and its position corre-
sponding to 𝑘 = 𝑘max shifts to 𝑘 = 0. The latter fact
testifies that only the long-wave patterns survive. At
𝑃 = 0.3 (see Fig. 2, b), all characteristic values of
stability matrix are negative. This means that the
non-equilibrium vacancies substantially hamper the
decomposition at the rates concerned owing to the in-
verse Kirkendall effect. A further growth of 𝑃 results
in the appearance of positive 𝜆(𝑘)-values in a con-
fined interval of nonzero wave numbers (see Fig. 2, c
for 𝑃 = 0.35). In this case, two real negative char-
acteristic values of Jacobi matrix degenerate, so that
two complex-conjugate characteristic values emerge
in a certain interval 𝑘1 < 𝑘 < 𝑘2. Hence, at high
dose rates, owing to the supersaturation with inter-
acting vacancies, a patterning takes place, which is
accompanied by the processes of pattern selection
(Im 𝜆(𝑘) ̸= 0). In this case, Re 𝜆(𝑘) < 0; there-
fore, the corresponding processes are damped, and,
ultimately, only one unstable mode with the wave
number corresponding to the maximum of 𝜆(𝑘) sur-
vives. As the defect formation rate grows further (see
Fig. 2, d for 𝑃 = 0.5), the processes of pattern selec-
tion do not damp within short time intervals. This sit-
uation is characterized by the inequality Im 𝜆(𝑘) ̸= 0,
with Re 𝜆(𝑘) > 0 in a narrow interval of wave num-
bers 𝑘𝑡ℎ < 𝑘 < 𝑘2, where 𝑘𝑡ℎ is the emergence
threshold for unstable oscillation modes. Evidently,
only those patterns will survive, the period of which
will correspond to the maximum 𝜆(𝑘max).

Note that the processes of pattern selection in non-
irradiated systems are strongly associated with a fi-
nite velocity of perturbation transfer; in particular,
with a finite relaxation time for the diffusion flux (see
works [11, 36–38]). In our case, those processes are
connected with electromagnetic irradiation at high
dose rates.

Now, let us consider how the dependence of the
wave number 𝑘max on 𝑃 changes its character for
various values of the key system parameters (see
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Fig. 3). The general form of the obtained depen-
dences testifies to the following: as 𝑃 grows, the
system undergoes a phase stratification with the for-
mation of long-wave patterns, lamellae (𝑘max → 0);
at higher dose rates, a drastic (jump-like) growth of
𝑘max is observed, which the formation of spatial clus-
ters with a restricted characteristic length, i.e. the
patterning. The reduction of 𝑘max, when 𝑃 increases
from zero, testifies that the phase interfaces become
smeared as a result of the structural disorder genera-
tion under irradiation, and the number of vacancies is
not enough for the patterning, because the required
vacancy supersaturation is not attained. This effect
was discussed in some previous works dealing with the
phase stratification in irradiated systems (see works
[38–41]).

When the vacancy supersaturation is reached (at
high 𝑃 ), the defects self-organize into an ensemble,
which is accompanied by the formation of patterns of
interacting defects. The processes of defect pattern-
ing in one-component systems subjected to irradia-
tion were studied in works [9, 10, 18, 19], where the
influence of irradiation conditions on the character of
created vacancy patterns was demonstrated. A sim-
ilar variation in the behavior of an irradiated sys-
tem from phase stratification to patterning with a
growth of the irradiation dose rate was discussed ear-
lier, when a binary system was simulated, by using
the phase field and kinetic Monte Carlo methods (see
works [42–44]). It is of importance that, in this case,
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there exists a certain interval for the parameters, in
particular, for 𝜀 and 𝜃, in which the growth of the
irradiation dose rate is not accompanied by the emer-
gence of unstable modes on short-time scales. In this
case, the system becomes homogeneous (𝑘max = 0),
i.e. the phases enriched in atoms A and B are not
separated, because the vacancies are generated and
mixed over the whole system. Comparing the solid
and dashed curves in Fig. 3, one can see that, if the
dose rate does not exceed 𝑃 = 𝑃0, the stratification
processes in the system with the formation of long-
wave lamellae remain possible. It is evident that the
vacancies will be mainly concentrated in the “soft”
phase (with a higher atomic self-diffusion coefficient,
𝐷*

𝐵 ≫ 𝐷*
𝐴).

As 𝑃 grows further, a homogeneous state is real-
ized at a certain critical value 𝑃𝑐{2,3} depending on
the ratio between the interaction parameters 𝜀 and
𝜃. Since 𝜆 < 0 in this case, the system is stable with
respect to spatial perturbations, which allows us to
put 𝑘max = 0. The growth of the interaction param-
eter 𝜃 results in the narrowing of the interval, where
the uniform distributions of the vacancy and solu-
tion concentrations are realized. If the ratio between
𝜃 and 𝜀 is large, the stratification and the pattern-
ing modes change, and the homogeneous states are
not realized (the dashed curve in Fig. 3). Now, the
patterning threshold 𝑃𝑐1 is considerably lower than
the phase stratification threshold 𝑃0. In the interval
𝑃𝑐1 < 𝑃 < 𝑃0, the quantity 𝜆 has two peaks: one
of them (at small 𝑘) is responsible for stratifications,
and the other (at large 𝑘’s) for the patterning (see
the inset in Fig. 3). However, since the most unsta-
ble mode 𝑘max corresponds to the largest maximum
𝜆-value, it is evident that, when approaching 𝑃𝑐1, the
stratification processes will be drastically substituted
by the patterning ones. According to the results ob-
tained, the corresponding redistribution of vacancies
is essentially associated with the Kirkendall effect.

4. Numerical Simulation

Here, we will numerically solve the system of equa-
tions (5), in which 𝑡 is the dimensionless time. The
numerical solution procedure was carried out on a
square 𝐿 × 𝐿 mesh with the linear length 𝐿 =
= 𝑁Δ𝑙, where 𝑁 = 256 was the number of cells,
each with the characteristic length Δ𝑙 = 0.25 (the
spatial step). The initial conditions were as follows:
⟨𝑐(r, 0)⟩ = 0.5 and ⟨𝑥(r, 0)⟩ ≡ 𝑥0 = 0.1. Periodic

boundary conditions were selected. The difference be-
tween the characteristic time scales of evolution for
the solution and vacancy concentrations was fixed by
the value 𝛾 = 103. The simulation was performed at
�̃� = 0.1, 𝜀 = 6, 𝛽 = 1, 𝜃 = 10, ℓ = 0.25, and with the
time integration step Δ𝑡 = 0.00015.

Typical scenarios of evolution of the system at var-
ious defect formation rates 𝑃 are shown in Fig. 4
(here, the upper row corresponds to the concentration
field of the solution, and the lower one to the con-
centration field of non-equilibrium vacancies). From
Fig. 4, a, one can see that the ordinary process of
phase separation takes place in the system at low dose
rates. Owing to the Kirkendall effect, the vacancies
mainly migrate into the phase region, where the diffu-
sion coefficient is higher (𝐷*

𝐵 ≫ 𝐷*
𝐴). In this case, the

morphology of vacancy formations repeats the lamella
morphology of precipitating phases. As 𝑃 grows (see
Fig. 4, b), the weakly pronounced patterning pro-
cesses become observed in the system within short
time intervals. At the same time, the domains of vari-
ous phases with vacancies in the phase with the higher
self-diffusion coefficient of the corresponding sort of
atoms are separated on the long-time scale. At even
higher rates 𝑃 (see Fig. 4, c), the vacancy patterns
are formed, and the corresponding redistribution of
atoms of the solution takes place. At the supersat-
uration with non-equilibrium vacancies, the vacancy
clusters are formed within long-time intervals in the
phase with the lower self-diffusion coefficient of atoms
(the “solid” phase) and at interfaces. Such a scenario
is explained by the fact that the relaxation intensity of
non-equilibrium vacancies is higher in the phase with
a higher self-diffusion coefficient of atoms (the “soft”
phase). The vacancies in the “solid” phase are less mo-
bile, which results in their self-organization into clus-
ters owing to the supersaturation and the interaction
in this phase. In contrast, the non-equilibrium vacan-
cies accumulated in the “soft” phase annihilate and
migrate to sinks more intensively. This effect corre-
sponds to the obtained dependence of the stationary
concentration of non-equilibrium vacancies on the so-
lution composition (see Fig. 1, a). It should be noted
that the patterning processes run only at elevated
dose rates 𝑃 , which corresponds to the linear stabil-
ity analysis.

According to the obtained numerical data, the
processes of pattern selection can be analyzed
on the short-time scale. For this purpose, the
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Fig. 4. Evolution of the solution and vacancy concentration fields at �̃� = 0.1

and various 𝑃 = 0.2 (a), 0.35 (b), and 0.5 (c)

two-point correlation function ⟨𝛿𝑐(r, 𝑡)𝛿𝑐(r′, 𝑡)⟩ is
calculated, and the structure factor 𝑆(k, 𝑡) =
=

∫︀
⟨𝛿𝑐(0, 𝑡)𝛿𝑐(r, 𝑡)⟩𝑒𝑖krdr is determined. The quan-

tity 𝑆(k, 𝑡) is spherically averaged by the formula
𝑆(𝑘, 𝑡) = 𝑁−1

𝑘

∑︀
𝑘<|k|<𝑘+Δ𝑘 𝑆(k, 𝑡), where 𝑁𝑘 is the

number of rings, and the width of each ring equals
Δ𝑘. The dynamics of 𝑆(𝑘, 𝑡) at various 𝑃 -values is
illustrated in Fig. 5. As follows from Fig. 5, a, the
process of phase stratification is observed at low 𝑃 :

the peak position of the structure factor tends in
time to 𝑘 = 0, its height increases, and phase do-
mains are formed in the system following the spin-
odal mechanism. The behavior of 𝑆(𝑘, 𝑡) at higher 𝑃
differs substantially from the described case. In par-
ticular, Fig. 5, b demonstrates the presence of sev-
eral peaks for the structure factor at various time
cross-sections. The peak height grows in time at large
wave numbers and diminishes at small ones. Such an
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Fig. 5. Structure factor dynamics at various 𝑃 at the initial
stage: 𝑃 = 0.2 (a), 0.35 (b), and 0.5 (c)

oscillatory behavior testifies in favor of the pattern
selection processes. In the course of a further evo-
lution, the satellite peaks, which correspond to the
sizes of damped patterns, disappear, so that only
one peak characterizing the most unstable mode ul-
timately survives. A similar effect for a change in the
peak height is observed in Fig. 5, c corresponding
to 𝑃 = 0.5. Here, the height of the peak at small 𝑘
grows in time. The difference between those two cases
(𝑃 = 0.35 and 𝑃 = 0.5) is explained by the fact that,
at 𝑃 = 0.5, the increase in the oscillation intensity at
small wave numbers is observed, which was shown in
Fig. 2 at 𝑃 = 0.5, when Im 𝜆 ̸= 0 and Re 𝜆 > 0. As
the time increases, only one peak survives, which cor-
responds to the wave number 𝑘max.

Let us consider the ordering dynamics by ana-
lyzing ⟨𝑥𝑣(𝑡)⟩, 𝐽𝑣(𝑡) = ⟨(𝛿𝑥𝑣(r, 𝑡))

2⟩, and 𝐽𝑐 =
= ⟨(𝛿𝑐(r, 𝑡))2⟩. The first quantity is the average value
of vacancy concentration in the system (the average
solution concentration remains constant at the sim-
ulation, in accordance with the mass conservation
law). The other two quantities play the role of order
parameters at the patterning and the phase stratifica-
tion. They describe the dispersion in the distribution
of a corresponding field. The growth of the disper-
sion evidently testifies to the separation of aggregates
(patterns, phases), i.e. to an ordering in the initially
homogeneous system. The corresponding time depen-
dences are shown in Fig. 6, a to 6, c.

In particular, the dependences ⟨𝑥𝑣(𝑡)⟩ (see
Fig. 6, a) demonstrate that the vacancy concentra-
tion first grows from the equilibrium value (vacancies
are accumulated), then the vacancies migrate to sinks
(a drastic drop), and a slow transition to the station-
ary regime occurs finally (the vacancy redistribution
with the “soft” phase formation and/or the pattern-
ing). Depending on the 𝑃 -value, the metastable phase
existence time (while the vacancies migrate to sinks)
changes. Namely, at high rates, the number of vacan-
cies grows rapidly, and their redistribution happens
instantly; at low 𝑃 , this process is slowed down.

The character of the vacancy ordering can be mon-
itored, by using the time dependences of 𝐽𝑣. If 𝑃 is
low (the solid and dashed curves in Fig. 6, b), the
order parameter firstly decreases, which is explained
by the uniform distribution of vacancies in the sys-
tem. The further growth of 𝐽𝑣 testifies to a redistribu-
tion of vacancies, with their segregation in the “soft”
phase. The growth of 𝑃 results in an increase of the
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Fig. 6. Time dependences of the average vacancy concentration ⟨𝑥𝑣⟩ (a), the order parameter 𝐽𝑣 (b), and the order parameter
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𝑣 -values on 𝑃

order parameter 𝐽𝑣. At 𝑃 = 0.5, the essentially differ-
ent dynamics of 𝐽𝑣 is observed (see the dotted curve
in Fig. 6, b). Here, the relaxation regime is realized
substantially earlier and runs much more rapidly in
comparison with the previous cases (not shown in the
figure). The order parameter drastically grows by sev-
eral orders of magnitude and transits to the station-
ary regime. Hence, the ordering process is substan-
tially accelerated at high 𝑃 , and it is accompanied by
the patterning of non-equilibrium vacancies.

It should be noted that the order parameter 𝐽𝑣 in-
creases non-monotonically, when 𝑃 grows. This non-
monotonicity is explained by the oscillatory behav-
ior. Really, as follows from the stability analysis in
the linear approximation and the dynamics of the
structure factor at initial stages, the oscillatory be-

havior should be inherent to 𝐽𝑣 and 𝐽𝑐. Since the
magnitude of 𝐽𝑣 is small, the corresponding oscilla-
tions can be illustrated rather well by considering the
behavior of the order parameter 𝐽𝑐, which is shown
in Fig. 6, c. Here, 𝐽𝑐 expectedly grows, which points
to the phase precipitation. In due time, those phases
have to divide the whole system into two equivalent
ones. Therefore, the value of 𝐽𝑐 will grow logarith-
mically slowly at large times. The process of pattern
selection and the corresponding oscillations can be
seen at the growing and coarsening stages, provided
that a corresponding trend is subtracted from the 𝐽𝑐-
dependence (at 𝑃 = 0.5). As a result, we obtain the
quantity 𝛿𝐽𝑐, whose dynamics explicitly illustrates
the oscillatory character of selection processes (see
the inset in Fig. 6, c).
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The influence of the defect formation rate on the
stationary values of average vacancy concentration
and corresponding order parameter is illustrated in
Fig. 6, d. One can see that the growth of 𝑃 in-
creases the ⟨𝑥𝑠𝑡

𝑣 ⟩-value and enlarges the order param-
eter 𝐽𝑠𝑡

𝑣 by several orders of magnitude. We should
emphasize that the growth of the rate 𝑃 substan-
tially slows down the process of spinodal decomposi-
tion (cf. curves 𝐽𝑐(𝑡) at 𝑃 = 0.2 and 0.35). Moreover,
in the case 𝑃 = 0.3, no spatial instability arises
in the system at all. Such a damping is associated,
first of all, with the inverse Kirkendall effect, when
the non-equilibrium vacancies slow down phase sep-
aration processes [45]. The further growth of 𝑃 re-
sults in the supersaturation of non-equilibrium vacan-

cies, which gives rise to their interaction and pattern-
ing. At high rates (𝑃 = 0.5), the order parameter 𝐽𝑐
drastically grows, which is a “smoking gun” of rapid
patterning processes.

Finally, let us analyze the evolution of the distri-
bution functions 𝑝(𝑐, 𝑥𝑣; 𝑡) for the solution and va-
cancy concentrations at various dose rates. The cor-
responding dependences are exhibited in Fig. 7. The
general character of the solution concentration field
distribution is as follows. On a short-time scale, the
unimodal distribution of the solution concentration
becomes smeared in a vicinity of the initial concen-
tration 𝑐0 = 0.5. Afterward, this distribution be-
comes bimodal; two phases precipitate, which are
enriched in atoms of sort A or B. Depending on
the accumulated dose, the properties of this smear-
ing and the formation of a bimodal distribution
differ only in detail. At the same time, the distri-
butions of the vacancy concentration are consider-
ably different at low and high 𝑃 , which is illus-
trated in the insets in Fig. 7. In particular, at low
𝑃 (see the inset in Fig. 7, a), the unimodal distri-
bution is transformed into a bimodal one on long-
time scale. This means that vacancy-depleted and
vacancy-enriched regions become separated in the
course of evolution of the system. This scenario is
typical at those defect formation rates, when the
stratification processes are still observed in the sys-
tem. As 𝑃 grows (see the inset in Fig. 7, b), and
the patterning takes place, the initial unimodal dis-
tribution of vacancies becomes essentially smeared
even on a short-time scale. On a long-time scale, it
transforms into a unimodal one in a much wider in-
terval of vacancy concentrations in comparison with
the previous two intervals. The appearance of a sin-
gle peak in the corresponding distribution testi-
fies to the precipitation of the phase with vacancy
patterns. The latter are so arranged in the “solid”
phase that the vacancy distribution is only weakly
smeared near the phase interfaces and in the other
phase.

5. Conclusions

In the framework of a generalized model for the redis-
tribution of non-equilibrium vacancies at the spinodal
decomposition of a binary solid solution subjected to
constant irradiation, the influence of the defect for-
mation rate on the defect pattern self-organization
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has been studied. At high defect formation rates,
the process of spinodal decomposition is found to
be hindered by residual non-equilibrium vacancies
and to transform into the process of vacancy pat-
terning. The formation of vacancy clusters at high
formation rates of radiation-induced damages is ac-
companied in this case by a pattern selection at the
initial stages. The analysis of the ordering dynam-
ics has shown that the non-equilibrium distribution
of vacancies results in a deceleration of spinodal de-
composition processes according to the inverse Kirk-
endall effect. The statistical analysis of the distribu-
tions of non-equilibrium vacancies at the spinodal
decomposition and the patterning reveals that, in
the former case, the non-equilibrium vacancies are
mainly concentrated in the lamellae consisting of the
“soft” phase, in which the self-diffusion coefficient of
atoms is higher than that in the other phase. In the
course of patterning, the interaction of vacancies in
their supersaturated solution results in the formation
of vacancy clusters in the lamellae of “solid” phase
and at the interfaces. At the same time, the vacancy
distribution in the lamellae of the other phase is
smeared.

The authors believe that the obtained theoretical
results can be used for the explanation of the spin-
odal decomposition in binary systems (alloys) and the
defect patterning processes under various irradiation
conditions. We also hope for that they can stimu-
late relevant experimental researches in this direction,
while developing new constructional materials.
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Д.О.Харченко, В.О.Харченко, А.I. Баштова

САМООРГАНIЗАЦIЯ ВАКАНСIЙНОГО
АНСАМБЛЮ ПРИ СПIНОДАЛЬНОМУ РОЗПАДI
БIНАРНИХ СИСТЕМ, ПIДДАНИХ СТАЛIЙ
ДIЇ РАДIАЦIЙНОГО ОПРОМIНЕННЯ

Р е з ю м е

Розглянуто процеси перерозподiлу нерiвноважних вакан-
сiй при спiнодальному розпадi бiнарного твердого розчину,
що знаходиться при сталiй дiї опромiнення, в рамках уза-
гальненої моделi Кана–Хiллярда, яка враховує формуван-
ня структурного безладу внаслiдок опромiнення. Виявле-
но, що зi збiльшенням швидкостi дефектоутворення проце-
си спiнодального розпаду замiнюються процесами форму-
вання просторових вакансiйних структур. Встановлено, що
формування кластерiв вакансiй супроводжується вiдбором
структур. Дослiджено кiнетику розпаду та структуроутво-
рення, статистичнi розподiли полiв концентрацiї розчину
та концентрацiї вакансiй за рiзних швидкостей набору дози
опромiнення.
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