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FOR THE ELEMENTARY FUNCTIONS cos £ AND arccos x

New exact rules have been obtained for the propagation of the error and the mean value for a
measured physical quantity onto another one with a functional relation of the cos x or arccos x
type between those quantities. The obtained formulas are shown to provide an accurate result,
if being applied to a set of data obtained in a real experiment. This is a consequence of the
fact that the distribution of experimental data is inherently based on the Gaussian weight
scheme. An analytical form used to present the mentioned rules (“analytical propagation rules”)
and the exact character of the latter allow the processing and the analysis of experimental data

to be simplified and accelerated.
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1. Introduction

It is often impossible to measure the value of a cer-
tain physical quantity y directly. Instead, this value
has to be determined with the help of another quan-
tity = by using the functional relation y = h(zx) be-
tween them. The measured z-values, x;, form a set
of random numbers, i.e. a statistical set {z;}. The
latter is described by two parameters: the mean
value (or, simply, the mean) (z) and the mean er-
ror |Az|, which is related with the mean-square de-
viation <A:U2>. Those means determine the physical
quantity z.

For the given function y = h(x), we can calculate a
set of values {y; = h(z;)}. This set also has a statisti-
cal character, being described by two parameters: the
mean (y) and the “error” |Ay|, which determine, in
turn, the calculated physical quantity y. Sometimes,
however, we cannot construct the set {y;} and use it
to determine (y) and |Ay|. Therefore, in this case,
we have to look for the relations (z) — (y) and
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|Az| — |Ayl|, by using the properties of the func-
tional relation y = h(x). This is the essence of the
propagation of the error of the physical quantity x on
a new physical quantity y = h(z) and the calculation
of its “shifted mean value” after processing a set of
physical measurements {z;}. This problem is rather
challenging.

For example, when carrying out X-ray diffraction
measurements, we are not interested, generally speak-
ing, in the values and the measurement accuracy of
X-ray scattering angles from a crystal. Our goal is
the unit cell parameters and their “propagated” accu-
racy. In the simplest case of the Bragg—Wulf equation,

2dsinf = nA,

it looks like the error propagation Af — Ad. In such
a simple case, the error Ad can be roughly estimated
by differentiating this equation, i.e.

Ad = —cot § A6.

However, in more complicated cases, this procedure
is not so simple and may produce wrong results. For
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instance, in practice, the same parameters of a unit
cell are determined from an overdetermined system
of quadratic-type equations (50-100 equations) of the
Bragg—Wulf type,

A2 (R2a2+ K202 +1% 2 4+-2hka.b, cos v +
+ 2hla,cicos B,+2klb,c, cos oz*) = 4sin?6;,

where the right-hand sides contain the known,
i.e. experimentally measured, values. From this sys-
tem, using statistical methods, six means and six de-
viations are obtained for six unknown quantities: a2,
bf, ci, Q4 by COS Yy, AsxCiCOs B, and byc.cos a,. Then
the mean values have to be calculated for the recipro-
cal lattice parameters a., by, cs«, s, B, and 7., and
the deviations have to be propagated on them. At
the next stage, we have to obtain six means for
the direct lattice parameters (a.— a, b.— b, c.— ¢,
ax— a, B = B, 7« — 7v) and propagate six variances
on them, by using an involved system of relations
(7 equations) of the type

COS [34COS Y5 — COS (ty

cosa = . -
sin f,sin v,

The calculation procedure for the means and de-
viations also becomes complicated and works badly
if the function H(cosx,arccosz) is a chain of func-
tions cosz and arccosx or any other combination of
those functions, because the whole function H has to
be differentiated with respect to x. The expansion in
series [1] at the point zy = (z),

1d’H

H(l‘)—H(Jﬁo) = dﬁ(x—$0)+§dT%

N2
= g (x —x0)+ ...,

can give more exact results, if higher-order terms in
the expansion are taken into account. However, the
calculations become more cumbersome in this case.
Analytical formulas for the propagation of error
and the shifted mean would greatly simplify the
required calculations. However, till now, they were
known only for the linear function y = kz [1]. It
should be noted that the propagation of errors with
the help of the expansion in a Taylor series (“differen-
tiation”), if it is regarded as a method, has a more gen-
eral character, because it is applicable to any contin-
uous function. On the contrary, the “analytical” ap-
proach reduces its usage to specific functions (in this
work, these are cosz and arccos x). Therefore, in all
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modern theoretical and practical applications, meth-
ods, and considerations of the error propagation, this
procedure is built exclusively on the basis of the dif-
ferentiation operation [3-11]. The best review of the
problems associated with the “analytical” propagation
of errors was made in work [1].

2. New Rules for the Calculation
of Mean and Propagation of Error in the Case
of Elementary Functions cos  and arccos x

In order to obtain the analytical rules for two cho-
sen functions, cos x and arccos x, the mean (z) and
the “error” k (Az)? were related (formalized) to the
basic concepts of mathematical statistics: the math-
ematical expectation F, and the variance D, of the
measured quantity x,

(z) ~ By, k{Az)*~ D,.

In the framework of this formalization, the individ-
ual values x; of a measured physical quantity z are
assumed to appear in accordance with a certain func-
tion f(x), which describes the probability distribu-
tion for the appearance of x;. Of course, this func-
tion depends on the measurement conditions (it im-
plicitly depends on the measurement device, chosen
technique, and so on). As usual, the function f(z)
is normalized, and, if the physical quantity = has a
continuous distribution, it is called the probability
density function for the appearance of x [1]:

7f(a:)dx ~1. (1)

In this case, the true value of x, which is called the
mathematical expectation, can be calculated if the
function f(z) is known:

o0
uw==FE,= / zf(x)dx (2)
— 00
Equation (2) is the definition of mathematical expec-
tation E, [1]. Simultaneously, the function f(z) de-
termines the dispersion of the physical quantity = [1],
i.e. the spread of its values at measurements:

oo

D, = / (x — E.)*f(z)dx =

— 00
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~ [ w@ds  p=E. 3)
Among the distributions f(z), the so-called normal

(Gaussian) probability distribution is considered to
be the most important [1]:

fz) = % exp[—p?(x — p)?l, (4)
where
P = i, p=E,.

In the case where the quantities x and y are related
by the functional dependence y = h(z), the mathe-
matical expectation and the variance for the function
h(zx) equal [1]

o0

X =Ep = / h(z) f(x)dz, (5)
Dy = / () — Enl f(z)de = / (h(2) — X f(2)de

Expression (6) can be rewritten in a more convenient
form [1],

o

Dy = / h2(2) — 2h(2) En + E2)f ()da =

— 00
(oo}

~ [ W@ - B} (7)
In Eqgs. (4)—(7), the quantities p = E, and D, en-

ter f(z) as parameters. Therefore, strictly speaking,

E, = / h(z) f(z, By, Dy)dz, (8)
D, +E} = /hQ(x)f(at,EI,Dw)dx. (9)

It is easy to see that Eqs. (8) and (9) are integral
equations. Having solved them, we could obtain the
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desired analytical relations, on the one hand, between
E;, and Dy, (they are analogs of the means for the
function h(z)) and, on the other hand, those between
E, and D, (analogs of the measured means).

In the case of two elementary functions, cos x and
arccos z, it turned out that the tabulated integrals
[2] similar to Eqgs. (8) and (9) can be chosen, which
makes the problem resolved (see Appendix). For the
function cos x, those relations look like

D,
FEeos = €xp (— ) cos F;
2 (10)

1
Deos = 5[1 —exp(—D,)][1 — exp(—D,) cos 2E,],

where F, and D, are the mean and the error, respec-
tively, for measured data, whereas F..s and D..s are
the corresponding quantities for the propagation of
the results using the function cos x.

For the function arccos x, the corresponding rela-
tions read

E,
FEirccos = arccos ;

i\/Eg ++/(1—E2)2-2D,
, 1
E2+./(1-E2)2-2D,

(11)
Darccos =1

)

where F, and D, are the mean and the error, respec-
tively, for measured data, whereas Farccos and Darecos
are the corresponding quantities for the propagation
of the results using the function arccos x.

Hence, we obtained the desired rules for the prop-
agation of error and the calculation of a shifted mean
of the type Ey, = En(E,, D,) and Dy, = Dy(E,, D)
for the functions h(x) = cos z and arcos z.

3. Application of New
Rules to Experimental Data

The set of experimental data is a collection of separate
random values x; measured for a physical quantity z;
this is the so-called “sample” {z;}. The distribution
of the quantity = can be continuous [1], i.e. {z;} is
a set of values randomly “chosen” by a measurement
device from a continuous set.

Let us consider how the obtained relations work in
the case of samples. For this purpose, let us calcu-
late the means for four samples: selected from two
sets of experimental data {z;} and from two sets of
calculated functions cos x and arccos z. First, let us
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calculate them in the standard way (it will be con-
sidered as a reference). The obtained result will be
compared with the results calculated, by using rela-
tions (10) and (11), and with the results obtained by
the series expansion method (differentiation) [1].

3.1. Example for cosx

As an example, let the sample {x;} contain 20 mea-
surements for an angle of the unit cell (hereafter,
the presented samples were constructed on the basis
of the measurement data obtained on a three-circle
diffractometer [12,13]):

{z;} = 70.5, 70.58, 70.66, 70.74, 70.82, 70.9, 70.98,
71.06, 71.14, 71.22, 70.5, 70.42, 70.34, 70.26, 70.18,
70.1, 70.02, 69.94, 69.86, and 69.78 (deg).

The arithmetic means calculated for this sample
with the constant probability w; = 1/20 give us the

following values:
E, =170.5; D, =0.1824, A, = 0.42708.

Using them as the first approximation, we calculate
the Gaussian means (this routine takes 2 to 3 itera-
tions) with the help of the Gaussian weight scheme:

Wi — E) 20
szzmlwz Daszz(xl w> w’b’ sz\/Fwa

> wi ’ > w;
(12)
where
w= Lol pe-n) Fegp 03
Then we obtain
E, =705, D,=0.11736, A, = 0.34258.

In other words, for this sample, we have E, = 70.5 +
+ 0.3 deg.

For the calculation of means for the function cos x
to be correct, it is necessary to construct a new sta-
tistical sample {cos z;} and calculate the means for
it. The new sample looks like

{cosz;} = 0.33381, 0.33249, 0.33117, 0.32986,
0.32854, 0.32722, 0.3259, 0.32458, 0.32326, 0.32194,
0.33381, 0.33512, 0.33644, 0.33775, 0.33907, 0.34038,
0.341690, 0.343, 0.34432, and 0.34563.

Using the values of E,, D,, and A, as well as for-
mulas (12) and (13), we obtain the sought means for
the function cos z in the standard way (the reference):

Feos = 0.3338,  Degos = 3.17649 x 1072,
348

Acos = 0.00564.

The use of the analytical relations (10) for the prop-
agation of errors gives the values:

Feos = 0.33381, Dgos = 3.18104 x 107°,

Agos = 0.00564.

We intentionally left more digits than required (two
digits for D,,, and only one for A, ) in order to trace all
calculations in more details. The results demonstrate
that, in the case of function cos x, the standard devi-
ations A.qs, completely coincide. In other words, the
propagation of errors for the function cos = according
to relations (10) is correct and gives good results for
samples.

3.2. Example for arccos x

The other example will be considered for the func-
tion arccos x. The following sample {cosz;} for the
measured angle « of the unit cell is used [12, 13]:
{yi} = {cosz;} = 0.18224, 0.17674, 0.17399,
0.16436, 0.16436, 0.16298, 0.16298, 0.1616, 0.1616,
0.16023, 0.18224, 0.18772, 0.19047, 0.20005, 0.20005,
0.20142, 0.20142, 0.20279, 0.20279, and 0.20415.
We repeat the standard procedure for the calcula-
tion of sample means:
(i) we calculate the arithmetic means (the probability
w; = 1/20):

E, = 0.18221, D, =2.80422x107%, A, = 0.01675;

(ii) then, we calculate the Gaussian means using
weight scheme (13):

E, =0.18222, D, =1.9731x10"% A, = 0.00444;
(iii) finally, we form an array (sample) in accordance
with the function arccos y:

{arccos y;} = 79.5, 79.82, 79.98, 80.54, 80.54,
80.62, 80.62, 80.7, 80.7, 80.78, 79.5, 79.18, 79.02,
78.46, 78.46, 78.38, 78.38, 78.3, 78.3, and 78.22 (deg).
The standard statistical processing of this sample
with the use of the values of E,, D,, and A, results
in

Earcecos = 795, Darceos = 0.67007,
Agarccos = 0.81858.
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The calculations by relations (11) give the following
values (attention should be paid that the second equa-
tion in (11) gives values for Dgyccos in radians, which
we transform into degrees according to work [1]):

Brrecos = 79.4998,
Aprecos = 0.81851.

Darccos = 0.66995,

One can see that the coincidence in this case is almost
ideal again. In other words, for the function arccos =z,
the propagation of errors using relations (10) and (11)
is also correct and gives good results for samples.

The propagation of errors using the series expan-
sion (differentiation) gives the following values:

Erecos = 79.5000,
Aprecos = 0.25872.

Darccos = 0.066939,

The numerical results for all three methods can be
compared easily.

4. Some Common Properties
of the Obtained Relations

The analytical form obtained for the propagation
rules allows the features of corresponding relations
to be easily distinguished and even the relevant de-
pendences to be plotted graphically, which is very
useful for planning and analyzing the physical ex-
periment.

It should be noted that the quantities Ey, Dy, E.,
and D, are interrelated. In addition, Ej;, and D; are
functions of two variables rather than one:

Eh = Eh(E.'L‘nyL‘)7 Dh = Dh(El'aD.'IJ)'

Sometimes, this fact may be difficult to get used to,
as, e.g., the fact that the errors Acos and Aarecos
of the function A(z) depend on the measured mean
value (z). All that is well illustrated in Figs. 1 and
2, where the dependences of the variances D; =
= Deios(Ez, D;) and Dj, = Darccos(Ex, Dz) on the
values of measured “mean” arguments E, (D, is a
parameter) are depicted. In addition, the possibil-
ity to plot the obtained relations allows the char-
acter of future measurements to be discussed and
planned.

It becomes clear why the radicand in the sec-
ond equation in (11) is always positive, i.e.
(1—-E})* >2D,.
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Fig. 2. The same as in Fig. 1, but for the Darccos(Ez, Dz)
function

Note that, in the limiting case D, = 0,
Ep = Eeos = c0s Ey; D = Deos = 0;
Ep = Earecos = arccos £ E,, Dp = Darecos = 0.
Therefore, the “usual” propagation rules

Feos = cos By, Farccos = arccos £ F,

can be applied. In other cases where the D,-values
are rather considerable, expressions (10) and (11 for
Feos and Fapecos give more adequate values.
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5. Conclusions

Relations (10) and (11) provide a correct result for
samples and can be widely used to considerably re-
duce and to simplify computational procedures in
the case of the functions cos x and arccos z. In the
case where the initial array of experimental data is
absent, the method of error propagation may turn
out a unique simple correct way to calculate FEj
and Dy, as well as the errors o, for the indicated
functions. Since Dj;, and the errors o for both ex-
amined functions practically coincide with the cor-
responding real values, the exact propagation of er-
rors is possible for a chain of functions of the type
cos(arccos(cos(arccos... (x)))) or any other sequence
of indicated functions.

Therefore, on the basis of the obtained analytical
relations, two simple universal algorithms for the cal-
culation of pairs of the separate values (Ecos, Deos)
and (Earccos, Darccos) can be constructed. Those al-
gorithms can be inserted as separate modules (sub-
routines) into any software program. The algorithms
remain transparent (easy for reading) at that. This is
essentially impossible for other propagation methods,
because the latter demand that the superposition of
functions should be expanded in series (or differenti-
ated) as a whole. Therefore, a separate procedure has
to be built for every problem.

The magnitude of function error can be predicted,
and its dependence in the planned region of measure-
ments of a physical quantity can be plotted.

Interesting is the possibility to obtain an exact
mean shift for E.os and Fapecos- In the presented ex-
amples, this shift does not affect the mean values and
does not play any role. However, in some applications,
it does exist, and its value can be used.

Since the analytical expressions for the means
(Ecos; Dcos) and (Earccos; Darccos) are inherently con-
nected with the Gaussian distribution, the calculated
value allows them to be compared with the values of
the same quantities calculated for different distribu-
tions. The minimum of Do Or Darccos 1S @ criterion
to decide, which of them is better.

APPENDIX

In this Appendix, the validity of the relations obtained for
two functions, Ecos and Farccos, i-€. the reduction of integral
equations (8) and (9) to tabulated integrals and the reduction
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of the obtained relations to the convenient forms (10) and (11),
is proved mathematically.

1. Mathematical expectation Ep
for the function h(xz) = cosx

Making allowance for the Gaussian distribution f(z) (see
Eq. (4)) in Eq. (8) and substituting y =  — u, we obtain

X = Ep = %_ 4 cos(x) expl—p?(x — u)2)da =

p

= % / cos(y + ) exp[—p°y®ldy = N (14)

The integral J is nothing else but the tabulated integral T>
(3896.2) from work [2]. As p > q, it looks like

oo
2
T, = / cos q(y + ) exp[—p?y?]dy = VT exp (7 q—) cos \.
P 4p?
— 00

It is evident that J = T, if ¢ = 1 and A = p. Then we
immediately obtain

VT 7 VT 1
J=—-—exp|(———5)cosA\=—exp |——= ) cos u.
4p? p 4p?

p

(15)

Recalling that 4 = E, and substituting this value into ex-
pression (14), we obtain a final relation between the integral

FEcos and the integrals E, and D. Taking into account that
2 _ 1

p” = 55—, this relation looks like

D
X = Ecos = exp (ff) cos B (16)

This is the sought result. At small D,, there is a small shift
induced by the factor exp(f%) ~ 1; so it can be ignored
under certain conditions. However, Eq. (16) is an exact working
formula for h(z) = cosz.

2. Variance D, for the function h(x) = cosx

From Eq. (7), we obtain the error propagation
oo
Deos = / cos?(z) f(x)dx — E? = Jo — E}.

— 00

(17)

Let us transform Jy to the tabulated form:

oo oo

Jo = /COS2(I)f(I)d$= /(1+cos2:r:)/2f(:c)dac:

oo )
= % |: / fx)dx + / cosZ:cf(:c)da::| = % + % Jo1-
—o0 —o0
For y = x — p, we obtain the expression for Joi:
)
Jo1 = % / cos 2z exp[—p?(z — p)?]dz =
— 00
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oo
= % / cos 2(y + p) exp[—py?]de = % Jo2.-

The integral Jp2 for ¢ = 2 and A = p coincides with the tabu-
lated integral T» (3896.2) in work [2], which, as p < ¢, looks
like o )
2= / cosqly+ ) expl—p*y?ldy = Y™ exp (‘ L) cos g\
P 4p?
— 00
Therefore, using the substitutions u = E, and p? = ﬁ again,
we finally obtain
1 1

1 1 p
Jo==-4+=Jo1 =~ 4+ = —— Joo =
0 2-&-201 2+2ﬁ02
1 1 p 7 1
=—-—4+ - —-"—exp|——)cos2u =
2 2ymop p(p2 a

1 1
= 5 + 5 exp(—2Dy) cos2E;.
Substituting Jo into Eq. (17), we obtain the following “crude”
expression for Dgos, because it contains FE2 :

1 1
Dcos = 5 + 5 eXP(*2Dz) COSQEI — Egos'

Substituting E2., with the help of Eq. (16) into this formula,
we obtain the explicit dependence Dcos(Ez, D ):

1 1
Deos = = + = exp(—2Dyz) cos2E; — exp(—Dz) cos? Ey. (18)

2 2

This formula is the rule of “error propagation” for h(z) = cosz.
Expression (11) can be rewritten in a more homogeneous form:

1
Deos = 3 [1 — exp(~ D2 )|[1 — exp(~D, ) cos2Es], (19)
if the relation
1
cos? By = 5[1 + cos 2E,]. (20)

is taken into account.

It should be noted that all mathematical procedures per-
formed above (the presentation of an integral as a sum of inte-
grals, factorization, and so on) are correct operations from the
viewpoint of statistics rules [1].

3. The mean Ej; and the variance Dy
for the function h(z) = arccos x

The direct way to calculate E(arccosz) and D(arccosz) using
tabulated integrals is rather a problematic task. The desired
relations can be obtained, if the function arccosz is consid-
ered as the inverse function to cosz, and relations (10) are ap-
plied. Really, Egs. (10) give us explicit relations between four
integrals or, roughly speaking, four values: Fcos, Dcos, Fx,
and D,:

Ecos = ECOS(EZE: Dz)a Decos = DCOS(EJH DI) (21)

The inverse functions E; = FEz(Ecos,Dcos) and Dy =
= Dy (Ecos, Dcos) obtained from Egs. (10) and (21) must also
correctly describe the mathematical relations between four in-
tegrals Egz, Dg, Ecos, and Dcos. However, if FEcos and Dcos
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are obtained in any other way (e.g., if they are measured) and
have the same numerical values as those calculated by Eq. (10),
they will satisfy the constraint equations (10) for four integrals
if and only if the quantities E; and Dz have the same values
as in Eq. (10).

In other words, if y = cosz and, accordingly, © = arccosy,
then relations of the type E, = E(E,, Dy) and D, =
= Dy (Ey, Dy), which are inverse to Egs. (10) and (21), give
us true values for the integral expressions of the mathematical
expectation F, and variance Dz that were determined using
Egs. (8) and (9) for a random variable function y, which is
connected with the variable x by means of the law y = cosx
(or = arccosy). Therefore, by solving Eq. (10) with respect
to x, we can simply calculate the values of E; and D, on the
basis of Ey- and Dy-values, which are the means for the mea-
sured random variable y, if the latter is connected with x by
the relation x = arccosy.

Let us solve Eq. (10) with respect to E, and D,. For this
purpose, let us rewrite those equations in the form

D
E, = exp (—71) cos By, (22)

D, = % [1 — exp(—Da)][1 — exp(—D, ) cos 2Es]. (23)

bearing in mind that the integrals E, and D, are coupled with
the function y = cosz, and the integrals F,; and D, with the
function x = arccosy. Let us solve those equations with respect
to the integrals F,; and D, i.e. let us obtain the equations
inverse to Egs. (10), (22), and (23). From Eq. (20), we have

cos2F, = 2 cos? E, —1.

From Eq. (22), we obtain the equation, whose both terms are
denoted as f:

& (D)= fi Z=—;
cos? E,, =P v " cos2 By,

Then Eq. (23) reads
2Dy =1 — f? +2f? cos® Ey — 2f cos® E2.

f=2ZE. (24)

Substituting notations (24) into this equation and carrying
out simple transformations, we obtain a quadratic equation
for Z = Z(Ey),

Z%2 -2Z +B =0, (25)
where
[2E2 + 2Dy — 1]
= yT = B(Ey, Dy).
Y

The solution of this equation brings us to

2
E’!J

E2+./(1 - E2)2-2D,

Since cos? E; < 1, we have to select the plus sign in front of
the root sign. Ultimately, we have

E.

Y
+\/E2 + /(1 - B,)? - 2D,

cos? E, =

(26)

FE, = arccos

(27)
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The sign plus or minus is selected, by depending on the “com-
mon sense”; i.e. on the expected value of Fy.
The solution for D is found from Egs. (22) and (26) as

2E 1
OF %2 n (28)

E2 ’
bt E2+.,/(1-E2)2 —2D,

Since D > 0, there must be

D; =1In

E2+,/(1—E2)?2—-2D, < 1.

This inequality is satisfied, because £y < 1 on all occasions. As
a consequence, the following chain of inequalities has to be
obeyed:

(1-E2)?-2D, < (1-E})* —
—4/(1-E2)?2-2D,<1-E} -~

— EZ+4/(1-E2)2-2D, < 1.
The radicand in Eq. (27) must be positive. This assertion can
be understood from the following consideration. The quantity
E, is, in essence, the function cos z, i.e. Ey < 1 and separate
measurements give E; < 1 as well. For the confidence interval
oV/2, the average deviation E, + 0v/2 has to satisfy the in-
equality Ey + ov2 < 1. Accordingly, ovV2<1— E,<1- Eﬁ,
so that 2D, < (1 — E;)2 and, finally, (1 — E;)2 —2Dy > 0.
Now, let us rewrite the obtained relations (10), (26), and
(27) in a clearer symbolic form, by using the notation z for the
measured physical quantity (argument) and the notation h for
the corresponding function (cos x or arccos x):

Dy
Ep = Ecos =e€xp S cos Fy;
(29)

1
Dy, = Deos = 5[1 = exp(=Di)][1 = exp(~D, ) cos 265];
E,

Ep = Earccos = arccos

B2+ VO -EB? 2D, (30

1
Dy, =D =In .
h arccos <Eg I (1 — E%)Q —5 Dz>

In view of the formalization

& Ey; k(Az)2 = Dy,

the obtained relations correspond to the desired “propagation
rules” for the means and errors of the cosine and arccosine
functions:

X — H; |AX| — |AH].
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I'.I". Pode

ITEPEHOC ITOXNBOK TA CEPE/IHIX BIMIPIB
®IZUYHOI BEJIMYNHU /151 EJJTEMEHTAPHIX
OYHKIIIN cos(x) TA arccos(z)

Peszmowme

Orpumani HOBI TouHI “IpaBmJia MEPEHOCY MOXUOKHU Ta Cepe-
aHbOro” onHiel BUMiprOBaHO! (Di3MYHOI BEJMYUHU HA IHIILY,
mo noB’a3aHa 3 Helo GYHKIiHHUM 3B’a3koM Tumy cos(z) abo
arccos(z). ITokasano, mo moGyTi CIiBBIIHOIIEHHS iJeaJIbHO
MPaIOTh Tpu 00pobIli HAGOPY JaHUX PEAJHLHOro (hi3UIHOrO
nocaimkenns. e mos’s3aH0 3 TUM, IO O NPUPOJL B HUX HE-
SIBHO BXKe 3aKJIaJleHa Barosa cxema ['ayca. Anamituana ¢popma,
B fAKiil HaBexeHi srajani npasmia (“anagiTuaHi MpaBuia epe-
HOCy”), & TAKOXK TOYHMI XapakTep X JI03BOJISIE CIPOCTUTH i
[IPUCKOPUTH IPOLEAyPy OOpPOOKH I aHasi3y €KCIE€pPUMEHTAIb-
HUX JIaHUX.
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