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ADVANCE DUE TO COSMOLOGICAL CONSTANT

We comment on the recent paper “Note on the perihelion/periastron advance due to cosmo-
logical constant” by H. Arakida (Int. J. Theor. Phys. 52, 1408 (2013)) and provide simple
derivations of both the main result of this paper and of the Adkins—McDonnell’s precession
formula, on which this main result is based.
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1. Introduction

Recently Hideyoshi Arakida in the interesting paper
[1] clarified some confusion existing in the literature
concerning the eccentricity dependence of the peri-
helion/periastron advance of celestial bodies due to
the cosmological constant A. He showed that the cor-
rect expression for the perihelion/periastron shift per
period is
mc?Aad

v V1—e?, (1)

where a is the semimajor axis of the orbit, and e is
the eccentricity. This result was obtained in [1] with
the help of the general formula

AB, =

1
2p [dV(2) z
V1—22

AO, = dz (2)

oe? dz
]

for the perihelion/periastron shift per period due to
a small central-force perturbation

Vir(z) =V (1 f6z>, p=a(l-é?),
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to the Newtonian potential Vo(r) = —a/r, a =
= GMm. Formula (2) was first obtained in [2]. Note
that, contrary to [1], but in accord with [2], our V' (r)
is the perturbation potential energy, not the pertur-
bation potential as in [1]. Therefore, it includes the
mass of the orbiting particle m.

We now demonstrate that suitably modified Lan-
dau and Lifshitz’s approach [3] allows the simple
derivation of both (1) and (2).

2. Landau and Lifshitz’s Approach

Landau and Lifshitz provided [3] the following expres-
sion for A®,, (see the solution of Problem 3 in §15):

Tmax

_ 0 2mV (r)
8L,.min \/Qm (E+2) - L

A®, dr, 3)

r2

where L is the angular momentum, F is the total en-
ergy, and the integration is over the unperturbed Ke-
plerian orbit. A simple derivation of (3) can be found
in [3]. Using

dr 1
= —dt,
Vam(Ere) -5 "
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and extending the integration over the whole orbital
period T, it is convenient to rewrite (3) in the form [4]

is the time-average value of the perturbation poten-
tial energy over the unperturbed orbit. Note that this
time-averaged value is a function of L and E, and it
is the total energy F that is to be kept constant when
taking the partial derivative /9L in (4).

To apply (4) to the problem considered in [1] with
the perturbation potential energy

Vr)= —éAm02r2, (5)

let us use the following parametrization of the unper-
turbed motion on the Keplerian ellipse [3]:

t:\/mTa?)(ffesing), r=a(l —e cos), (6)

where the parameter ¢ changes from 0 to 27. As a
result, we get

2
L 21/m7a3ﬁ/ e cosé)d
AO, = 6Amca o OL (I—ecos&)’de. (7)
0

After the elementary evaluation of the integral, we
have

3
A©, = —%Amc2a2\/ ma ('fL (1 + 3€2>. (8)

But

2E L2 L?

2
e=1
+ma2

and, therefore,

Oe? 2L 1 —e2

9L~ maa maa ’ 9)
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which together with (8) yield the validity of (1):

V1 —e2.

It remains to clarify how the Adkins—-McDonnell
precession formula (2) can be obtained from (4). Us-
ing again parametrization (6), we can write (with

r(§) = a(l —e cosf))

N%:V?f§;7wmm
0

Because cos (27 — £) = cos &, this can be rewritten in
the form

A@ﬁﬂV?fglfvw@»

0

rTAmc?a® 7 5 rAc*a®
— _ e p—
« GM

AO, = (10)

(1—ecos&)dé.  (11)

(1—ecos&)de. (12)

Now, let us apply the Leibniz integral rule (differen-
tiation under the integral sign) to get

ma3 86
AO, =24/ — 8L

/V’(r({)) (—acos€)(1—ecose)de+ 1], (13)
0

where .

I= —/V( (€)) cos € d = /v d(sing),  (14)

0

and V'(r) = dv(r) . The integration by parts, along
with

av(r(€))
dg

allows us to rewrite (14) in the form

— caV'(1(€)) sin,

s

I=eca /V’(r(f)) sin? £ d¢. (15)
0
Substituting (15) into (13), we get
3 ™
0, =2 5 a [(e- o) V() de. (10
0

At this stage, let us introduce a new integration vari-
able z:

z+e
l+ez

cosé —e

~ 1—ecos¢’ cosé =

(17)
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It follows from (17) that

e—cosé = —%, 1—ecosé = 11;:22,
(1= 21— "
s 2 s - -
sin“ & = W
and
o 1-e 1 _ . V1=é
d§ = 012 sinfdz_ e/ dz.
: (19)
Since
d a(l—e?)\ ae(l—e?)
sz( l+ez )—V(r(z)) (_ (1+62)2)7 (20)
we can express V/(r(€))=V'(a(l —ecosf)) =

= V'(r(2)) in terms of W. After taking all these
relations into account, (16) becomes

1
ma® 1 de dV(r(z)) =zdz
_ L9¢ .2
ABy =2 = car V! e/ Az V1-2
21

(21)

and this relation coincides with the Adkins—McDon-
nell precession formula (2), because, due to (9),

ma3 1 Oe
Y iy
a e 0L

3. Concluding Remarks

2
62:720,(176): 2p

ae? ae?’

Various approaches to account for the influence of the
cosmological constant on the celestial dynamics can
be found in references cited in [1]. Kotkin and Serbo’s
variant (4) of the Landau and Lifshitz’s precession
formula and parametrization (6) of the unperturbed
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motion on the Keplerian ellipse provide, probably, the
simplest way to calculate the perihelion/periastron
advance of celestial bodies due to the cosmological
constant in the framework of the Schwarzschild—de
Sitter (Kottler) space-time. This approach also allows
a simple derivation of the Adkins—McDonnell preces-
sion formula (2) (another simple derivation of this
formula, based on the precession of Hamilton’s vec-
tor, was given in [5]).
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3AVBAYKEHHSI
IIPO 3MIIIEHHS [IEPUTEJIIIO
IT1J1, BIJIMBOM KOCMOJIOT'TYHOI CTAJIOI

Peszmowme

Mu komeHTy€eMO HemomasHio poboty X. Apakina (H. Arakida)
“TIpumiTKa [Ipo 3MIleHHs NepUreiio,/ IepuacTpa 4epe3 KOCMO-
soriuny cramy” (Int. J. Phys. Teop. 52, 1408-1414 (2013)) i
HABOJUMO IIPOCTUN BHCHOBOK OCHOBHOT'O DPe3yJIbTaTy IIi€l po-
6oTu, a TakoxK popMysu npenecii Ankinca—MaxkoHHe 1A, Ha
SAKOMY Ile#l pe3yibTaT 3aCHOBAHUIA.
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