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A propagator for the one-dimensional time-dependent Schrödinger equation with an asym-
metric rectangular potential is obtained, by using the multiple-scattering theory. It allows the
consideration of the reflection and transmission processes as the scattering of a particle at the
potential jump (in contrast to the conventional wave-like picture) and the account for the non-
classical counterintuitive contribution of the backward-moving component of the wave packet
attributed to a particle. This propagator completely resolves the corresponding time-dependent
Schrödinger equation (defines the wave function 𝜓(𝑥, 𝑡)) and allows the consideration of the
quantum mechanical effects of a particle reflection from the potential downward step/well and
a particle tunneling through the potential barrier as a function of the time. These results are
related to fundamental issues such as measuring the time in quantum mechanics (tunneling
time, time of arrival, dwell time). For the imaginary time, which represents an inverse tem-
perature (𝑡 → −𝑖~/𝑘B𝑇 ), the obtained propagator is equivalent to the density matrix for a
particle that is in a heat bath and is subject to the action of a rectangular potential. This den-
sity matrix provides information about particles’ density in the different spatial areas relative
to the potential location and on the quantum coherence of different particle spatial states. If
one passes to the imaginary time (𝑡 → −𝑖𝑡), the matrix element of the calculated propagator
in the spatial basis provides a solution to the diffusion-like equation with a rectangular poten-
tial. The obtained exact results are presented as the integrals of elementary functions and thus
allow a numerical visualization of the probability density |𝜓(𝑥, 𝑡)|2, the density matrix, and the
solution of the diffusion-like equation. The results obtained may also be applied to spintron-
ics due to the fact that the asymmetric (spin-dependent) rectangular potential can model the
potential profile in layered magnetic nanostructures.
K e yw o r d s: Schrödinger equation, asymmetric rectangular potential, layered magnetic nano-
structures.

1. Introduction
We start with the one-dimensional Schrödinger equa-
tion for a particle of mass 𝑚 subject to a poten-
tial 𝑉 (𝑥):

𝑖~
𝜕𝜓(𝑥; 𝑡)

𝜕𝑡
= 𝐻𝜓(𝑥; 𝑡), (1)
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where 𝐻 is a self-adjoint operator,

𝐻 = − ~2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 (𝑥). (2)

A solution to this equation can generally be presented
as
𝜓(𝑥; 𝑡) =

∫︁
⟨𝑥|𝐾(𝑡)|𝑥′⟩𝜓(𝑥′; 0)𝑑𝑥′, (3)
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where 𝐾(𝑡) = exp(−𝑖𝐻𝑡/~) is the propagator
(Green’s function) for Eq. (1) in the operator form,
and ⟨𝑥|𝐾(𝑡)|𝑥′⟩ is its matrix element in the 𝑥-re-
presentation. Thus, the knowledge of the propagator
provides the complete solution to Eq. (1) at the given
initial value of 𝜓(𝑥′; 0). If the initial value is of the
form 𝜓(𝑥′; 0) = 𝛿(𝑥′−𝑥′′), solution (3) reduces to the
Green function matrix element

𝜓(𝑥, 𝑥′′; 𝑡) = ⟨𝑥|𝐾(𝑡)|𝑥′′⟩. (4)

Equation (1) with the imaginary time variable
is also relevant to other physical situations. If we
make the substitutions 𝑡 → −𝑖~𝛽 (𝛽 = 1/𝑘B𝑇 ) and
𝜓(𝑥, 𝑥′;−𝑖~𝛽) → 𝜌(𝑥, 𝑥′;𝛽), Eq. (4) represents the
matrix element 𝜌(𝑥, 𝑥′;𝛽) = ⟨𝑥| exp(−𝛽𝐻)|𝑥′⟩ of the
density operator 𝜌(𝛽) = exp(−𝛽𝐻), which satisfies
the Bloch equation (in the 𝑥-representation)

𝜕𝜌(𝑥, 𝑥′;𝛽)

𝜕𝛽
= −𝐻𝜌(𝑥, 𝑥′;𝛽), (5)

with the initial condition 𝜌(𝑥, 𝑥′;𝛽 = 0) = 𝛿(𝑥− 𝑥′).
In Eq. (5), the operator 𝐻 (2) is applied only to the
𝑥 variable of the density matrix.

If we make the substitutions 𝑡 → −𝑖𝑡, ~ → 2𝑚𝐷,
𝑉 (𝑥)/2𝑚𝐷 → 𝑉 (𝑥), and 𝜓(𝑥;−𝑖𝑡) → 𝑄(𝑥; 𝑡), Eq. (1)
represents the inhomogeneous diffusion-like equation
(with the diffusion coefficient 𝐷)

𝜕𝑄(𝑥; 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑄(𝑥; 𝑡)

𝜕𝑥2
− 𝑉 (𝑥)𝑄(𝑥; 𝑡). (6)

The solution to Eq. (6) at the initial condition
𝑄(𝑥; 0) = 𝛿(𝑥− 𝑥0) is given by (4):

𝑄(𝑥, 𝑥0; 𝑡) = ⟨𝑥| exp(−𝐻𝑡/2𝑚𝐷)|𝑥0⟩, (7)

where 𝐻 is defined by (2) with ~ → 2𝑚𝐷.
We see that, in any case, the problem is to find

a propagator of the type ⟨𝑥| exp(−𝛼𝐻)|𝑥′⟩ with dif-
ferent 𝛼 for the considered parabolic differential
equations.

A rectangular potential is the simplest one allow-
ing the study of some striking quantum mechanical
effects such as the particle reflection from a potential
step/well and the transmission through a potential
barrier. These phenomena are less surprising, when
we think of a wave being, e.g., reflected from a down-
ward potential step, though they are more surpris-
ing from the particle point of view. They easily fol-
low from the standard textbook stationary analysis,

which reduces to substituting a plane wave with en-
ergy 𝐸 for the wave packet and solving the station-
ary Schrödinger equation. However, in this case, there
are no real transport phenomena, i.e. in the absence
of the energy dispersion (Δ𝐸 = 0), the transmission
time through or the time of arrival (TOA) to the po-
tential jumps is indefinite (Δ𝑡 v ~/Δ𝐸). It is of inter-
est to verify the mentioned non-classical phenomena
by considering the time-dependent picture of these
processes in a realistic situation, when a particle,
originally localized outside the potential well/barrier,
moves toward the potential and experiences the scat-
tering at the potential jumps. In order to do this, the
corresponding time-dependent Schrödinger equation
needs to be solved. This problem is much more in-
volved even in the one-dimensional case in compari-
son to the conventional stationary case.

In particular, there is one striking and classically
forbidden counterintuitive (and often overlooked) ef-
fect even in the process of the simplest 1D time-
dependent scattering by the mentioned potentials. A
wave packet representing an ensemble of particles,
confined initially (at 𝑡 = 𝑡0), say, somewhere to the
region 𝑥 < 0, consists of both positive and negative
momentum components due to the fact that a particle
cannot be completely localized at 𝑥 < 0 if the wave
packet contains only 𝑝 > 0 components. One would
then expect that only the particles with positive mo-
menta 𝑝 may arrive at positive positions 𝑥 > 0 at
𝑡 > 𝑡0. However, wave packet’s negative momentum
components (restricted to a half-line in the momen-
tum space) are necessarily different from zero in the
whole 𝑥 space (−∞÷∞), representing the presence
of particles at 𝑥 > 0 at the initial time moment 𝑡0
and, therefore, may contribute, for example, to the
distribution of the time of arrival (TOA) of particles
to 𝑥 > 0 [1, 2]. It is worth noting that the contribu-
tion of the backward-moving (negative momentum)
components in the initial-value problem is, in some
sense, equivalent to the contribution of the negative
energy (evanescent) components in the source solu-
tion [1]. Thus, the proper treatment of some aspects
of the kinetics of a wave packet (even in the 1D case
and even for a “free” motion) becomes a nontrivial
problem and is closely related to the fundamental
problem of measuring the time in quantum mechan-
ics, such as TOA, dwell time, and tunneling time.

In addition, the time-dependent aspects of the re-
flection from and transmission through the potential
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step/barrier/well have recently acquired relevance
not only in view of the renewed interest in the fun-
damental problems of measuring the time in quan-
tum mechanics (see [3, 4]), but also due to important
practical applications in the newly emerged fields of
nanoscience and nanotechnology. Rectangular (asym-
metric spin-dependent) potential barriers/wells may
often satisfactorily approximate the one-dimensional
potential profiles in layered magnetic nanostructures
(with sharp interfaces). In such nanostructures, the
giant magnetoresistance (GMR) [5] and tunneling
magnetoresistance (TMR) [6] effects occur.

The calculation of the propagator ⟨𝑥| exp(−𝛼𝐻)|𝑥′⟩
is conveniently related to the path-integral method
(see, e.g., [7] and [8]). The list of the exact solutions
for this propagator is very short. For example, there
is an exact solution for the space-time propagator
⟨𝑥| exp(−𝑖𝐻𝑡/~)|𝑥′⟩ of the Schrödinger equation in
the one-dimensional square barrier case obtained in
[9], but this solution is very complicated, implicit,
and not easy to analyze (see also [10–12]).

Recently, we have suggested a simple method for
the calculation of the space-time propagator [13–15],
which exactly resolves the time-dependent Schrödin-
ger equation with a rectangular potential in terms
of integrals of elementary functions. This method is
an alternative to the commonly used path-integral
approach to the mentioned problems and is based on
the energy integration of the spectral density matrix
(discontinuity of the energy-dependent Green func-
tion across the real energy axis). The energy-depen-
dent Green function is then easily obtained for the
step/barrier/well potentials within the multiple-scat-
tering theory (MST), by using the effective energy-
dependent potentials found in [13], which are re-
sponsible for the reflection from and the transmission
through a potential step. These potentials, which are
defined via the different particle velocities from both
sides of the potential steps making up the step/bar-
rier/well potentials, allow the consideration of the
reflection and transmission processes as the parti-
cle scattering at the potential jumps in contrast to
the conventional wave-like picture. An important ad-
vantage of our approach is that the negative energy
(evanescent states) contribution to the propagator
cancels out due to the natural decomposition of the
propagator into forward- and backward-moving com-
ponents. This is an essential result, because the ac-
counting for both of these components (which should

generally be done) often leads to a rather complicated
consideration of the evanescent states with 𝐸 < 0
(see [16]).

In this paper, we provide an exact solution to
Eq. (1) for real and imaginary times using our ap-
proach [13–15] to the calculation of the space-time
propagator for a general asymmetric rectangular po-
tential. In Section 2, we outline our MST approach
to the calculation of the propagator for the time-
dependent Schrödinger equation and present its ex-
plicit form. In Section 3, we consider a system in a
heat bath, as is the case, e.g., for electrons in nano-
structures. The equilibrium characteristics of the sys-
tem can then be calculated knowing its density ma-
trix 𝜌(𝑥, 𝑥′;𝛽) = ⟨𝑥| exp(−𝛽𝐻)|𝑥′⟩. In that section,
we present an exact solution for the density matrix of
a particle in an asymmetric (spin-dependent) one-di-
mensional rectangular potential and discuss its prop-
erties with the help of a numerical evaluation of the
corresponding integrals of elementary functions. In
accordance with the above discussion of Eq. (1), the
obtained solution for the space-time propagator may
be also used for finding the solution to the diffusion-
like equation (1) through the appropriate change of
the parameters. This case is discussed in Section 4,
and the summary of the results is given in Section 5.

2. Multiple Scattering
Calculation of a Space-Time Propagator
for the Schrödinger Equation

We start by considering a particle (electron) of mass
𝑚 in the following general asymmetric one-dimensio-
nal rectangular potential of width 𝑑 placed in the in-
terval 0 < 𝑥 < 𝑑

𝑉 (𝑥) = [𝜃(𝑥)− 𝜃(𝑥− 𝑑)]𝑈 + 𝜃(𝑥− 𝑑)Δ, (8)

where 𝜃(𝑥) is the Heaviside step function, and the po-
tential parameters 𝑈 and Δ can acquire positive, as
well as negative, values (for Δ = 𝑈 , 𝑉 (𝑥) reduces to
the step potential). As an application, we can model
a spin-dependent potential profile of the three-layer
system made of a nonmagnetic spacer (metallic one or
an insulator) sandwiched between two magnetic (in-
finite) layers by potential (8). The asymmetry (spin-
dependence) of potential (8) is defined by the param-
eter Δ. The particle wave vectors in different spatial
areas (layers) are defined as

𝑘0<(𝐸) = 𝑘(𝐸), 𝑘(𝐸) =

√︂
2𝑚

~2
𝐸, 𝑥 < 0,
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𝑘0>(𝐸) = 𝑘𝑑<(𝐸) = 𝑘𝑢(𝐸),

𝑘𝑢(𝐸) =

√︂
2𝑚

~2
(𝐸 − 𝑈), 0 < 𝑥 < 𝑑,

𝑘𝑑>(𝐸) = 𝑘Δ(𝐸), 𝑘Δ(𝐸) =

√︂
2𝑚

~2
(𝐸 −Δ), 𝑥 > 𝑑. (9)

In the case of three-dimensional sandwiches,
𝑘0>(<)(𝐸) and 𝑘𝑑>(<)(𝐸) are the perpendicular-to-in-
terface components of the wave vector k of a particle
arriving at the interfaces (located at 𝑥 = 0 and
𝑥 = 𝑑) from the right (>) or from the left (<).

The wave function of a single particle mov-
ing in the perturbing potential 𝑉 (𝑥) is given by
Eq. (3) (see also [7]). The propagator 𝐾(𝑥, 𝑥′; 𝑡) =
= ⟨𝑥| exp(−𝑖𝐻𝑡/~)|𝑥′⟩ is the probability amplitude
for the particle transition from the initial space-time
point (𝑥′, 0) to the final point (𝑥, 𝑡) by means of all
possible paths. It provides the full information about
particle’s dynamics and resolves the corresponding
time-dependent Schrödinger equation (1). According
to [13], the time-dependent retarded propagator
𝐾(𝑡) = 𝜃(𝑡− 𝑡′) exp(− 𝑖

~𝐻𝑡) can be represented as

𝐾(𝑡) = 𝜃(𝑡)
𝑖

2𝜋

∞∫︁
−∞

𝑑𝐸𝑒−
𝑖
~𝐸𝑡 ×

×
(︂

1

𝐸 −𝐻 + 𝑖𝜀
− 1

𝐸 −𝐻 − 𝑖𝜀

)︂
, 𝜀→ +0, (10)

where 𝐻 is the time-independent Hamiltonian of the
system under consideration. Equation (10) follows
either from the contour integration in the complex
plane or from the identity

1

𝐸 −𝐻 ± 𝑖𝜀
= 𝑃

1

𝐸 −𝐻
∓ 𝑖𝜋𝛿(𝐸 −𝐻), (11)

where 𝑃 is the symbol of the integral principal value.
In the space representation, (10) reads

𝐾(𝑥, 𝑥′; 𝑡) = 𝜃(𝑡)

∞∫︁
−∞

𝑒−
𝑖
~𝐸𝑡𝐴(𝑥, 𝑥′;𝐸)𝑑𝐸. (12)

Here, 𝐴(𝑥, 𝑥′;𝐸) is the spectral density matrix

𝐴(𝑥, 𝑥′;𝐸) =
𝑖

2𝜋

[︀
𝐺+(𝑥, 𝑥′;𝐸)−𝐺−(𝑥, 𝑥′;𝐸)

]︀
,

𝐺+(𝑥, 𝑥′;𝐸) =
⟨
𝑥| 1

𝐸 −𝐻 + 𝑖𝜀
|𝑥′
⟩
, (13)

𝐺−(𝑥, 𝑥′;𝐸) =
[︀
𝐺+(𝑥′, 𝑥;𝐸)

]︀*
, 𝜀→ +0,

determined by the matrix elements of the retarded
𝐺+(𝐸) and advanced 𝐺−(𝐸) energy-dependent oper-
ator Green functions 𝐺± = (𝐸 − 𝐻 ± 𝑖𝜀)−1, which

are analytic in the upper and lower half-planes of
the complex energy 𝐸, respectively. The propagator
in the form of (12) is a useful tool for calculations
within the multiple-scattering theory (MST) pertur-
bation expansion, if the Hamiltonian can be split as
𝐻 = 𝐻0 + 𝐻𝑖, where 𝐻0 describes a free motion
and 𝐻𝑖 is the scattering potential. Note that, in this
case, one would not need rely on the standard (of-
ten cumbersome) matching procedure characteristic
of the picture, when a wave (representing a parti-
cle) is reflected from and transmitted through the
potential (8). On the other hand, the introduction
of the scattering potential 𝐻𝑖 corresponds to the nat-
ural picture of the particle scattering at the potential
jumps at 𝑥 = 0 and 𝑥 = 𝑑.

We showed in [13] that the Hamiltonian corre-
sponding to the energy-conserving processes of scat-
tering at potential steps can be presented as

𝐻 = 𝐻0 +𝐻𝑖(𝑥;𝐸),

𝐻𝑖(𝑥;𝐸) =
∑︁
𝑠

𝐻𝑠
𝑖 (𝐸)𝛿(𝑥− 𝑥𝑠). (14)

Here, 𝐻𝑖(𝑥;𝐸) describes the perturbation of the “free”
particle motion (defined by 𝐻0 = − ~2

2𝑚
𝜕2

𝜕𝑥2 ) localized
at the potential steps with coordinates 𝑥𝑠 (in the case
of potential (8), there are two potential steps at 𝑥𝑠 =
= 0 and 𝑥𝑠 = 𝑑)

𝐻𝑠
𝑖>(𝐸) =

𝑖~
2
[𝑣𝑠>(𝐸)− 𝑣𝑠<(𝐸)],

𝐻𝑖<(𝐸) =
𝑖~
2
[𝑣𝑠<(𝐸)− 𝑣𝑠>(𝐸)], (15)

𝐻𝑖><(𝐸) =
2𝑖~𝑣𝑠>(𝐸)𝑣𝑠<(𝐸)

[
√︀
𝑣𝑠>(𝐸) +

√︀
𝑣𝑠<(𝐸)]2

,

where 𝐻𝑠
𝑖>(<)(𝐸) is the reflection (from the poten-

tial step at 𝑥 = 𝑥𝑠) potential amplitude, the index
> (<) indicates the side, on which the particle ap-
proaches the interface at 𝑥 = 𝑥𝑠: right (>) or left (<);
𝐻𝑠

𝑖><(𝐸) is the transmission potential amplitude, and
the velocities 𝑣𝑠>(<)(𝐸) = ~𝑘𝑠>(<)(𝐸)/𝑚, 𝑠 ∈ {0, 𝑑}
(𝑘𝑠>(<)(𝐸) are given by (9)).

The perturbation expansion for the retarded Green
function 𝐺+(𝑥, 𝑥′;𝐸) in the case of the rectangu-
lar potential (8), which can be efficiently represented
by the two-step effective scattering Hamiltonian (14),
reads for different source (given by 𝑥′) and destina-
tion (determined by 𝑥) areas of interest as follows:

𝐺+(𝑥, 𝑥′;𝐸) = 𝐺+
0 (𝑥, 𝑑;𝐸)𝑇+(𝐸)𝐺+

0 (0, 𝑥
′;𝐸),
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𝑥′ < 0, 𝑥 > 𝑑,

𝐺+(𝑥, 𝑥′;𝐸) = 𝐺+
0 (𝑥, 0;𝐸)𝑇+(𝐸)𝐺+

0 (𝑑, 𝑥
′;𝐸),

𝑥′ > 𝑑, 𝑥 < 0,

𝐺+(𝑥, 𝑥′;𝐸) = 𝐺+
0 (𝑥, 0;𝐸)𝑇 ′+(𝐸)𝐺+

0 (0, 𝑥
′;𝐸)+

+𝐺+
0 (𝑥, 𝑑;𝐸)𝑅′+(𝐸)𝐺+

0 (0, 𝑥
′;𝐸), 𝑥′ < 0, 0 < 𝑥 < 𝑑,

𝐺+(𝑥, 𝑥′;𝐸) = 𝐺+
0 (𝑥, 0;𝐸)𝑇 ′+(𝐸)𝐺+

0 (0, 𝑥
′;𝐸)+

+𝐺+
0 (𝑥, 0;𝐸)𝑅′+(𝐸)𝐺+

0 (𝑑, 𝑥
′;𝐸), 0 < 𝑥′ < 𝑑, 𝑥 < 0,

𝐺+(𝑥, 𝑥′;𝐸) = 𝐺+
0 (𝑥, 𝑥

′;𝐸)+

+𝐺+
0 (𝑥, 0;𝐸)𝑅+(𝐸)𝐺+

0 (0, 𝑥
′;𝐸), 𝑥′ < 0, 𝑥 < 0, (16)

where the transmission and reflection matrices are

𝑇+(𝐸) =
𝑇 𝑑+
><(𝐸)𝐺+

0 (𝑑, 0;𝐸)𝑇 0+
><(𝐸)

𝐷+(𝐸)
,

𝑇 ′+(𝐸) =
𝑇 0+
><(𝐸)

𝐷+(𝐸)
,

𝑅′+(𝐸) = 𝑇 𝑑+
< (𝐸)𝐺+

0 (𝑑, 0;𝐸)𝑇 ′+(𝐸),

𝑅+(𝐸) = 𝑇 0+
< (𝐸)+

+
𝑇 0+
><(𝐸)𝐺+

0 (0, 𝑑;𝐸)𝑇 𝑑+
< (𝐸)𝐺+

0 (𝑑, 0;𝐸)𝑇 0+
><(𝐸)

𝐷+(𝐸)
,

𝐷+(𝐸) = 1− 𝑇 𝑑+
< (𝐸)𝐺+

0 (𝑑, 0;𝐸)𝑇 0+
> (𝐸)𝐺+

0 (0, 𝑑;𝐸).

(17)

The one-dimensional retarded Green function
𝐺+

0 (𝑥, 𝑥
′;𝐸) corresponding to a free particle moving

in a constant potential 𝑉 (𝑥) = 0 or 𝑉 (𝑥) = 𝑈(or Δ)
is (see, e.g., [18])

𝐺+
0 (𝑥, 𝑥

′;𝐸) =
𝑚

𝑖~2𝑘(𝐸)
exp[𝑖𝑘(𝐸)|𝑥− 𝑥′|],

𝑉 (𝑥) = 0, 𝐺+
0 (𝑥, 𝑥

′;𝐸) =
𝑚

𝑖~2𝑘𝑢(Δ)(𝐸)
× (18)

× exp[𝑖𝑘𝑢(Δ)(𝐸)|𝑥− 𝑥′|], 𝑉 (𝑥) = 𝑈(or Δ),

where the wave numbers are determined by (9). The
scattering (at the step located at 𝑥 = 𝑥𝑠) t-matrices
are defined by the following perturbation expansion:

𝑇 𝑠(𝐸) = 𝐻𝑠
𝑖 (𝐸) +𝐻𝑠

𝑖 (𝐸)𝐺0(𝑥𝑠, 𝑥𝑠;𝐸)𝐻𝑠
𝑖 (𝐸) + ... =

=
𝐻𝑠

𝑖 (𝐸)

1−𝐺0(𝑥𝑠, 𝑥𝑠;𝐸)𝐻𝑠
𝑖 (𝐸)

, (19)

where 𝐻𝑠
𝑖 (𝐸) and the interface Green function

𝐺0(𝑥𝑠, 𝑥𝑠;𝐸) are defined differently for the reflection
and transmission processes [13]: the step-localized ef-
fective potential is given by Eq. (15) and the retarded

Green functions at the interface for the considered
reflection and transmission processes are, correspon-
dingly,

𝐺+
0>(<)(𝑥𝑠, 𝑥𝑠;𝐸) = 1/𝑖~𝑣𝑠>(<)(𝐸),

𝐺+
0><(𝑥𝑠, 𝑥𝑠;𝐸) = 1/𝑖~

√︀
𝑣𝑠>(𝐸)𝑣𝑠<(𝐸)

(20)

in accordance with (18).
From (15), (19), and (20), we have 𝑇 𝑠+

>(<)(𝐸) and
𝑇 𝑠+
><(𝐸) t-matrices for the reflection and the trans-

mission, respectively. These matrices are used in (17)
(𝑠 ∈ {0, 𝑑}) and correspond to the retarded Green
function and the scattering at the interface located
at 𝑥 = 𝑥𝑠 ∈ {0, 𝑑}:

𝑇 𝑠+
>(<)(𝐸) = 𝑖~𝑣𝑠>(<)𝑟

𝑠
>(<),

𝑇 𝑠+
><(𝐸) = 𝑖~

√︀
𝑣𝑠>𝑣

𝑠
<𝑡

𝑠,
(21)

where 𝑟𝑠>(<)(𝐸) and 𝑡𝑠(𝐸) are the standard ampli-
tudes for the reflection to the right (left) of the po-
tential step at 𝑥 = 𝑥𝑠 and the transmission through
this step

𝑟𝑠>(𝐸) =
𝑘𝑠> − 𝑘𝑠<
𝑘𝑠> + 𝑘𝑠<

, 𝑟𝑠<(𝐸) =
𝑘𝑠< − 𝑘𝑠>
𝑘𝑠> + 𝑘𝑠<

,

𝑡𝑠(𝐸) =
2
√︀
𝑘𝑠>𝑘

𝑠
<

𝑘𝑠> + 𝑘𝑠<
.

(22)

Here, the argument 𝐸 is omitted for brevity.
Now, using (9), (16), (17), (18), (21), and (22), we

can obtain the Green function 𝐺+(𝑥, 𝑥′;𝐸) for the
spatial domains considered in (16) (see [17]):

𝐺+(𝑥, 𝑥′;𝐸) =
𝑚

𝑖~2
√
𝑘𝑘Δ

𝑒𝑖𝑘Δ(𝑥−𝑑)𝑡(𝐸)𝑒−𝑖𝑘𝑥′
,

𝑥′ < 0, 𝑥 > 𝑑,

𝐺+(𝑥, 𝑥′;𝐸) =
𝑚

𝑖~2
√
𝑘𝑘Δ

𝑒−𝑖𝑘𝑥𝑡(𝐸)𝑒𝑖𝑘Δ(𝑥′−𝑑),

𝑥′ > 𝑑, 𝑥 < 0,

𝐺+(𝑥, 𝑥′;𝐸) =
𝑚

𝑖~2
√
𝑘𝑘𝑢

×

×
[︁
𝑒𝑖𝑘𝑢𝑥𝑡′(𝐸)𝑒−𝑖𝑘𝑥′

+ 𝑒−𝑖𝑘𝑢𝑥𝑟′(𝐸)𝑒−𝑖𝑘𝑥′
]︁
,

𝑥′ < 0, 0 < 𝑥 < 𝑑,

𝐺+(𝑥, 𝑥′;𝐸) =
𝑚

𝑖~2
√
𝑘𝑘𝑢

×

×
[︁
𝑒−𝑖𝑘𝑥𝑡′(𝐸)𝑒𝑖𝑘𝑢𝑥

′
+ 𝑒−𝑖𝑘𝑥𝑟′(𝐸)𝑒−𝑖𝑘𝑢𝑥

′
]︁
,

𝑥 < 0, 0 < 𝑥′ < 𝑑,
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𝐺+(𝑥, 𝑥′;𝐸) =
𝑚

𝑖~2𝑘

[︁
𝑒𝑖𝑘|𝑥−𝑥′| + 𝑟(𝐸)𝑒−𝑖𝑘(𝑥+𝑥′)

]︁
,

𝑥 < 0, 𝑥′ < 0, (23)

where the transmission and reflection amplitudes are
defined as

𝑡(𝐸) =
4
√
𝑘𝑘Δ𝑘𝑢𝑒

𝑖𝑘𝑢𝑑

𝑑(𝐸)
, 𝑡′(𝐸) =

2
√
𝑘𝑘𝑢(𝑘Δ + 𝑘𝑢)

𝑑(𝐸)
,

𝑟′(𝐸) =
2
√
𝑘𝑘𝑢(𝑘𝑢 − 𝑘Δ)𝑒

2𝑖𝑘𝑢𝑑

𝑑(𝐸)
,

𝑟(𝐸)=
(𝑘 − 𝑘𝑢)(𝑘Δ+ 𝑘𝑢)−(𝑘 + 𝑘𝑢)(𝑘Δ− 𝑘𝑢)𝑒

2𝑖𝑘𝑢𝑑

𝑑(𝐸)
,

𝑑(𝐸)=(𝑘 + 𝑘𝑢)(𝑘Δ + 𝑘𝑢)−(𝑘 − 𝑘𝑢)(𝑘Δ − 𝑘𝑢)𝑒
2𝑖𝑘𝑢𝑑.

(24)

Using the same approach, it is not difficult to obtain
the Green function 𝐺+(𝑥, 𝑥′;𝐸) for other areas of ar-
guments 𝑥 and 𝑥′.

In accordance with the obtained results for Green’s
functions, we consider the situation where a parti-
cle, given originally by a wave packet localized to
the left of the potential area, i.e. at 𝑥′ < 0, moves
toward potential (8). We also choose Δ > 0, which
corresponds to the case where, e.g., the spin-up elec-
trons of the left magnetic layer (𝑥′ < 0) move through
the nonmagnetic spacer to the right magnetic layer
(𝑥 > 𝑑) aligned either in parallel (Δ = 0) or antipar-
allel (Δ > 0) to the left magnetic layer. At the same
time, the amplitude 𝑈 in potential (8) may acquire
both positive (barrier) and negative (well) values.

From Eqs. (23), we see that 𝐺+(𝑥, 𝑥′;𝐸) =
= 𝐺+(𝑥′, 𝑥;𝐸), and, therefore, the advanced
Green function 𝐺−(𝑥, 𝑥′;𝐸) = [𝐺+(𝑥′, 𝑥;𝐸)]* =
= [𝐺+(𝑥, 𝑥′;𝐸)]* (see, e.g., [18]). Thus, the transmis-
sion amplitude (12) is determined by the imaginary
part of the Green function and can be written as

𝐾(𝑥, 𝑥′; 𝑡) = −𝜃(𝑡) 1
𝜋

∞∫︁
−∞

𝑑𝐸𝑒−
𝑖
~𝐸𝑡 Im𝐺+(𝑥, 𝑥′;𝐸). (25)

Formulas (23)–(25) present the exact solution for
the particle propagator in the presence of potential
(8). It should be kept in mind that the wave num-
bers (9) and, therefore, the quantities 𝑡(𝐸), 𝑡′(𝐸),
𝑟′(𝐸), and 𝑟(𝐸) in (24) are different in the

∫︀ 0

−∞ 𝑑𝐸

and
∫︀∞
0
𝑑𝐸 energy integration areas: in the former

case, 𝑘(𝐸) and 𝑘Δ(𝐸) (Δ > 0) should be replaced
with 𝑖𝑘(𝐸) and 𝑖𝑘Δ(𝐸), where 𝑘(𝐸) =

√︀
−2𝑚𝐸/~2

(𝐸 < 0) and 𝑘Δ(𝐸) =
√︀
2𝑚(Δ− 𝐸)/~2. At the same

time, for energies 𝐸 < 0, the wave number 𝑘𝑢 = 𝑖𝑘𝑢,
𝑘𝑢 =

√︀
2𝑚(𝑈 − 𝐸)/ℎ2, for 𝑈 > 0 (barrier), but it

is real for 𝑈 < 0, i.e. 𝑘𝑢 =
√︀
2𝑚(𝐸 + |𝑈 |)/~2, if

𝐸 > − |𝑈 | and 𝑘𝑢 = 𝑖𝑘𝑢, 𝑘𝑢 =
√︀
−2𝑚(𝐸 + |𝑈 |)/~2

if 𝐸 < − |𝑈 |. It follows that the “free” Green func-
tion 𝐺+

0 (𝑥, 𝑥
′;𝐸) = 𝑚

𝑖~2𝑘𝑒
𝑖𝑘|𝑥−𝑥′| is real in the energy

interval (−∞÷0) and, therefore, does not contribute
in this interval to the corresponding “free” propaga-
tor 𝐾0(𝑥, 𝑥

′; 𝑡) defined by (25). It is also remarkable
that, for energies 𝐸 < 0, the imaginary parts of the
Green functions vanish in all spatial regions, as is seen
from definitions (23) and (24) (e.g., Im 𝑡(𝐸) = 0 and
Im 𝑟(𝐸) = 0 for 𝐸 < 0). Therefore, the energy inter-
val (−∞÷0) does not contribute to the propagation
of the particles through the potential well/barrier re-
gion. Thus, we have, for 𝑡 > 0,

𝐾(𝑥, 𝑥′; 𝑡) =
1

𝜋~

∞∫︁
0

𝑑𝐸𝑒−
𝑖
~𝐸𝑡√︀

𝑣(𝐸)
×

× Re

[︃
𝑡(𝐸)𝑒𝑖𝑘Δ(𝐸)(𝑥−𝑑)𝑒−𝑖𝑘(𝐸)𝑥′√︀

𝑣Δ(𝐸)

]︃
, 𝑥′ < 0, 𝑥 > 𝑑,

𝐾(𝑥, 𝑥′; 𝑡) =
1

𝜋~

∞∫︁
0

𝑑𝐸𝑒−
𝑖
~𝐸𝑡√︀

𝑣(𝐸)
×

× Re

{︃
𝑒−𝑖𝑘(𝐸)𝑥′[︀

𝑡′(𝐸)𝑒𝑖𝑘𝑢(𝐸)𝑥+𝑟′(𝐸)𝑒−𝑖𝑘𝑢(𝐸)𝑥
]︀√︀

𝑣𝑢(𝐸)

}︃
,

𝑥′ < 0, 0 < 𝑥 < 𝑑,

𝐾(𝑥, 𝑥′; 𝑡) =
1

𝜋~

∞∫︁
0

𝑑𝐸𝑒−
𝑖
~𝐸𝑡

𝑣(𝐸)
Re[𝑒𝑖𝑘(𝐸)|𝑥−𝑥′|+

+ 𝑟(𝐸)𝑒−𝑖𝑘(𝐸)(𝑥+𝑥′)], 𝑥′ < 0, 𝑥 < 0,

(26)

where the velocities 𝑣(𝐸), 𝑣𝑢(𝐸), and 𝑣Δ(𝐸) are de-
fined by (9) with the multiplier ~/𝑚.

It is easy to verify that the integration of the first
term in the last line of (26) over 𝐸 results in the
known formula for the space-time propagator of a
freely moving particle

𝐾0(𝑥, 𝑥
′; 𝑡) =

(︁ 𝑚

2𝜋𝑖~𝑡

)︁1/2
×

× exp

[︂
𝑖𝑚(𝑥− 𝑥′)2

2~𝑡

]︂
, 𝑥 < 0, 𝑥′ < 0. (27)

The obtained results (26) for the particle propa-
gator completely resolve (by means of Eq. (3)) the
time-dependent Schrödinger equation for a particle
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moving under the influence of the rectangular poten-
tial (8). The form of this solution (integrals of ele-
mentary functions) is convenient for a numerical vi-
sualization. The further application of these results
to the calculation of the TOA and dwell time, as well
as of the probability density of finding a particle in
different spatial areas as a function of the time with
account for the forward- and backward-moving com-
ponents of the wave function and their interference,
can be found in our earlier papers [13–15, 17].

3. Application to the Density Matrix

The equilibrium non-normalized density operator
(propagator in the temperature domain) 𝜌(𝛽) =
= exp(−𝛽𝐻) can likewise be expressed in terms of
the resolvent operator (𝐸 −𝐻)−1 (see (10)) as

𝜌(𝛽) = exp(−𝛽𝐻) =
𝑖

2𝜋

∞∫︁
−∞

𝑑𝐸𝑒−𝛽𝐸 ×

×
(︂

1

𝐸 −𝐻 + 𝑖𝜀
− 1

𝐸 −𝐻 − 𝑖𝜀

)︂
. (28)

Particularly, in the coordinate representation, the
density matrix takes the form (see (4))

𝜌(𝑥, 𝑥′;𝛽) =

∞∫︁
−∞

𝑒−𝛽𝐸𝐴(𝑥, 𝑥′;𝐸)𝑑𝐸, (29)

where 𝐴(𝑥, 𝑥′;𝐸) is given by (13). Thus, the density
matrix 𝜌(𝑥, 𝑥′;𝛽) follows from propagator (12) by the
substitution 𝑡 → −𝑖~𝛽 (𝛽 = 1/𝑘B𝑇 ). From proper-
ties (13), we see that the density matrix (29) is self-
adjoint. The density operator (28) satisfies the Bloch
equation (5).

Thus, passing to the imaginary “time” (𝑡→ −𝑖~𝛽),
we obtain the exact density matrix 𝜌(𝑥, 𝑥′;𝛽) in the
various considered (relative to potential (8) area) spa-
tial regions, i.e.,

𝜌(𝑥, 𝑥′;𝛽) = 𝐾(𝑥, 𝑥′;−𝑖~𝛽), (30)

where 𝐾(𝑥, 𝑥′; 𝑡 = −𝑖~𝛽) is given by (26). In particu-
lar, formula (27) yields the known result for the “free”
density matrix

𝜌0(𝑥, 𝑥
′;𝛽) = 𝐾0(𝑥, 𝑥

′;−𝑖~𝛽) =

=

(︂
𝑚

2𝜋~2𝛽

)︂1/2
exp

[︂
−𝑚(𝑥− 𝑥′)2

2~2𝛽

]︂
. (31)

Using the same approach, it is not difficult to
obtain the propagator 𝜌(𝑥, 𝑥′;𝛽) for other (than in
(26)) areas of the arguments 𝑥 and 𝑥′. Again, it
is worth to note that the negative-energy half-line
(−∞÷0) corresponding to the evanescent states does
not contribute to propagator (29). The diagonal ele-
ment 𝐾(𝑥, 𝑥;𝛽) (𝑥 = 𝑥′ can be put only in the last
line of (26)) defines the density of particles per unit
length at the point 𝑥 < 0 to the left of potential
(8). The nondiagonal elements 𝐾(𝑥, 𝑥′;𝛽) of (26) are
related to the quantum mechanical interference ef-
fects. Particularly, they are responsible for the par-
ticle tunneling through the barrier and also can be
attributed to the phase correlation of the states |𝑥⟩
and |𝑥′⟩.

Equations (26) and (30) provide the exact solution
for the particle density matrix in the presence of the
rectangular potential (8) in terms of integrals of el-
ementary functions. It is convenient (e.g., for a nu-
merical visualization of the obtained results) to pass
to dimensionless variables. As seen from (8), (9), and
(26), there are the natural spatial scale 𝑑 and the en-
ergy scale 𝐸𝑑 = ~2/2𝑚𝑑2 (the energy uncertainty due
to the particle localization within a potential range of
width 𝑑). Then the density matrix (30) in the differ-
ent spatial regions can be presented in the dimension-
less variables as

𝜌(̃︀𝑥, ̃︀𝑥′; ̃︀𝛽) = 1

2𝜋𝑑

∞∫︁
0

𝑑 ̃︀𝐸𝑒−̃︀𝛽 ̃︀𝐸̃︀𝐸1/4
×

× Re

⎡⎣̃︀𝑡( ̃︀𝐸)𝑒𝑖
√ ̃︀𝐸−̃︀Δ(̃︀𝑥−1)𝑒−𝑖

√ ̃︀𝐸̃︀𝑥′

( ̃︀𝐸 − ̃︀Δ)1/4

⎤⎦, ̃︀𝑥′ < 0, ̃︀𝑥 > 1,

𝜌(̃︀𝑥, ̃︀𝑥′; ̃︀𝛽) = 1

2𝜋𝑑

∞∫︁
0

𝑑 ̃︀𝐸𝑒−̃︀𝛽 ̃︀𝐸̃︀𝐸1/4
×

× Re

⎧⎪⎨⎪⎩
[︁̃︀𝑡′( ̃︀𝐸)𝑒𝑖

√ ̃︀𝐸−̃︀𝑈̃︀𝑥 + ̃︀𝑟′( ̃︀𝐸)𝑒−𝑖
√ ̃︀𝐸−̃︀𝑈̃︀𝑥]︁ 𝑒−𝑖

√ ̃︀𝐸̃︀𝑥′

( ̃︀𝐸 − ̃︀𝑈)1/4

⎫⎪⎬⎪⎭,
̃︀𝑥′ < 0, 0 < ̃︀𝑥 < 1,

𝜌(̃︀𝑥, ̃︀𝑥′; ̃︀𝛽) = 1

2

√︁
𝜋̃︀𝛽𝑑 exp[−(̃︀𝑥− ̃︀𝑥′)2/4̃︀𝛽] +

+
1

2𝜋𝑑

∞∫︁
0

𝑑 ̃︀𝐸𝑒−̃︀𝛽 ̃︀𝐸√︀̃︀𝐸 Re[̃︀𝑟( ̃︀𝐸)𝑒=𝑖
√ ̃︀𝐸(̃︀𝑥+̃︀𝑥′)],

̃︀𝑥′ < 0, ̃︀𝑥 < 0, (32)
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Fig. 1. Diagonal element 𝜌(−2,−2; 10) as a function of the
potential well depth |̃︀𝑈 |

Fig. 2. The same (as in Fig. 1) diagonal element of the density
matrix as a function of the potential barrier height ̃︀𝑈
where

̃︀𝑡( ̃︀𝐸) =
4 ̃︀𝐸1/4( ̃︀𝐸 − ̃︀Δ)1/4

√︀̃︀𝐸 − ̃︀𝑈𝑒𝑖√ ̃︀𝐸−̃︀𝑈̃︀𝑑( ̃︀𝐸)
,

̃︀𝑡′( ̃︀𝐸) =
2 ̃︀𝐸1/4( ̃︀𝐸 − ̃︀𝑈)1/4(

√︀̃︀𝐸 − ̃︀Δ+
√︀̃︀𝐸 − ̃︀𝑈)̃︀𝑑( ̃︀𝐸)

,

̃︀𝑟 ′( ̃︀𝐸)=
2 ̃︀𝐸1/4( ̃︀𝐸− ̃︀𝑈)1/4(

√︀̃︀𝐸 − ̃︀𝑈−
√︀̃︀𝐸− ̃︀Δ)𝑒2𝑖

√ ̃︀𝐸−̃︀𝑈̃︀𝑑( ̃︀𝐸)
,

̃︀𝑟( ̃︀𝐸) =
{︀
(
√︀̃︀𝐸 −

√︁̃︀𝐸 − ̃︀𝑈)(

√︁̃︀𝐸 − ̃︀Δ+

√︁̃︀𝐸 − ̃︀𝑈)−

− (
√︀̃︀𝐸 +

√︁̃︀𝐸 − ̃︀𝑈)(

√︁̃︀𝐸 − ̃︀Δ−
√︁̃︀𝐸 − ̃︀𝑈)×

× 𝑒2𝑖
√ ̃︀𝐸−̃︀𝑈}︀/̃︀𝑑( ̃︀𝐸),

̃︀𝑑( ̃︀𝐸) = (
√︀̃︀𝐸 +

√︁̃︀𝐸 − ̃︀𝑈)(

√︁̃︀𝐸 − ̃︀Δ+

√︁̃︀𝐸 − ̃︀𝑈)−

− (
√︀̃︀𝐸 −

√︁̃︀𝐸 − ̃︀𝑈)(

√︁̃︀𝐸 − ̃︀Δ−
√︁̃︀𝐸 − ̃︀𝑈)𝑒2𝑖

√ ̃︀𝐸−̃︀𝑈 ,
(33)

and ̃︀𝐸 = 𝐸/𝐸𝑑, ̃︀𝑈 = 𝑈/𝐸𝑑, ̃︀Δ = Δ/𝐸𝑑, ̃︀𝛽 =

= 𝐸𝑑/𝑘B𝑇 = ̃︀𝑇/𝑇 , ̃︀𝑇 = 𝐸𝑑/𝑘B, ̃︀𝑥 = 𝑥/𝑑, ̃︀𝑥′ = 𝑥′/𝑑.
We will visualize the results given by Eqs. (32) and

(33) for several specific values of the relevant pa-
rameters. For an electron and the potential width
𝑑 = 10−7 cm (1 nm), the characteristic energy
𝐸𝑑 ∼ 3 × 10−2 eV and the characteristic tempera-
ture ̃︀𝑇 = 𝐸𝑑/𝑘B v 3× 102 K.

We will perform the numerical modeling of the den-
sity matrix (32) with the symmetric rectangular po-
tential (8) for Δ = 0 (in this case, the transition
and reflection amplitudes (33) are simplified essen-
tially). To secure a rapid convergence of the integrals
in (32), we consider low enough temperatures, i.e.,
put ̃︀𝛽 = 10 (𝑘B𝑇 ≪ 𝐸𝑑). Figure 1 shows the diago-
nal element of the density matrix 𝜌(̃︀𝑥, ̃︀𝑥; ̃︀𝛽) (the last
line in (32)) at ̃︀𝑥 = −2, i.e., the probability density
to find a particle at this spatial point to the left of
the barrier as a function of the potential well mod-
ulus |̃︀𝑈 | (̃︀𝑈 = 0÷−300). We see that, in this case,
the density matrix 𝜌(̃︀𝑥, ̃︀𝑥; ̃︀𝛽) exhibits a series of max-
ima and minima. This can be explained by the for-
mation of resonance levels above the well, if the con-
dition ̃︀𝐸 + |̃︀𝑈 | = 𝜋2𝑛2 (𝑛 is integer, 𝑛 = 1, 2, ...)
holds. With such a condition, we have the reflection
amplitude ̃︀𝑟( ̃︀𝐸) = 0 and the transmission amplitudẽ︀𝑡( ̃︀𝐸) = ±1. As the main contribution to the integral
over ̃︀𝐸 at low temperatures (̃︀𝛽 = 10) comes from the
small (close to zero) energies, the positions of jumps
in Fig. 1 approximately follow the relation |̃︀𝑈 | = 𝜋2𝑛2

(𝑛 = 1, 2, ...).
The same diagonal element 𝜌(−2,−2; 10) as a func-

tion of the height of the potential barrier ̃︀𝑈 = 0÷300
behaves quite different from the case of the potential
well and is shown in Fig. 2. One can see that the par-
ticle probability density at the given point to the left
of the barrier ̃︀𝑥 = −2 exhibits, at first, a steep fall
with the potential barrier growth, and then it changes
slowly with ̃︀𝑈 .

We will evaluate the nondiagonal elements of the
density matrix 𝜌(̃︀𝑥, ̃︀𝑥′; ̃︀𝛽) for points on different sides
of the well/barrier (the first line in (32)) as a function
of the potential parameter ̃︀𝑈 . Thus, we put ̃︀𝑥′ = −10
(before the potential), ̃︀𝑥 = 2 (beyond the potential)
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and ̃︀𝛽 = 10 (as for Figs. (8) and (9)). Figure 3 ex-
hibits the peaks of the density matrix in the case of
the potential well with ̃︀𝑈 = 0 ÷ −300 at the reso-
nance values of |̃︀𝑈 |, which correspond to the minima
in Fig. 1.

We see that, in this case (̃︀𝑈 < 0), the nondiago-
nal elements of the density matrix can acquire both
positive and negative values. Note that, at ̃︀𝑈 = 0,
the density matrix reduces to the free density matrix
(31) and, therefore, is positive (the seemingly nega-
tive value of the density matrix close to ̃︀𝑈 = 0 in
Fig. 3 is due to a small resolution on the |̃︀𝑈 |-axis;
the calculation on the smaller scale near the point̃︀𝑈 = 0 shows that, at ̃︀𝑈 = 0, the density matrix is
positive). Thus, Fig. 3 demonstrates the jumps of the
quantum coherence between the particle states before
(𝑥′ < 0) and beyond (𝑥 > 0) the potential well at
the resonance particle transmission through the po-
tential well. At the values of |̃︀𝑈 | that do not satisfy
the resonance condition, this quantum coherence is
small.

The nondiagonal matrix element 𝜌(2,−10; 10) as a
function of the potential barrier height (̃︀𝑈 = 0÷100)
is shown in Fig. 4. We see that the quantum coher-
ence between the states on the different sides of the
barrier goes quickly enough to zero, as the barrier
height increases.

4. Diffusion-Like Equation

As was mentioned in Introduction, the time-depen-
dent Schrödinger equation (1) becomes equivalent to
the parabolic diffusion-like equation (6), if one makes
the substitutions 𝑡→ −𝑖𝑡 and ~ → 2𝑚𝐷, where 𝐷 is
a (diffusion) constant. From Eqs. (26), we can imme-
diately obtain a solution to the diffusion equation (6)
under the initial condition 𝑄(𝑥; 0) = 𝛿(𝑥−𝑥′). In the
dimensionless variables, this solution (a propagator)
is given by Eqs. (32) and (33) with the substitutions

𝜌(̃︀𝑥, ̃︀𝑥′; ̃︀𝛽) → 𝑄(̃︀𝑥, ̃︀𝑥′; 𝑡), ̃︀𝛽 → 𝑡, ̃︀𝐸 → 𝐸,̃︀𝑈 → 𝑈, ̃︀Δ → Δ, 𝑡 = 𝑡/𝑡𝐷, 𝐸 = 𝐸/𝐸𝐷,

𝑈 = 𝑈/𝐸𝐷, Δ = Δ/𝐸𝐷,

𝑡𝐷 = 𝑑2/𝐷, 𝐸𝐷 = 2𝑚𝐷2/𝑑2,

(34)

where 𝑡𝐷 and 𝐸𝐷 are obtained from 𝑡𝑑 and 𝐸𝑑 of the
previous section by the substitution ~ → 2𝑚𝐷. As

Fig. 3. Nondiagonal element of the density matrix
𝜌(2,−10; 10) as a function of the potential well depth |̃︀𝑈 |

Fig. 4. Dependence of 𝜌(2,−10; 10) on the potential barrier
height ̃︀𝑈
follows from definition (34), the introduced char-
acteristic time 𝑡𝐷 can be interpreted as the time
needed for a particle to diffuse over the distance
𝑑 (width of potential (8)) with the diffusion coeffi-
cient 𝐷. The characteristic energy 𝐸𝐷 = 2𝑚𝐷2/𝑑2 =

= 2𝑚𝑑2/𝑡2𝐷 = 4
𝑚𝑣2

𝐷

2 is proportional to the kinetic
energy of a particle moving with the average veloc-
ity 𝑣𝐷 = 𝑑/𝑡𝐷. Therefore, as in the previous sec-
tion, we can numerically model the solution𝑄(̃︀𝑥, ̃︀𝑥′; 𝑡)
defined by Eqs. (32) and (33) (with substitutions
(34)) at the different spatial points ̃︀𝑥 = 𝑥/𝑑 and̃︀𝑥′ = 𝑥/𝑑.

Note that, at 𝑉 (𝑥) > 0, the solution to the diffusion
equation (6) is positive, 𝑄(̃︀𝑥, ̃︀𝑥′; 𝑡) ≥ 0 (see [8]) and
can be viewed as the density of particles at the point ̃︀𝑥
at the time moment 𝑡, when the “diffusion with holes”
starts at the point ̃︀𝑥′. The latter term was introduced
by Kac because, at the points, where potential (8)
𝑉 (𝑥) ̸= 0 (𝑉 (𝑥) > 0), the particle can disappear.
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Fig. 5. Three-dimensional profile of the particle density
𝑄(̃︀𝑥,−3; 𝑡) to the right of the symmetric barrier

Fig. 6. Space-time density profile 𝑄(̃︀𝑥,−3; 𝑡) for the “free”
diffusion of particles

As an example, we have numerically modeled the
density of particles 𝑄(̃︀𝑥, ̃︀𝑥′; 𝑡) to the right of the
symmetric barrier (Δ = 0) with 𝑈 = 10 at dif-
ferent ̃︀𝑥, when the diffusion starts to the left of
the barrier at ̃︀𝑥′ < 0. The chosen scaled time 𝑡 =
= 1÷10 is sufficient to reach the spatial domain ̃︀𝑥 =
= 1÷3 starting at ̃︀𝑥′ = −3. The calculated three-
dimensional profile of 𝑄(̃︀𝑥, ̃︀𝑥′; 𝑡) is presented in Fig. 5
for the same (as earlier) width of the potential barrier
𝑑 = 10−7 cm.

One can see the nonmonotonic behavior of the den-
sity profile with time 𝑡 for every fixed ̃︀𝑥, which is
especially pronounced near the right barrier bound-
ary (near ̃︀𝑥 = 1). This behavior caused by the nega-
tive sources absorbing the particles (see Eq. (6)) and
distributed according to function (8) with 𝑈 > 0,
Δ = 0, is quite different from the familiar “free” dif-
fusion in the absence of the potential (𝑈 = 0, Δ = 0),
which is shown in Fig. 6 for the same parameters as
in Fig. 5.

5. Summary

We have obtained the exact propagator
⟨𝑥| exp(−𝛼𝐻)|𝑥′⟩ (𝐻 is the Hamiltonian for a
particle moving in the presence of an asymmetric
rectangular potential) resolving the parabolic-type
partial differential equation. Having obtained the
space-time propagator for the one-dimensional time-
dependent Schrödinger equation (𝛼 = 𝑖𝑡/~) with
a rectangular well/barrier potential, we succeeded,
at the same time, in finding a propagator for the
Bloch equation (𝛼 = 𝛽, 𝛽 = 1/𝑘B𝑡) for the particle
density matrix and for the diffusion-like equation
(𝛼 = 𝑡) by passing from the real to the imaginary
time (𝑡 → −𝑖~𝛽 and 𝑡 → −𝑖𝑡, correspondingly). As
an alternative to the conventional path integral
approach to calculating the propagators, we use
the multiple-scattering theory for the calculation of
the energy-dependent Green function (a resolvent
operator in (10)). The suggested approach is based
on the possibility of introducing the effective po-
tentials (see (14) and (15)), which are responsible
for the reflection from and the transmission through
the potential jumps making up the rectangular
potential (8). It provides more of a non-classical
picture of particle scattering at the considered
potential as opposed to the conventional wave point
of view.

The solution for the time-dependent Schrödinger
equation describes the reflection from and the trans-
mission through an asymmetric rectangular potential
as a function of the time and thus allows the consid-
eration of the non-classical counterintuitive effects of
the particle reflection from a potential well and the
transmission through a potential barrier in a real sit-
uation where a particle is moving toward potential (8)
and then experiencing a scattering at the potential.
These results are also relevant to the fundamental
issues of measuring the time in quantum mechanics
such as the time-of-arrival (TOA), dwell time, and
tunneling time.

The obtained density matrix 𝜌(𝑥, 𝑥′;𝛽) for a parti-
cle in a heat bath and under the influence of potential
(8) gives the probability density (diagonal matrix ele-
ment) to find a particle at some spatial point and the
quantum correlation (coherence) of different spatial
states |𝑥 > and |𝑥′ > provided by the nondiagonal
matrix elements. The results for the density matrix
are numerically visualized, which is enabled by the
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fact that they are expressed in terms of integrals of
elementary functions.

The results of the solution of the diffusion-like
equation, which can be interpreted (in the case of
a potential barrier, 𝑈 > 0) as the diffusion with
negative sources distributed according to potential
(8), also have been numerically evaluated. The corre-
sponding figures demonstrate the difference between
this “diffusion with holes” and the “free” diffusion in
the absence of potential (8).

It is also worth mentioning that all obtained re-
sults are also relevant to the properties of electrons
in nanostructures important for spintronics devices,
because potential (8) can be used for modeling the
potential profiles in such materials.
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ТОЧНЕ РIШЕННЯ ЗАЛЕЖНОГО ВIД ЧАСУ
РIВНЯННЯ ШРЕДIНГЕРА З ПРЯМОКУТНИМ
ПОТЕНЦIАЛОМ ДЛЯ ДIЙСНОГО I УЯВНОГО ЧАСУ

Р е з ю м е

Використовуючи теорiю багатократного розсiяння, отрима-
но пропагатор для одновимiрного, залежного вiд часу рiв-
няння Шредiнгера з асиметричним прямокутним потенцi-
алом. Це дозволило розглядати процеси вiдбивання i про-
ходження, як розсiяння частинки на стрибках потенцiалу
(на вiдмiну вiд звичайної хвильової картини), та враховува-
ти некласичний i парадоксальний внесок обернено рухомих
компонент хвильового пакета, що асоцiюється iз частин-
кою. Отриманий пропагатор дає повне рiшення вiдповiдно-
го залежного вiд часу рiвняння Шредiнгера (тобто визначає
хвильову функцiю 𝜓(𝑥, 𝑡)) та дозволяє розгляд квантово-
механiчних ефектiв вiдбивання частинки вiд потенцiальної
ями (або сходинки) та її проходження через потенцiальний
бар’єр як функцiю часу. Цi результати стосуються таких
фундаментальних проблем, як вимiр часу у квантовiй ме-
ханiцi (час тунелювання, час прибуття, час перебування).
Для уявного часу, що представляє обернену температуру
(𝑡 → −𝑖~/𝑘B𝑇 ), отриманий пропагатор є еквiвалентним до
матрицi густини для частинки, яка знаходиться у термо-
статi i пiд впливом прямокутного потенцiалу. Ця матриця
густини надає iнформацiю про густину частинок у рiзних
просторових областях (вiдносно розташування потенцiалу)
i про квантову когерентнiсть рiзних просторових станiв ча-
стинки. Якщо перейти до уявного часу, як 𝑡 → −𝑖𝑡, то ма-
тричний елемент обчисленого пропагатора у просторовому
базисi дає рiшення рiвняння дифузiйного типу з прямоку-
тним потенцiалом. Отриманi точнi результати представле-
нi у виглядi iнтегралiв вiд елементарних функцiй, i таким
чином дозволяють чисельно вiзуалiзувати густину ймовiр-
ностi |𝜓(𝑥, 𝑡)|2, матрицю густини та рiшення рiвняння ди-
фузiйного типу. Отриманi результати можуть також бути
корисними для спiнтронiки, оскiльки асиметричний (зале-
жний вiд спiну) прямокутний потенцiал моделює потенцi-
альний профiль шаруватих магнiтних наноструктур.
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