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POTENTIAL ELECTRON SCATTERING
BY P2 AND P3 PHOSPHORUS MOLECULESPACS 34.80.Bm; 31.15.V-

Potential electron scattering by P2 and P3 phosphorus molecules at scattering energies of
0.5–30 eV has been studied theoretically for the first time. The research is carried out in the
framework of the independent-atom model and using a real parameter-free relativistic optical
potential for the electron interaction with atoms in the molecule. For the consistent description
of the electron scattering by the atoms in the molecule, the potential parameters and the atomic
characteristics are calculated in the local approximation of the stationary and time-dependent
variants of the density functional theory. The comparison of the angular behavior of the dif-
ferential cross-sections and the energy dependences of the integral ones in the cases of electron
scattering by phosphorus molecules and phosphorus atoms testifies to their similarity.
K e yw o r d s: independent-atom model, optical potential, scattering amplitude, partial phase
shift, differential and total cross-sections, optical theorem.

1. Introduction

A theoretical consideration of the potential electron
scattering by a molecule, when it is regarded as a mul-
tiatomic system, is much more difficult than the de-
scription of this process in the case of atom. However,
the former is extremely important from the funda-
mental (research of the electron interaction with tar-
gets characterized by various shapes and complicated
structures) and applied (physics and chemistry of
gases, surface science, solid state physics, and plasma
physics) aspects. A very important task consists in
finding the accuracy of theoretical approximations
that are used in researches and for the description of
the scattering by molecular systems at low, medium,
and high collision energies. In the absence of experi-
mental data for scattering parameters, the results of
calculations carrired out in various approximations
should be compared with various theoretical data.

c○ SH.SH. DEMESH, V.I. KELEMEN,
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A description of this kind is performed, first of
all, using rather a simple Independent-Atom Model
(IAM) [1–4]. In the framework of this model, the am-
plitude of electron scattering by a molecule is reduced
to a sum of scattering amplitudes for atoms. In works
[5, 6], the IAM was improved by introducing a cor-
rection to the interatomic screening (the Screening
Correction Additivity Rule, IAM-SCAR). The corre-
sponding correction for total cross-sections was devel-
oped in work [5], and, for differential ones, in work
[6]. In this work, we also use the IAM [7–9] together
with the optical potential (OP) method [10], which is
based on the approach of works [11, 12], with regard
for the interaction between an electron and the atoms
in a molecule.

In more complicated approaches, the methods of
electron gas theory are used to find the potentials
of the electron interaction with a target molecule.
The application of the electron density of a tar-
get molecule for this purpose was proposed and ap-
plied for the first time to the electron scattering by
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atoms and molecules in works [11, 12]. In particu-
lar, in work [12], the non-spherical character of the
correlation-polarization potential for the electron in-
teraction with the molecule was taken into account in
the form of the two-term series expansion of the po-
tential in Legendre polynomials. At large distances
from the target, those terms, with the correspond-
ing polarizabilities, represent the spherical and non-
spherical potentials. In the cited work, one can find
references to the standard methods used for molecu-
lar parameter calculations.

Basing on this approach, the methods of spherical
[13, 14] and single-center [15] molecular interaction
potentials were developed. For instance, in works
[13, 14], the total wave function of a molecule and
the corresponding electron density were determined
in the framework of the Hartree–Fock method. At the
same time, in work [15], the description used molec-
ular parameters that were found by applying a much
more complicated procedure, namely, a symmetry-
adapted, single-center expansion of the total multi-
center wave function of electrons in a target molecule.

A detailed research of the scattering characteristics
for electrons, positrons, and photons was also carried
out in the framework of the 𝑅-matrix method, which
is the most advanced today [16]. In the cases of elec-
tron scattering by an 𝑁 -electron molecule at small
distances from the target in the internal region, the
wave function of the (𝑁 +1)-electron complex for the
given configuration of interatomic distances is deter-
mined, by using the methods of coupled molecular
states, with regard for the exchange and correlation
interactions. In particular, the Gaussian- or Slater-
type orbitals are used as basis functions. Those or-
bitals are centered at the nuclei; then they are com-
bined with continuous basis functions.

A single work, where the scattering 𝑒 + P2 was
studied theoretically, is [17]. The cited authors ap-
plied the Schwinger multichannel method with pseu-
dopotentials for the calculation of the cross-sections
of elastic electron scattering by X2 and XH3 molecules
(X = N, P, As, and Sb) at collision energies of 10,
15, 20, 25, and 30 eV in the static-exchange approxi-
mation. In this approximation, the electron interacts
with the whole molecule, similarly to the methods
used in works [12–15], but owing to the static and
exchange potentials only. The introduction of a pseu-
dopotential allows one to change a real potential aris-
ing due to the combined action of the nucleus and the

core electrons in every atom of the molecule. The au-
thors of work [17] used many-particle methods, e.g.,
the Hartree–Fock method, for valence electrons. This
approach is described in more details in the short re-
view [18] (see also references therein). Below, we com-
pare our results obtained for the 𝑒+P2 scattering with
the data of work [17].

2. Theoretical Method

2.1. Scattering parameters

For studying the behavior of elastic differential cross-
sections (DCSs) and integral – elastic, momentum-
transfer, and viscosity – ones for the potential scat-
tering of electron by molecules in the IAM framework
[1–4], we applied the OP method [7–9] (see also work
[10]). In the IAM, when an electron is scattered by
an 𝑁 -atomic molecule, the following scattering am-
plitudes are used [19, 20]:

𝐹 (𝜃,𝐸) =

𝑁∑︁
𝑚=1

𝑓𝑚(𝜃,𝐸) exp(𝑖sr𝑚),

𝐺(𝜃,𝐸) =

𝑁∑︁
𝑚=1

𝑔𝑚(𝜃,𝐸) exp(𝑖sr𝑚).

(1)

Here, s = k𝑖 − k𝑓 = 𝑘(n𝑖 − n𝑓 ) is the vector
of transferred momentum; k𝑖 and k𝑓 are the initial
and final, respectively, momenta of the incident elec-
tron; r𝑚 is the radius vector of the nucleus of the
𝑚-th atom in the molecule (reckoned from molecule’s
center of mass); 𝜃 the scattering angle; 𝐸 the en-
ergy of an incident electron, 𝐸 = 𝑘2/2; and 𝑓𝑚 and
𝑔𝑚 are the direct and spin-flip, respectively, ampli-
tudes of electron scattering by the 𝑚-th atom in the
molecule. The factors exp(𝑖𝑘n𝑖 ·r𝑚) in the amplitudes
𝐹 (𝜃, 𝐸) and 𝐺(𝜃,𝐸) (see Eqs. (1)) involve the wave
phase shifts, which are associated with a shift of the
reference mark with respect to the position r𝑚 for the
𝑚-th scattering center [1].

The differential cross-section of the elastic elec-
tron scattering by an 𝑁 -atomic molecule in the IAM
framework with the use of the averaging over the ro-
tational and vibrational molecular degrees of freedom
is given by the expression [1, 2, 19, 20]

𝑑𝜎IAM
el

𝑑Ω
= ⟨|𝐹 |2 + |𝐺|2⟩, (2)
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where the atomic units ~ = 𝑒 = 𝑚𝑒 = 1 are used. In
terms of atomic amplitudes of DCS, Eq. (2) looks like

𝑑𝜎IAM
el

𝑑Ω
=

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

[︀
𝑓𝑚(𝜃, 𝑘)𝑓*

𝑛(𝜃, 𝑘)+

+ 𝑔𝑚(𝜃, 𝑘)𝑔*𝑛(𝜃, 𝑘)
]︀
exp(−ℓ2𝑚𝑛𝑠

2/2)
sin(𝑠𝑟𝑛𝑚)

𝑠𝑟𝑛𝑚
. (3)

The differential cross-section (3) can be written dif-
ferently in the form of two terms: (i) the sums of
DCSs for the scattering by each atom; this is the di-
rect term

𝑁∑︁
𝑚=1

𝑑𝜎el,𝑚/𝑑Ω = 𝑑𝜎Ad
el /𝑑Ω

(according to the sum rule, the “additivity rule” (Ad)
approximation); and (ii) the interference (or indirect)
term

𝑑𝜎IAM
el

𝑑Ω
=

𝑑𝜎Ad
el

𝑑Ω
+

𝑑𝜎Int
el

𝑑Ω
, (4)

where

𝑑𝜎Int
el

𝑑Ω
=

𝑁∑︁
𝑚,𝑛 ̸=𝑚

[︀
𝑓𝑚(𝜃, 𝑘)𝑓*

𝑛(𝜃, 𝑘)+

+ 𝑔𝑚(𝜃, 𝑘)𝑔*𝑛(𝜃, 𝑘)
]︀
exp(−ℓ2𝑚𝑛𝑠

2/2)
sin(𝑠𝑟𝑛𝑚)

𝑠𝑟𝑛𝑚
. (5)

In expressions (3) and (5), ℓ𝑚𝑛 and 𝑟𝑛𝑚 are the
amplitude of vibration and the distance, respectively,
between the 𝑛-th and 𝑚-th atoms in the molecule,
and the function 𝑠(𝜃, 𝑘) = 2𝑘 sin(𝜃/2).

To describe the important effects of spin polar-
ization at the electron scattering by molecules, the
spin polarization parameters 𝑆(𝜃,𝐸), 𝑇 (𝜃,𝐸), and
𝑈(𝜃,𝐸) are used, which are related to the scat-
tering amplitudes 𝐹 (𝜃, 𝐸) and 𝐺(𝜃,𝐸) (see works
[21, 22]). For instance, the Sherman function 𝑆(𝜃,𝐸),
which describes the electron polarization at the scat-
tering of a non-polarized electron beam owing to the
spin-orbit interaction, has a standard form [21, 22]
that takes the above-indicated averaging into ac-
count [19]:

𝑆(𝜃,𝐸) = 𝑖
⟨𝐹𝐺* − 𝐹 *𝐺⟩
⟨|𝐹 |2 + |𝐺|2⟩

=

= 𝑖

(︂∑︁
𝑚

[𝑓𝑚𝑔*𝑚 − 𝑓*
𝑚𝑔𝑚] +

∑︁
𝑚,𝑛 ̸=𝑚

[𝑓𝑚𝑔*𝑛 − 𝑓*
𝑛𝑔𝑚]×

× 𝑒−ℓ2𝑚𝑛𝑠
2/2 sin(𝑠𝑟𝑛𝑚)

𝑠𝑟𝑛𝑚

)︂
/(𝑑𝜎IAM

el /𝑑Ω). (6)

The energy and angular dependences of the DCS
and the spin polarization parameters are very sensi-
tive to the quality of every approximation used for
the description of the potential electron scattering by
molecules.

For the electron scattering by homonuclear
molecules – in our case, these are two- and three-
atomic ones – the differential scattering cross-sections
(3) and (4) in the IAM framework have much simpler
forms (see also work [20]):

𝑑𝜎IAM
el

𝑑Ω
= 2

𝑑𝜎el,A

𝑑Ω

[︂
1 + exp(−ℓ212𝑠

2/2)
sin(𝑠𝑟12)

𝑠𝑟12

]︂
, (7)

𝑑𝜎IAM
el

𝑑Ω
= 3

𝑑𝜎el,A

𝑑Ω

[︂
1 +

2

3

(︂
exp(−ℓ212𝑠

2/2)×

× sin(𝑠𝑟12)

𝑠𝑟12
+ exp(−ℓ213𝑠

2/2)
sin(𝑠𝑟13)

𝑠𝑟13
+

+ exp(−ℓ223𝑠
2/2)

sin(𝑠𝑟23)

𝑠𝑟23

)︂]︂
. (8)

Here, 𝑑𝜎el,A/𝑑Ω is the DCS of the scattering by
one of the atoms in the molecule. One can see that
the behavior and the features of the DCS 𝑑𝜎IAM

el /𝑑Ω
for the electron scattering by such molecule in the
IAM framework are mainly governed by the angular
and energy dependences of the DCS 𝑑𝜎el,A/𝑑Ω – as
well as by all their features, i.e. minima and maxima –
for the electron scattering by a separate atom in the
molecule.

In the indicated IAM and Ad approximations, the
integral cross-sections of elastic scattering are coupled
with each other. They can be calculated by directly
integrating the DCS over the scattering angles. In
particular, for the DCS 𝑑𝜎IAM

el /𝑑Ω, we obtain

𝜎IAM
el (𝐸) = 2𝜋

𝜋∫︁
0

𝑑𝜃 sin 𝜃
𝑑𝜎IAM

el (𝐸, 𝜃)

𝑑𝜃
=

= 𝜎Ad
el + 𝜎Int

el , (9)

where

𝜎Ad
el (𝐸) = 2𝜋

𝜋∫︁
0

𝑑𝜃 sin 𝜃
𝑑𝜎Ad

el (𝐸, 𝜃)

𝑑𝜃
, (10)

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 4 293



Sh.Sh. Demesh, V.I. Kelemen, E.Yu. Remeta

and the interference term equals

𝜎Int
el (𝐸) = 2𝜋

𝜋∫︁
0

𝑑𝜃 sin 𝜃
𝑑𝜎Int

el (𝐸, 𝜃)

𝑑𝜃
. (11)

It is worth to note that the integral cross-section
of elastic scattering 𝜎Ad

el (𝐸) can also be determined
from the optical theorem [1–3, 23]. For the IAM, this
theorem coincides with the “additivity rule” of the
Ad approximation [2–6]. Therefore, on the basis of
expressions (3)–(5) for the DCS and with the use of
the relations

sin (𝑠𝑟𝑛𝑚)/𝑠𝑟𝑛𝑚 |𝜃→0 → 1,

sin (𝑠𝑟𝑛𝑚)/𝑠𝑟𝑛𝑚 |𝑟𝑛𝑚→0 → 1,

we obtain

𝜎Ad
el (𝐸) =

4𝜋

𝑘

𝑁∑︁
𝑛=1

Im[𝑓𝑛(𝜃 = 0, 𝑘)] =
𝑁∑︁

𝑛=1

𝜎el,𝑛(𝐸) (12)

for this cross-section.
In the case of forward scattering, the “spin-flip” am-

plitude (see below) gives no contribution, because of
the properties of associated Legendre functions of the
first kind 𝑃 1

ℓ (cos 𝜃); i.e. 𝑔𝑛(𝜃 = 0, 𝑘) = 0. From ex-
pressions (7) and (8) for the DCS, we see that the op-
tical theorem (12) results in the following expressions
for the integral cross-sections: 𝜎Ad

el (𝐸) = 2𝜎el,A(𝐸)
and 𝜎Ad

el (𝐸) = 3𝜎el,A(𝐸), respectively. Similarly, ex-
pressions (9) and (10) in the IAM or Ad approxi-
mation can be used to determine the integral cross-
section of momentum transfer, 𝜎IAM

mom(𝐸) or 𝜎Ad
mom(𝐸),

with the weight function (1 − cos 𝜃), and the inte-
gral cross-section of viscosity, 𝜎IAM

vis (𝐸) or 𝜎Ad
vis (𝐸),

with the weight function sin2 𝜃. Note that the inte-
gral cross-sections for the 𝑒+P scattering, which were
calculated by us by integrating DCS (9) over the an-
gles and using the optical theorem, coincide, which
testifies to the correctness of those calculations.

The IAM approach is valid under the conditions
that the electron is fast enough: 𝑘(𝑟𝑛𝑚)min ≫ 1, and
the scattering by atoms occurs only once: (𝑟𝑛𝑚)min ≫
≫ (𝑎)max [1]. Here, (𝑟𝑛𝑚)min is the minimum dis-
tance between the atoms, and (𝑎)max the maximum
radius of the particle interaction with each atom. For
instance, if (𝑟𝑛𝑚)min = 4𝑎0, which corresponds the an
interatomic distance of about 2.1 Å, and 𝑘 = 1 a.u.,
which corresponds to an incident electron energy of
about 14 eV, the simple inequality 𝑘(𝑟𝑛𝑚)min > 1 is

obeyed. Here, 𝑎0 = 5.2918× 10−11 m is the Bohr ra-
dius, the atomic length unit. Note that 𝑘(𝑟𝑛𝑚)min ∼ 1
at an electron energy of 1 eV.

We consider that the application of a rather good
consistent quantum-mechanical description of the
electron scattering in the potential field of molecular
atoms will also allow us to describe well the electron
scattering by the whole molecule in the IAM frame-
work. In our opinion, this description of the scattering
by the molecule will be valid even in the case where
the simple inequality 𝑘(𝑟𝑛𝑚)min > 1 is satisfied. Note
also that, e.g., the IAM-SCAR approximation [5, 6]
was proposed just in order to use the IAM at medium
and even low, lower than 10 eV, collision energies.

The amplitudes of electron scattering by the atom
can be found from the real partial phase shifts
𝛿±ℓ (𝐸) = 𝜀±ℓ (𝐸) in the case of real OP of interaction
[10] or the complex ones 𝛿±ℓ (𝐸) = 𝜀±ℓ (𝐸) + 𝑖𝜉±ℓ (𝐸) in
the case of complex OP, which makes allowance for
absorption effects [22]. In particular, the formulas for
the scattering amplitudes in terms of the real partial
phase shifts 𝛿±ℓ (𝐸) = 𝜀±ℓ (𝐸) look like

𝑓𝑚(𝜃, 𝑘) =
1

2𝑖𝑘

∞∑︁
ℓ=1

{︀
(ℓ+ 1)

[︀
exp(2𝑖𝜀+ℓ )− 1

]︀
+

+ ℓ
[︀
exp(2𝑖𝜀−ℓ )− 1

]︀}︀
𝑃ℓ(cos 𝜃), (13)

𝑔𝑚(𝜃, 𝑘) =
1

2𝑖𝑘

∞∑︁
ℓ=1

[︀
exp(2𝑖𝜀−ℓ )− exp(2𝑖𝜀+ℓ )

]︀
×

×𝑃 1
ℓ (cos 𝜃), (14)

where 𝑃ℓ(cos 𝜃) are Legendre polynomials.
The partial phase shifts for the initial values of or-

bital momentum of the incident electron, ℓ < ℓmin,
are obtained by solving the real or complex phase
equations (see works [10], [22], and references therein)
with the OP 𝑉 ±

opt(𝑟, 𝐸) = 𝑉 ±(𝑟, 𝐸) or 𝑉 ±
opt(𝑟, 𝐸) =

= 𝑉 ±(𝑟, 𝐸)+ 𝑖𝑉 ±
A (𝑟, 𝐸), respectively. Here, 𝑉A is the

absorption potential. The asymptotic (at ℓmax > ℓ >
> ℓmin) values of phase shifts are calculated, by using
the expression [23]

tan 𝛿asℓ = 𝜋𝛼𝑑(0)𝑘
2/[(2ℓ+ 3)(2ℓ+ 1)(2ℓ− 1)]. (15)

Here 𝛼𝑑(0) is the static dipole polarizability of the
corresponding atom of the molecule.

It is worth to note that the availability of data
in the scientific literature concerning the calculated
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partial phase shifts of particle scattering by various
atoms allows them to be widely applied to the cal-
culation of the parameters of scattering by various
multiatomic molecules, by using the IAM.

2.2. Optical potential

We use the real part of OP, which is independent of
the fitting (arbitrary) or empirical parameters (the
RSEP LA approximation) [10] (see also work [9]):

𝑉 ±(𝑟, 𝐸) = 𝑉S(𝑟) + 𝑉e(𝑟, 𝐸) + 𝑉P(𝑟)+

+𝑉R(𝑟, 𝐸) + 𝑉 ±
so (𝑟, 𝐸). (16)

Here, the signs “±” in the potential of spin-orbit
interaction correspond to the total angular momenta
of the incident electron, 𝑗 = ℓ ± 1/2. The potential
components of the OP are the static 𝑉S, exchange
𝑉e, polarization 𝑉P, scalar-relativistic 𝑉R, and spin-
orbit interaction 𝑉 ±

so , potentials. These components
are determined, in general, by the total and spin
electron densities of atoms in the molecule. The elec-
tron density can be calculated in the approximations
presented by various theories, such as the Thomas–
Fermi theory, the Hartree–Fock one, and the den-
sity functional theory (DFT). Analytical expressions
with parameters can also be used for those quanti-
ties, which is very convenient in calculations (see,
e.g., work [24]). The values of electron density pa-
rameters calculated for atoms from hydrogen to kryp-
ton (𝑍 = 1÷36) in the Hartree–Fock approximation
are quoted in work [24]. The corresponding param-
eters calculated for the phosphorus atom in the lo-
cal spin density approximation of the DFT and for
the mercury atom calculated in the local density ap-
proximation are given, respectively, in works [10] and
[25]. Note that, in the approaches of works [11–15],
the potential components of the OP are determined
by the electron density of a molecule.

The exchange and polarization potentials are used
in the local spin-non-polarized (or local) or spin-
polarized (or local-spin) [7, 26] approximations for
the (free) inhomogeneous electron gas. In the former
approximation, the exchange potential 𝑉e(𝑟, 𝐸) can
be either non-relativistic, 𝑉e(𝑟, 𝐸) = 𝑉 N

e (𝑟, 𝐸) [10]
or, for heavy atoms, include relativistic corrections,
𝑉e(𝑟, 𝐸) = 𝑉 R

e (𝑟, 𝐸). For the polarization potential
𝑉 SR
P at short distances from the molecule’s atom,

a parameter-free expression for the potential of the
correlation-polarization interaction between electrons

is used (see works [9, 10]). At large (asymptotic) dis-
tances, the polarization potential looks like 𝑉 LR

P (𝑟) =
= −𝛼𝑑(0)/2𝑟

4. The dependences 𝑉 SR
P (𝑟) and 𝑉 LR

P (𝑟)
intersect at a definite point 𝑟𝑐. For the calculation of
the atomic polarizability 𝛼𝑑(0), the local approxima-
tion of the time-dependent density functional theory
is applied.

Absorption effects influence the scattering param-
eters at collision energies 𝐸 > Δ, where Δ is the
first inelastic threshold energy for the 𝑛-th atom. In
the case of phosphorus atom, they have to be taken
into account starting from the energy Δ = 6.9667 eV
[27]; this is the average energy of the term 4P of the
configuration 3𝑝24𝑠, which is dipole-excited from the
ground state 3𝑝3 4S of a phosphorus atom (the ion-
ization energy of the phosphorus atom amounts to
10.4868 eV [27]). In the OP method, those effects are
taken into consideration with the help of the non-
empirical, 𝑉A(𝑟, 𝐸) = 𝑉af(𝑟, 𝐸) (of the Staszewska-
type [28]), or empirical, 𝑉A(𝑟, 𝐸) = 𝑉aMc(𝑟, 𝐸) (of the
McCarthy-type [29]), absorption potentials (see also
work [26]). Generally speaking, we may assert that
making allowance for absorption will result in a cer-
tain reduction of the elastic differential cross-section
and, as a consequence, a reduction of the integrated
elastic scattering, momentum-transfer, and viscosity
cross-sections.

Note that the approaches, in which spherical [13,
14] and single-center [15] potentials are used, take ab-
sorption effects into consideration more consistently,
as the absorption performed by the whole molecule,
which is determined by the excitation of its spectra:
electronic, vibrational, and rotational ones.

Hence, the scattering parameters for the descrip-
tion of the electron interaction with an atom in the
molecule can be calculated in various approxima-
tions, taking and not taking absorption effects into
account; for example, in the spin-non-polarized [25],
spin-polarized [26], and completely relativistic ap-
proaches, using the 𝑉 R

e (𝑟, 𝐸), 𝑉R(𝑟, 𝐸), and 𝑉 ±
so (𝑟, 𝐸)

potentials; and in the semirelativistic, or partially rel-
ativistic, approach using only 𝑉R(𝑟, 𝐸) or 𝑉 ±

so (𝑟, 𝐸).

2.3. Structural calculations
for P2, P3, and P4 molecules

The structural characteristics of the P2, P3, and
P4 molecules were calculated using the theoretical
methods of the computer software program GAMESS
[30]. In all cases, the initial matrix of electron den-
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sity was self-consistently and iteratively calculated
in the framework of the unrestricted Hartree–Fock
method. In order to take the correlation interactions
of electrons into account, the further calculations
were carried out within the coupled cluster method
with single and double excitations and with the triple
correction (CCSD(T)). In so doing, we used an ex-
panded Gaussian basis set “triple-𝜁” with additional
functions for taking the polarization and correlation
interactions into account.

The equilibrium structures of the P2 and P3

molecules were obtained as a result of the geomet-
rical optimization following the quadratic approxi-
mation algorithm. The equilibrium distances between
the atoms obtained in CCSD(T) calculations are as
follows (in 𝑎0 units): for the P2 molecule, 𝑟12 = 3.610
(cf. 𝑟12 = 3.579 [27] and 𝑟12 = 3.578 (for the 31P2

isotope) [31]); for the P3 molecule, 𝑟12 = 3.7403,
𝑟13 = 3.7148, and 𝑟23 = 7.4552. Note that work [17]
contains no data on the calculated interatomic dis-
tance in the P2 molecule.

In addition, let us indicate here that the geometri-
cal structure of a P4 molecule is not planar. It is char-
acterized by the following interatomic distances (in
𝑎0 units): 𝑟12 = 4.1094, 𝑟13 = 4.1094, 𝑟14 = 4.5494,
𝑟23 = 6.4074, 𝑟24 = 4.1094, and 𝑟34 = 4.1094.

3. Discussion of Results

The real OP (16), which was found in the local spin-
density approximation of the DFT, was applied in
work [10] to describe the potential scattering of an
electron by a P atom. The amplitudes of the 𝑒 + P
scattering determined in work [10] in the local den-
sity approximation of the DFT (the RSEP LA ap-
proximation) were used in this work to calculate the
electron scattering by P𝑛 molecules (𝑛 = 2, 3) (see
also our previous publications [7–9]). In our calcula-
tions, we neglected the amplitudes of vibrations ℓ𝑚𝑛

between the 𝑛-th and 𝑚-th atoms in the molecule;
i.e. we considered them to equal zero.

3.1. Differential scattering cross-sections

Figure 1 demonstrates the angular dependences of the
DCS for the elastic electron scattering by a phospho-
rus atom [10] and the DCSs 𝑑𝜎IAM

el /𝑑Ω and 𝑑𝜎Ad
el /𝑑Ω

for the electron scattering by the indicated phospho-
rus molecules calculated in the RSEP LA approxima-
tion for eight values of collision energy: 0.5, 1, 5, 10,

15, 20, 25, and 30 eV (see also work [8]). The obtained
cross-sections are compared with the corresponding
results of calculations carried out in work [17]. One
can see that the DCSs of electron scattering by the
phosphorus molecules obtained according to expres-
sions (7) and (8) are expectedly very similar by their
structure to the cross-sections of scattering by a phos-
phorus atom, being larger than the latter by a factor
that corresponds to the number of phosphorus atoms
in the molecule.

At low collision energies of 0.5 and 1 eV, the DCS
𝑑𝜎Ad

el /𝑑Ω lies between the atomic DCS and the DCS
𝑑𝜎IAM

el /𝑑Ω (for 𝑒+P2) within the whole interval of an-
gles. As the collision energy grows, even at 5 eV, the
DCSs 𝑑𝜎Ad

el /𝑑Ω for the scattering by P2 and P3 atoms
grow from large angles to medium and small ones
and approach 𝑑𝜎IAM

el /𝑑Ω. However, even at 30 eV, the
DCS 𝑑𝜎IAM

el /𝑑Ω remains larger than 𝑑𝜎Ad
el /𝑑Ω within

the angular interval of 0÷30∘. This fact means that
the interference terms (the sum in Eq. (4)) domi-
nate at the scattering at small angles. From Fig. 1, d,
one can see that, at an energy of 10 eV, the DCS
from work [17] remains almost invariant and equal
to approximately 1.4 × 10−20 m2/sr within the an-
gular interval from 60∘ to 140∘. Our results for the
DCS at those angles have a smooth minimum of
0.42×10−20 m2/sr at 112∘. At small (<60∘) and large
(>150∘) angles, the DCS data from work [17] are close
to our results obtained for the electron scattering by
a P atom at all collision energies.

For higher electron energies, the angular behavior
of DCS from work [17] becomes more structured: it
contains two smooth minima and one maximum. At
the minima, the DCSs from work [17] considerably
exceed our values. Those features become the most
pronounced at 30 eV, when, at medium angles (75∘ <
< 𝜃 < 130∘) and in the interval around the maxi-
mum, the data of work [17] are between our DCSs for
the scattering by a P atom and a P2 molecule. In our
opinion, the understated values of theoretical DCSs in
work [17], which were obtained in the static-exchange
approximation, are a consequence of neglecting the
polarization interaction between the electron and the
P2 molecule at calculations. This fact may explain
why the lowest analyzed collision energy in work [17]
was rather high (10 eV). On the other hand, maybe,
it is the application of the molecular electron density
in work [17] that is responsible for a little reduced, by
magnitude, interaction between the incident electron
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Fig. 1. Angular dependence of the differential cross-sections for the elastic electron scattering by a phosphorus atom and
molecules at collision energies of 0.5 (a), 1 (b), 5 (c), 10 (d), 15 (e), 20 (f ), 25 (g), and 30 eV (h). RSEP-LA theory: 𝑑𝜎el/𝑑Ω

for 𝑒+P scattering (solid curves 1 ) [10], 𝑑𝜎IAM
el /𝑑Ω for 𝑒+P2 scattering (solid curves 2 ), 𝑑𝜎IAM

el /𝑑Ω for 𝑒+P3 scattering (solid
curves 3 ), 𝑑𝜎Ad

el /𝑑Ω for 𝑒 + P2 scattering (dash-dotted curves), 𝑑𝜎Ad
el /𝑑Ω for 𝑒 + P3 scattering (dash-dot-dotted curves). The

Schwinger multichannel method in the static-exchange approximation [17]: 𝑑𝜎el/𝑑Ω for 𝑒+ P2 scattering (short-dashed curves)
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sections 𝜎IAM

el (𝐸) and 𝜎Ad
el (𝐸) for the electron scattering by

a phosphorus atom and molecules. RSEP-LA theory: (1 ) 𝑒+

+P scattering [10], (2 ) IAM-approach, (3 ) Ad-approach, 𝑒+
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scattering. The Schwinger multichannel method in the static-
exchange approximation [17]: (6 ) 𝑒+ P2 scattering
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Fig. 3. The same as in Fig. 2, but for the integral momentum-
transfer cross-sections 𝜎IAM

mom(𝐸) and 𝜎Ad
mom(𝐸)

and the molecule, which results in the presented an-
gular behavior of their DCS.

3.2. Integrated scattering cross-sections

In Figs. 2–4, the energy dependences of various inte-
gral cross-sections calculated for the elastic electron
scattering by a P atom [10] and by the indicated
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Fig. 4. The same as in Fig. 2, but for the integral viscosity
cross-sections 𝜎IAM

vis (𝐸) and 𝜎Ad
vis (𝐸)

phosphorus molecules are shown: elastic, 𝜎IAM
el (𝐸)

and 𝜎Ad
el (𝐸) (see also work [8]), momentum-transfer,

𝜎IAM
mom(𝐸) and 𝜎Ad

mom(𝐸), and viscosity, 𝜎IAM
vis (𝐸) and

𝜎Ad
vis (𝐸), ones. One can see that the qualitative be-

haviors of all indicated cross-sections are similar. The
behaviors of cross-sections for the scattering by
molecules – the presence of the minimum and the
maximum, and the dependence on the energy – are
also structurally similar in all approximations. As
the collision energy increases, the cross-sections come
closer to one another and approach the cross-section
of the 𝑒+ P scattering from above.

Figures 2 and 3 testify that the magnitudes of inte-
gral elastic and momentum-transfer cross-sections of
the 𝑒+P2 scattering from work [17] slightly exceed the
corresponding cross-sections of the 𝑒 + P scattering
[10]. This is a result of the understated DCS values
in work [17]: by an order of magnitude at small angles
and by several times at large ones. That is why the in-
tegral cross-sections from work [17] turned out rather
small. From Fig. 2, one can also see that the cross-
section 𝜎IAM

el (𝐸) exceeds 𝜎Ad
el (𝐸) rather strongly at

the maximum located at 10 eV: by a factor of about
1.4 for the 𝑒 + P2 scattering and by a factor of
about 1.8 for the 𝑒 + P one. In other words, the
role of the interference (indirect) term 𝜎Int

el (𝐸) (see
Eq. (11)) in Eq. (9) (see also Eqs. (4) and (5)) is
rather important.

Figure 3 demonstrates that, at every collision en-
ergy, the cross-sections 𝜎IAM

mom(𝐸) and 𝜎Ad
mom(𝐸) cal-

culated for the scattering by either of the examined
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phosphorus molecules are close to each other. This
fact means that the contribution made by the sum

𝑁∑︁
𝑚,𝑛 ̸=𝑚

[𝑓𝑚(𝜃, 𝑘)𝑓*
𝑛(𝜃, 𝑘) + 𝑔𝑚(𝜃, 𝑘)𝑔*𝑛(𝜃, 𝑘)]×

× exp(−ℓ2𝑚𝑛𝑠
2/2)

sin(𝑠𝑟𝑛𝑚)

𝑠𝑟𝑛𝑚

of the products of the amplitudes of scattering by
different atoms (or, in the case of identical atoms, by
the terms containing the multipliers sin(𝑠𝑟𝑛𝑚)/𝑠𝑟𝑛𝑚
in expressions (7) and (8)) to the DCS in expression
(5) is small and decreases, as the energy grows. Note
that the integrand in Eq. (11) used for the calculation
of this cross-section contains the function

(1− cos 𝜃)/𝑠(𝜃, 𝑘) = sin(𝜃/2)/𝑘,

which gives a substantial contribution only at the
medium and large scattering angles. We would like
to emphasize that, as was numerically shown in work
[2], for the growing collision energy (for the energies
above 100 eV), the equality 𝜎IAM

mom(𝐸) ≈ 𝜎Ad
mom(𝐸)

for the momentum-transfer cross-sections becomes
valid. The approach of cross-sections 𝜎IAM

mom(𝐸) and
𝜎Ad
mom(𝐸) at higher energies can also be seen from

Fig. 3.
From Fig. 4, one can see that, as the collision en-

ergy grows, the cross-sections 𝜎IAM
vis (𝐸) and 𝜎Ad

vis (𝐸)
calculated for the scattering by both phosphorus
molecules also become close enough. The integrand in
Eq. (11) used for the calculation of this cross-section
contains the function

sin2 𝜃/𝑠(𝜃, 𝑘) = 2 sin(𝜃/2) cos2(𝜃/2)/𝑘,

which gives a substantial contribution only at the
medium scattering angles.

4. Conclusions

To summarize, we may assume that the applied de-
scription of the potential electron scattering by a
molecule in the framework of the independent-atom
model and making use of the method of parameter-
free real optical potential for the electron interaction
with atoms in a molecule is quite satisfactory and
can be fruitful. A further account of the absorption
by atoms has to affect, to a larger extent, the mag-
nitude and, to a less extent, the angular and energy

dependences of molecular scattering parameters. The
account of well-known corrections to the interatomic
screening at the scattering, IAM-SCAR, can also be
essential. From this point of view, the issue concern-
ing the correspondence of scattering parameters cal-
culated in the examined approximations at low and
medium collision energies to available experimental
data remains urgently important. The further devel-
opment of the potential scattering description in the
direction, where the application of structural charac-
teristics of molecular targets is required, seems to be
the most important.
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Translated from Ukrainian by O.I. Voitenko

Ш.Ш.Демеш, В.I. Келемен, Є.Ю.Ремета

ПОТЕНЦIАЛЬНЕ РОЗСIЮВАННЯ
ЕЛЕКТРОНА МОЛЕКУЛАМИ ФОСФОРУ P2 ТА P3

Р е з ю м е

Теоретично вперше розглянуто потенцiальне розсiювання
електрона молекулами фосфору P2 та P3 в областi енер-
гiй зiткнень 0,5–30 еВ. Дослiдження проведено у рамках
моделi незалежних атомiв з використанням дiйсного безпа-
раметричного релятивiстського оптичного потенцiалу взає-
модiї електрона з атомами молекули. Для узгодженого опи-
су розсiювання електрона на атомах молекул потенцiали
взаємодiї та атомнi характеристики визначено у локально-
му наближеннi стацiонарної та нестацiонарної теорiї фун-
кцiонала густини. Проведене порiвняння кутової поведiнки
диференцiальних та енергетичної поведiнки iнтегральних
перерiзiв розсiювання електрона на молекулах та на атомi
фосфору показує їх подiбнiсть.
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