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A low-density gas in the heat-conduction steady state is considered. Within the theory of con-
tinuous media, corrections to the pressure and the internal energy are obtained, which are
related to the local temperature gradients of several orders. Corresponding expressions are de-
rived for the compressibilities along and across the heat flux as well as for heat capacities. The
expression for the nonequilibrium entropy is shown to obey the second law of thermodynamics.
The free energy calculated is found out not to satisfy properties of a thermodynamic potential.
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1. Introduction

The weakly nonequilibrium steady state of the many-
particle system with a steady heat flux is one of the
widely studied states, which goes beyond the scope
of equilibrium thermodynamics. Due to the proximity
to the equilibrium state, it can be interpreted in terms
of a perturbation and investigated by the methods
developed for equilibrium states and weak deviations
from them. In most cases, the heat-conduction states
have been studied owing to the very phenomenon of
heat conduction. It is a subject of investigations in
linear irreversible thermodynamics [1, 2], kinetic the-
ory [3–5], and linear response theory, see [5,6]. Howe-
ver, such macroscopic quantities as the pressure, in-
ternal energy, or entropy are also of importance. One
can even consider the problem more widely in the con-
text of the construction of thermodynamics for these
steady states. The approaches proposed can be con-
ditionally divided onto phenomenological or thermo-
dynamic ones, as well as those making use of methods
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of kinetic theory or statistical mechanics. Below, we
survey the most known approaches.

From the historical viewpoint, it is worth to men-
tion the works by Leontovich [7, 8], in which the def-
initions of thermodynamic quantities in nonequilib-
rium states are discussed. Specifically, he considered
the free energy and the entropy of thermally uniform
and thermally nonuniform nonequilibrium systems.
These quantities were introduced on the grounds of
equilibrium thermodynamics adapted for a spatially
nonuniform system making use of an external ficti-
tious field, which imitated the spatial nonuniformity
of the corresponding nonequilibrium states [7,8]. Ex-
actly this fictitious field (being absent in reality) is,
to the great extent, the deficiency of this approach.

1.1. Extended thermodynamics

Constructions of thermodynamics for nonequilibrium
or steady systems (including heat-conduction ones)
are treated in many works as establishing the basic
thermodynamic equality (the Gibbs equation), which
has to contain differential contributions due to ad-
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ditional variables of description. This conception is
known as “extended thermodynamics”. The idea of
extension was introduced by Grad for the hydrody-
namic description in his works [9, 10] on the Boltz-
mann kinetic equation. In addition to the densities
of mass, momentum, and energy of a nonequilibrium
gas, he introduced additionally a stress tensor and a
heat flux assigned to make the description to be more
detailed. This idea is used to describe various systems
on the (extended) thermodynamic level, where the
heat flux is interpreted, for instance, as an additional
degree of freedom (see [11–13]).

A version of this approach developed for steady-
state systems by Jou and co-workers [11, 14, 15]
is usually referred to as extended irreversible ther-
modynamics (EIT). The starting point is the en-
tropy density, which depends on the internal en-
ergy density, specific volume, and heat flux sup-
plemented by the Gibbs equation for its differen-
tial. Equilibrium thermodynamic relations are di-
rectly extended to the steady-state case and give ex-
pressions for the nonequilibrium temperature [16],
scalar pressure [17, 18], and other related quanti-
ties. The questions of the definition of a tempera-
ture for nonequilibrium situations were discussed in
Ref. [19] in detail. The EIT approach is also applied
to ultrarelativistic particles [17], electrical conductive
systems [20], etc. Some non-trivial conclusions such
as a dependence of the nonequilibrium temperature
on the heat flux, breaking of the energy equipartition
law, and the anisotropy of the pressure tensor cause
alertness.

There were attempts to validate the idea of
extended thermodynamics, by using the kinetic-
theoretical scheme [21] of the Grad method [9,10] and
with the aid of nonequilibrium statistical ensembles
[17,22–27]. The corresponding ensemble distributions
were sought by means of the information theory, mak-
ing use of the information entropy maximization sub-
ject to additional constraints. The exponential form
of the obtained distributions contains momentum and
energy fluxes, which cause difficulties with their nor-
malization conditions. To avoid them, in the subse-
quent analysis, the distributions are expanded in the
contributions from the fluxes, which are considered
to be small (see e.g. [17, 28]). Many authors believe
that the information theory is applicable to steady
states. There are studies of a linear harmonic chain
[29], low-density gas [17, 28], dense fluid [22, 28], etc.

A formal comparison of two realizations of the ensem-
ble approach is given in Ref. [30].

The EIT formulation contains an internal difficulty
lying in that the entropy density has not been proved
to have the potential properties. Its differential in-
cludes the specific volume as a thermodynamic con-
figurational variable, which does not describe the spa-
tial anisotropy of the steady state. Nevertheless, the
calculations give an anisotropic form of the pressure
tensor, which requires one to consider the spatial
anisotropy of a specific volume.

1.2. Phenomenologies

Oono and Paniconi [31] started to construct a pano-
ramic scheme of steady-state thermodynamics in a
phenomenological approach. They discussed such ba-
sic ingredients as the variables of a steady state, tran-
sitions between the states, key thermodynamic prin-
ciples, stability, and probability of fluctuations under
steady conditions. In fact, they thought over a general
structure of steady-state thermodynamics. Since the
authors developed the framework in a close analogy
with equilibrium thermodynamics, their arguments
seem insufficient and controversial. The formulation
was given in general terms for an arbitrary system
without any application to physically unambiguous
situations like the heat-conduction state or a system
under stationary shear.

Another phenomenological attempt to develop
thermodynamics of nonequilibrium steady states was
made by Sasa and Tasaki [32] within the idea to define
the thermodynamic quantities “operationally”. The
heat-conduction steady-state pressure was defined by
the contact of the steady-state system with the equi-
librium one at a fixed pressure. The steady-state
chemical potential was also introduced by the contact
with an equilibrium system realized by a specially de-
vised porous wall. The authors proposed an implicit
expression for the steady-state free energy and dis-
cussed its formal properties such as additivity, ex-
tensivity, and concavity. The minimal-work principle
was analyzed, an expression for steady-state fluctu-
ation probability was obtained, and new nonequilib-
rium phenomena were anticipated. The phenomenol-
ogy was formulated in general and illustrated for the
heat-conduction, shear, and electrical systems.

No explicit expression for the steady-state pressure,
internal energy, or entropy was proposed.
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1.3. Fluctuation theorems

Efforts have been made to support some of the men-
tioned phenomenological constructions in the case of
heat-conduction steady states, by using the approach
of fluctuation theorems [33–35], which is based on
the language of probabilities of trajectories in the
phase space. Each trajectory realizes microscopically
a thermodynamic transition of the system between
two macroscopic steady states. The driven Langevin
system, the Hamiltonian particle system, and the
discrete Markovian process have been considered to
perform generalizations of the following conceptions
to the nonequilibrium steady case: entropy [36–
38], the Clausius relation, the second law of ther-
modynamics, and the basic thermodynamic equal-
ity [36, 37, 39, 40]. Moreover, the connection [33] be-
tween nonequilibrium work and free energy differ-
ence [41, 42], entropy production, and a generaliza-
tion of the Clausius relation to the case of several
thermal baths [40, 43], have been analyzed. Almost
all of these works deal with weak deviations from the
equilibrium.

However, they presented only formal results, which
suffer from the excessive generality. These formalisms
have not been applied to specific or simple systems
like a low-density gas under nonequilibrium station-
ary conditions.

1.4. Kinetic theory

Within kinetic theory, the heat-conduction steady
state of a low-density gas has been studied on
the basis of the Boltzmann kinetic equation [3, 4,
44]. Thermodynamic quantities such as entropy and
the pressure tensor were calculated [45], by using the
one-particle distribution function obtained up to the
second order in gradients of the Chapman–Enskog
method [3, 4]. The pressure tensor obtained is diag-
onal, but anisotropic with different values along and
across the heat flux, as in the EIT. A violation of
the energy equipartition law is found out. The solu-
tion for the distribution function and the thermody-
namic results are shown [46] to differ from the EIT
counterpart obtained from the entropy maximization
principle. Similar studies were carried out for a two-
dimensional hard-disk gas [47] verified by molecular
dynamics [48]. The results for the steady distribution
function are applied to the analysis [48,49] of the weak
contact through a microscopic window between the

gas under nonequilibrium conditions with a steady
heat flux and the equilibrium gas.

1.5. Computer simulations

Heat-conduction steady systems were investigated by
computer simulations. In Ref. [50], the one-dimensio-
nal binary gas mixture of point particles was conside-
red, by using a self-consistent version of the moment
method for the Bhatnagar–Gross–Krook kinetic mo-
del, as well as by molecular dynamics. However, ther-
modynamic properties were less studied. The tem-
perature profile along the system was analyzed for
deviations from the Fourier law for the heat con-
duction. Moreover, profiles for higher moments were
given, and the thermal conductivity coefficient in
the domain of high total numbers of particles was
presented.

By molecular dynamics, Morriss and co-workers
studied [51] the low-density hard-disk system in a nar-
row linear channel, which is in contact with two ther-
mostats of fixed “temperatures” on both ends [52]. In
the model, hard disks collide with the thermostat
walls according to deterministic rules [52–54]. The
temperature profile, local entropy density, entropy
production rate, and heat flux through the system
were obtained [51]. These results were shown to be
consistent with the Boltzmann kinetic theory [3, 44]
and the linear irreversible thermodynamics [1,2]. The
processes of dissipation and entropy production were
investigated in detail [55], by considering the poten-
tial contributions to the heat flux for the high density
case of the same hard disks. The contributions to the
local entropy due to two-particle correlations in the
configuration space were calculated and analyzed in
Ref. [56].

These studies give an important insight into the
nature of the heat-conduction steady state, but do not
report any data for global thermodynamic quantities.

1.6. Difficulties

Among the methods applied to investigations of the
thermodynamic quantities of a nonequilibrium stea-
dy state with heat flux, the EIT [16–18], the informa-
tion theory [18, 22, 24, 28], and the kinetic theory [45]
report explicit expressions for the scalar and tenso-
rial pressures, the nonequilibrium temperature, and
the entropy. Differences were observed [46] between
the EIT and information-theoretical results and those
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coming from the stationary Boltzmann kinetic equa-
tion. In addition, the kinetic-theoretical predictions
for the pressure tensor and the entropy of low-density
hard spheres and Maxwell molecules differ from each
other too [46]. These facts revealed for the quanti-
ties of the thermodynamic nature in the low-density
domain, where the mean interaction energy between
molecules is negligible, look unusual and suspicious.

But the more serious difficulty of these approaches
and results lies in that the conceptions of the local
equilibrium [1, 2] and the normal solution [3, 5, 44]
are used in the construction of thermodynamics and
the calculations of the thermodynamic characteristics
of the heat-conduction steady state. As a result, the
final expressions (e.g., for the pressure) contain the
local-equilibrium temperature and the particle den-
sity, which are space-dependent.

Our work shows for the simple case of the low-den-
sity gas that the steady-state thermodynamic quanti-
ties are achievable analytically within the continuum-
media approach. The calculations are based on the
gradient expansion of the local temperature and on
the integration of local quantities. The results do not
have the difficulties mentioned above.

The article is organized as follows. We discuss the
method of local description of nonequilibrium states
and some approximations in Section 2. For the low-
density gas in the state with a temperature and
its several successive gradients given, corrections to
the pressure and the internal energy induced by the
weak nonequilibrium stationarity are presented in
Section 3. Expressions for the compressibilities and
the heat capacities are derived. In Sections 4 and 5,
the entropy and the free energy are calculated. The
pressure and the entropy are compared to those cal-
culated previously.

2. A Sequence of Approximations
for the Local Nonequilibrium
Heat-Conduction State

The notions and the conceptions of the theory of
continuum media [1, 2] are among basic means
for the description of nonequilibrium phenomena in
gases and liquids. They are used in the linear ir-
reversible thermodynamics, hydrodynamics, kinetic
theory, and nonequilibrium statistical mechanics. As
usual, a nonequilibrium state of a gas or liquid is de-
scribed by means of densities of conserved quanti-
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Fig. 1. Local nonequilibrium heat-conduction state
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        T(z)

Fig. 2. Equilibrium system approximating the local nonequi-
libirum heat-conduction state; 𝑁/𝑉 = 𝑛(r0)

ties or corresponding intensive parameters [1, 2]. For
the heat conduction phenomenon, the key role is at-
tributed to a local temperature 𝑇 (r, 𝑡), which depends
on the space position r and the time 𝑡. The space
nonuniformity of the temperature causes the appear-
ance of a heat flux. Several approximations can be
used to describe the local state of a nonequilibrium
gas or liquid, Fig. 1.

2.1. Local-equilibrium approximation

In this approximation, local properties of the non-
equilibrium system at an arbitrary point r0, Fig. 1,
are described with the aid of the suitable equilibrium
system with number density 𝑛0 and temperature 𝑇0,
which are equal to the corresponding local values:

𝑛0 = 𝑛(r0), 𝑇0 = 𝑇 (r0). (1)

Such a substitution, Fig. 2, can meet success for quan-
tities, which are well defined in equilibrium – internal
energy, pressure, or entropy. A shortcoming of the ap-
proximation consists in that we cannot describe the
very conduction of heat, as the heat flux is absent in
equilibrium.
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2.2. Local steady-state approximation

If the local gradient of the temperature field

G1 ≡ ∇𝑇 (r)
⃒⃒
r=r0

(2)

is added to set (1), we are able to characterize the
local nonequilibrium state at r0 more completely. In
fact, it is substituted by the suitable system in the
steady state with parameters {𝑛0, 𝑇0,G1}. Let the co-
ordinate axis 𝑂𝑍 with the origin at r0 be chosen along
G1. Then the steady system is nonuniform along 𝑂𝑍
only, and we choose the simplest case for it – a par-
allelepiped form, as shown in Fig. 1. The parameters
{𝑛0, 𝑇0,G1} refer to its middle, that is, plane 𝑋𝑂𝑌
divides the system of the steady approximation onto
two parts with equal volumes, Fig. 3.

The total number of particles 𝑁 is to be related
to the linear size 𝐿 along 𝑂𝑍 and the cross area Ω
in such a way that the local particle density 𝑛(𝑧) of
the approximating system takes a correct value at the
“middle point”:

𝑛(𝑧)
⃒⃒
𝑧=0

= 𝑛(r0).

𝐿 is also restricted by the condition that the local
temperature field

𝑇 (𝑧) = 𝑇0 +𝐺1𝑧, (3)

where G1 = (0, 0, 𝐺1), differs weakly from the true
temperature field 𝑇 (r) near r0 in the nonequilibrium
system. The temperature gradient (2) ensures a non-
zero heat flux. Thus, this local steady-state approxi-
mation describes the local nonequilibrium state qual-
itatively better and more accurately than the local-
equilibrium one.

O z

T(z)

T0

N,Ω,L

G1

−L/2 L/2

true T(z)

approximated
        T(z)

Fig. 3. Steady-state system approximating the local nonequi-
librium heat-conduction state

2.3. Approximations of higher orders

If the second-order gradient, G2 ≡ ∇∇𝑇 (r)
⃒⃒
r=r0

, is
added to the set {𝑛0, 𝑇0,G1}, we further improve
the accuracy of the description. In this case, the
temperature dependence is given by the expression
𝑇 (𝑧) = 𝑇0 + 𝐺1𝑧 + 1

2𝐺2𝑧
2. If one proceeds further,

the sequence of approximations for the description of
nonequilibrium states in macroscopic systems can be
build up.

3. Equations of Steady
State for a Low-Density Gas

The considerations given above are applied here to
a low-density gas in the weakly nonequilibrium heat-
conduction steady state. The low density is under-
stood in the sense that the mean free path is much
greater than the characteristic radius of the interpar-
ticle interaction all over the gas [3, 5, 44]. The state is
characterized by the values of temperature, 𝑇0, and
its first 𝑟 successive gradients:{︀
𝑁,Ω, 𝐿; 𝑇0, 𝐺1, 𝐺2, ..., 𝐺𝑟

}︀
, (4)

where 𝐺𝑘 ≡ 𝜕𝑘

𝜕𝑧𝑘 𝑇 (𝑧)
⃒⃒
𝑧=0

. The local temperature de-
pendence is expressed as

𝑇 (𝑧) = 𝑇0 +

𝑟∑︁
𝑘=1

1

𝑘!
𝐺𝑘𝑧

𝑘. (5)

The weakly nonequilibrium case means that the
contribution of the next gradient is much less than
that from the previous gradient for any 𝑧:
1

𝑘+1 |𝐺𝑘+1|𝐿/2 ≪ |𝐺𝑘|. (6)

This condition is well-known in nonequilibrium the-
ory, e.g. [3, 4, 44]. For such a weak deviation from
equilibrium, an arbitrary quantity 𝑎 can be repre-
sented as a development in the gradients {𝐺} ≡
≡ {𝐺1, 𝐺2, ..., 𝐺𝑟}, where the order of each term is
shown by a formal small parameter 𝛿:

𝑎 = 𝑎0 +

𝑟∑︁
𝑘=1

𝛿𝑘𝑎𝑘𝐺𝑘. (7)

3.1. Equations of state

Let us consider how the pressure 𝑃 is expressed
through the quantities of set (4). Note that there is no
macroscopic movement in the steady state, and the
gas rests in the mechanical equilibrium. This means
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that the pressure has a fixed value all over the system
[57, 58]:

𝑃 = const. (8)

At this place, we adopt a simple assumption that
the low-density gas satisfies locally the ideal equation
of state (e.g. [57–59]):

𝑃 = 𝑛(𝑧) 𝑘B𝑇 (𝑧), (9)

where 𝑛(𝑧) is the local number density, and 𝑘B is
the Boltzmann constant. This approximation is well
justified for the low-density domain by the Boltzmann
kinetic theory [3, 5, 44]. Combining Eqs. (9) and (5)
gives:

𝑛(𝑧) = 𝑛0

[︂
1 +

𝑟∑︁
𝑘=1

𝛿𝑘𝑔𝑘𝑧
𝑘

]︂−1

; (10)

here, 𝑛0 ≡ 𝑃/𝑘B𝑇 and 𝑔𝑘 ≡ 1
𝑇

1
𝑘! 𝜕

𝑘
𝑧𝑇 (𝑧)|𝑧=0 (we sup-

press zero in the subscript of the temperature middle-
point value).

The total number of particles 𝑁 is accepted to be
finite in the steady system, and we obtain the follow-
ing normalization condition:∫︁
Ω×𝐿

dr 𝑛(𝑧) = 𝑁,

where r ≡ (𝑥, 𝑦, 𝑧). The integration over the trans-
verse coordinates 𝑥 and 𝑦 transforms it to
𝐿/2∫︁

−𝐿/2

d𝑧 𝑛(𝑧) = 𝑁/Ω. (11)

Due to the inequalities of the weak deviation from
equilibrium (6), expression (10) can be expanded in
a series as:

[1 + 𝑥]−1 = 1− 𝑥+ 𝑥2 − 𝑥3 + 𝑥4 ∓ ... . (12)

If we restrict ourselves in set (4) to the fourth order,
the expression 𝑥 = 𝛿 𝑔1𝑧 + 𝛿2𝑔2𝑧

2 + 𝛿3𝑔3𝑧
3 + 𝛿4𝑔4𝑧

4

should be substituted into this series, in accordance
to Eq. (7). The resulting expansion can be integrated
explicitly:

𝑁

Ω
= 𝑛0𝐿

[︂
1 +

1

3
(𝑔21 − 𝑔2) [𝐿/2]

2 +

+
1

5
(𝑔41 − 3𝑔21𝑔2 + 𝑔22 + 2𝑔1𝑔3 − 𝑔4) [𝐿/2]

4 + ...

]︂
,

where terms of the same order are gathered together
with powers of 𝛿 omitted. It is sufficient to consider
only the second-order correction. The fourth order
is calculated to demonstrate the effectiveness of our
method.

Next, we apply formula (12) to the expression for
𝑛0 derived from the previous equation and obtain

𝑃 (𝑁,Ω, 𝐿;𝑇, 𝑔1, ..., 𝑔𝑟) =

=
𝑁

Ω𝐿
𝑘B𝑇

[︁
1 + 𝑝2𝐿

2 + 𝑝4𝐿
4 + ...

]︁
, (13)

where coefficients read

𝑝2≡
1

12

(︀
𝑔2 − 𝑔21

)︀
,

𝑝4≡
1

80

(︂
𝑔4 − 2𝑔3𝑔1 −

4

9
𝑔22 +

17

9
𝑔2𝑔

2
1 −

4

9
𝑔41

)︂
.

These can be expressed through {𝐺}, by substituting
𝑔𝑘 = 1

𝑇
1
𝑘! 𝐺𝑘. Equation (13) is of the form of expan-

sion 𝑃 = 𝑃 (0)+𝑃 (2)+𝑃 (4)+ ..., where 𝑃 (𝑘) contains
terms of the 𝑘-th order in gradients.

An expression for the internal energy can be ob-
tained. Accordingly to Eq. (9), we suppose 𝜀(𝑧) =
= 3

2𝑛(𝑧)𝑘B𝑇 (𝑧) for the local energy density. It fol-
lows from Eq. (9) that 𝐸 = 3

2𝑃Ω𝐿 has the expansion

𝐸 = 𝐸(0) + 𝐸(2) + 𝐸(4) + ... =

=
3

2
𝑁𝑘B𝑇

[︀
1 + 𝑒2𝐿

2 + 𝑒4𝐿
4 + ...

]︀
(14)

with coefficients 𝑒𝑘 = 𝑝𝑘.
We have derived the baric (13) and caloric

(14) equations of the weakly nonequilibrium heat-
conduction steady state. The pressure and the in-
ternal energy are expressed through the macroscopic
quantities 𝑁 , Ω, and 𝐿 and the temperature 𝑇 with
its derivatives 𝐺𝑘 ≡ 𝜕𝑘𝑇/𝜕𝑧𝑘

⃒⃒
𝑧=0

, which refer to the
middle-point of the gas. It is important that the con-
tributions from the gradients do not change at the in-
version of the axis 𝑂𝑍: at the operation 𝑧 → −𝑧, the
transformation 𝑔𝑘 → (−1)𝑘𝑔𝑘 holds. Note the signs
of the contributions: the terms with a gradient in an
even power (𝑔21 , 𝑔41 , 𝑔22) are negative, while the “pure”
gradients of even orders (𝑔2, 𝑔4) are positive.

Calculations of higher-order corrections to 𝑃 and
𝐸 are cumbersome, but feasible. This cannot be done
within any approaches mentioned in Introduction.
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3.2. Comparison with the extended
irreversible thermodynamics

The result for a pressure can be compared to that
of the extended irreversible thermodynamics [17, 18]
(see [11, 14, 15]). In that approach, the entropy den-
sity expression following from the Grad formula [9] is
chosen as a starting point. The nonequilibrium scalar
pressure is introduced as a specific volume derivative
of the entropy density: 𝑃EIT = 𝑃 l.eq. + Δ𝑃 , where
𝑃 l.eq. = �̃�𝑘B𝑇 is the local-equilibrium pressure, while
�̃� and 𝑇 are the local number density and the local-
equilibrium temperature. The tilde denotes here a de-
pendence on the space position. The nonequilibrium
correction [17, 18]

Δ𝑃 ≡ −4

5

𝑚

�̃�𝑘2B𝑇
2
q · q (15)

appears due to the heat flux q; 𝑚 is particle’s mass.
The results of the information theory [17, 28] and ki-
netic theory [45] for a pressure were shown [46] to
differ by a number coefficient in Eq. (15).

The quantity Δ𝑃 can be expressed through
the temperature gradient. The linear relation q =
= −𝜆∇𝑇 , where 𝜆 is the thermal conductivity, is
known to be a quite good approximation [3,4,44]. Its
substitution gives

Δ𝑃 = −4

5

𝑚

�̃�𝑘2B
𝜆2 (∇𝑇 )2

𝑇 2
. (16)

We note that Δ𝑃 is inversely proportional to �̃� con-
trary to the direct proportionality in 𝑃 l.eq.. Moreover,
the dependence of Δ𝑃 on 𝜆, a relaxation parameter
of the gas, seems unusual, as there is no relaxation
process in the steady state.

The well-established Chapman–Enskog analytic re-
sult for the thermal conductivity can be used [3,4,44]:

𝜆 =
25

16
𝑐𝑉

𝑘B𝑇

Ω
(2,2)
hs (𝑇 ) Ω(2,2)*(𝑇 )

, (17)

where 𝑐𝑉 = 3
2𝑘B/𝑚 is the specific heat capacity of

the equilibrium monatomic gas at a constant volume,

Ω
(2,2)
hs (𝑇 ) = 2

√
𝜋
√︁
𝑘B𝑇/𝑚𝜎2 is the scattering inte-

gral of the hard-sphere model with diameter 𝜎 [4,44],
while Ω(2,2)*(𝑇 ) is the reduced scattering integral de-
scribing the temperature dependence caused by pecu-
liarities of the real interparticle potential. (This split-
ting of the conventional Ω(2,2) onto Ω

(2,2)
hs and Ω(2,2)*

is needed here to extract the characteristic
√︀
𝑇 de-

pendence [4,44].) The substitution of expression (17)
into Eq. (16) yields

Δ𝑃 = −1125

1024

1

𝜋
𝑘B

1

�̃�𝜎4

(∇𝑇 )2

𝑇

1

[Ω(2,2)*(𝑇 )]2
. (18)

Ω(2,2)*(𝑇 ) makes the pressure corrections for different
low-density gases (with the same �̃� and 𝑇 ) to differ
from each other. Finally, Eq. (18) contains the local-
equilibrium �̃� and 𝑇 rather than global quantities. We
can compare this result to ours only formally.

Equation (13) shows that the correction

𝑃 (2) =
1

12

𝑁

Ω
𝐿𝑘B

(︂
− 𝐺2

1

𝑇
+

1

2
𝐺2

)︂
is expressed by the global variables and does not de-
pend on the interaction. We also notice the strong
difference in the coefficients at (∇𝑇 )2 and 𝐺2

1. In ad-
dition, Eq. (18) contains no contribution from ∇∇𝑇 .

3.3. Compressibilities

The results for 𝑃 and 𝐸, Eqs. (13) and (14),
can be used to calculate compressibilities and heat
capacities.

The equilibrium isothermal compressibility [57–59]

𝜒
(0)
𝑇 ≡ − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃 (0)

)︂
𝑇

(19)

of the gas with the equation of state 𝑃 (0) = (𝑁/𝑉 )×
× 𝑘B𝑇 reads 𝜒

(0)
𝑇 = 1/𝑃 (0). In the case we consider,

the volume can be changed in two ways. When the
plane surface confining the gas moves in the direction,
which is a) parallel to the heat flux (𝐿 changes) and b)
perpendicular to the heat flux (Ω changes). So, two
compressibilities should be calculated: longitudinal
(‖) and transverse (⊥) ones. Their definitions through
a volume derivative like Eq. (19) can be reduced to
the following:

𝜒
‖
𝑇,{𝐺} ≡ − 1

𝐿

(︂
𝜕𝐿

𝜕𝑃

)︂
𝑇,{𝐺};Ω

, (20)

𝜒⊥
𝑇,{𝐺} ≡ − 1

Ω

(︂
𝜕Ω

𝜕𝑃

)︂
𝑇,{𝐺};𝐿

, (21)

where it is indicated that 𝑇 , {𝐺1, ..., 𝐺𝑟} and Ω (or
𝐿) are kept constant.

Starting from Eq. (13), it is convenient to
use pressure derivatives. With the expression
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(𝜕𝑃/𝜕Ω)𝑇,{𝐺};𝐿 = −𝑃/Ω, the transverse compressi-
bility obeys the same relation 𝜒⊥

𝑇,{𝐺} = 1/𝑃, as in
equilibrium. The expansion into a series yields

𝜒⊥
𝑇,{𝐺} = 𝜒

(0)
𝑇

[︀
1− 𝑝2𝐿

2 + (−𝑝4 + 𝑝22)𝐿
4 + ...

]︀
.

The pressure derivative for the longitudinal compo-
nent 𝜒

‖
𝑇,{𝐺} equals:(︂

𝜕𝑃

𝜕𝐿

)︂
𝑇,{𝐺};Ω

= −𝑃 (0)

𝐿

(︀
1− 𝑝2𝐿

2 − 3𝑝4𝐿
4 − ...

)︀
.

By substituting it into Eq. (20) for 𝜒
‖
𝑇,{𝐺} and ex-

panding into a series, we get

𝜒
‖
𝑇,{𝐺} = 𝜒

(0)
𝑇

[︀
1 + 𝑝2𝐿

2 + (3𝑝4 + 𝑝22)𝐿
4 + ...

]︀
.

The second-order coefficients in 𝜒⊥
𝑇,{𝐺} and 𝜒

‖
𝑇,{𝐺}

differ by signs from each other, while the fourth-order
terms differ quantitatively.

3.4. Heat capacities

The heat capacity 𝐶𝑉,{𝐺} at a constant volume and
constant gradients can be obtained in the form:

𝐶𝑉,{𝐺} ≡
(︂
𝜕𝐸

𝜕𝑇

)︂
𝑉,{𝐺}

=
3

2
𝑁𝑘B

[︀
1+ 𝑐2𝐿

2+ 𝑐4𝐿
4+ ...

]︀
,

(22)

where Eq. (14) for 𝐸 is used; the coeffi-
cients read 𝑐2 ≡ 1

12𝐺
2
1/𝑇 and 𝑐4 ≡ 1

80𝑇
−4×

×
(︀
1
3𝑇

2𝐺3𝐺1 +
1
9𝑇

2𝐺2
2 − 17

9 𝑇𝐺2𝐺
2
1 +

4
3𝐺

4
1

)︀
. Expres-

sions for 𝑐2 and 𝑐4 show that 𝐺2 in the second or-
der and 𝐺4 in the fourth order do not contribute to
𝐶𝑉,{𝐺}.

Another possibility to transfer heat to/from the
system at a constant volume consists in transitions
to such steady states, where the middle-point tem-
perature 𝑇 is kept fixed, while the value of gradient
𝐺𝑘 is changed. The corresponding parameter

𝐶𝑉,𝑇 ;(𝑘) ≡
(︂
𝜕𝐸

𝜕𝐺𝑘

)︂
𝑉,𝑇 ;{𝐺1,...,𝐺𝑘−1,𝐺𝑘+1,...,𝐺𝑟}

describes such heat capacity and can be referred to
as the partial gradient heat capacity. From Eq. (14),
we derive

𝐶𝑉,𝑇 ;(1) =
3

2
𝑁𝑘B

[︃
−1

6

𝐺1

𝑇
𝐿2 +

+
1

240

1

𝑇 3

(︂
−4

3
𝐺3

1 +
17

3
𝑇𝐺1𝐺2 − 𝑇 2𝐺3

)︂
𝐿4

]︃
,

𝐶𝑉,𝑇 ;(2)=
3

2
𝑁𝑘B

[︃
1

24
𝐿2+

1

720

1

𝑇 2

(︂
17

2
𝐺2

1−2𝑇𝐺2

)︂
𝐿4

]︃
,

𝐶𝑉,𝑇 ;(3) = − 1

160
𝑁𝑘B

𝐺1

𝑇
𝐿4,

𝐶𝑉,𝑇 ;(4) =
1

1280
𝑁𝑘B𝐿

4.

The expressions obtained for the compressibilities and
the capacities are of a rather mathematical, than
physical, meaning. For example, 𝜒‖

𝑇,{𝐺} does not in-
volve variations of the gradients, when 𝐿 changes. Si-
milarly, 𝐶𝑉,𝑇 ;(𝑘) describes the partial variation in 𝐸
due to a change of 𝐺𝑘. If the system goes from one
steady state to a close steady state at a constant vol-
ume, then the internal energy variation can be esti-
mated by the linear combination

Δ𝐸 = 𝐶𝑉,{𝐺}Δ𝑇 +

𝑟∑︁
𝑘=1

𝐶𝑉,𝑇 ;(𝑘)Δ𝐺𝑘,

where Δ𝑇 and Δ𝐺𝑘

⃒⃒
𝑘=1...𝑟

are corresponding changes
in the temperature and its gradients.

4. Entropy

Here, we calculate the steady-state entropy and show
that it is less than the entropy of the equilibrium gas
with the same internal energy.

The entropy of a weakly nonequilibrium heat-
conduction steady state can be defined by means of
the integration of its density 𝑠(r):

𝑆 ≡
∫︁

Ω×𝐿

dr 𝑠(r) = Ω

𝐿/2∫︁
−𝐿/2

d𝑧 𝑠(𝑧). (23)

The entropy 𝑆eq of the equilibrium state of a gas of
𝑁 particles confined in the volume Ω𝐿 reads [5]

𝑆eq = 𝑁𝑘B
[︀
− ln(𝑁/Ω𝐿) + 3

2 ln𝑇eq + 𝜉5/2
]︀
, (24)

where 𝑇eq is the equilibrium temperature, 𝜉5/2 ≡ 𝜉+

+ 5
2 , while the constant 𝜉 ≡ 3

2 ln(2𝜋𝑘B𝑚/ℎ2) is re-
lated to the quantum statistics of states in the phase
space for particles with mass 𝑚, ℎ is the Planck
constant.

For 𝑠(𝑧), let us use the entropy density obtained
from the density 𝑆eq/Ω𝐿 of the equilibrium entropy
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(24), by making the thermodynamic quantities in it
to be local:

𝑠(𝑧) = 𝑘B𝑛(𝑧)

[︂
5

2
ln𝑇 (𝑧)− ln

(︀
𝑃/𝑘B

)︀
+ 𝜉5/2

]︂
, (25)

where ln𝑛(𝑧) has been expressed through ln𝑇 (𝑧) due
to Eq. (9). In correspondence to the expression in
the square brackets, the total entropy (23) consists
of three terms:

𝑆 = 𝑆𝑇 + 𝑆𝑃 + 𝑆𝜉.

We look for each of them in the form of expansion (7)
in the gradients.

4.1. Entropy contributions

The normalization condition (11) for 𝑛(𝑧) yields

𝑆𝑃 = −𝑁𝑘B ln
(︀
𝑃/𝑘B

)︀
, 𝑆𝜉 = 𝑁𝑘B𝜉5/2.

The expansion of ln
[︀
1+𝑝2𝐿

2+𝑝4𝐿
4+ ...

]︀
in Eq. (13)

transforms 𝑆𝑃 to the following form:

𝑆𝑃 = 𝑁𝑘B

[︂
ln
Ω𝐿

𝑁
− ln𝑇 − 𝑝2𝐿

2− (𝑝4 −
1

2
𝑝22)𝐿

4 − ...

]︂
;

(26)

the coefficients at 𝐿2 and 𝐿4 read

𝑠𝑃,2 ≡ − 1

12
𝑔2 +

1

12
𝑔21 ,

𝑠𝑃,4 ≡ 1

80

[︂
−𝑔4 + 2𝑔3𝑔1 +

13

18
𝑔22 −

22

9
𝑔2𝑔

2
1 +

13

18
𝑔41

]︂
.

Let us calculate 𝑆𝑇 . For the functions in the inte-
gral

𝑆𝑇 = Ω 𝑘B
5

2

𝐿/2∫︁
−𝐿/2

d𝑧 𝑛(𝑧) ln𝑇 (𝑧), (27)

we use the expansions into series

𝑛(𝑧) = 𝑛0

[︀
𝜈0 + 𝜈1𝑧 + 𝜈2𝑧

2 + ...
]︀

with the coefficients {𝜈} found from Eq. (10):

𝜈0 = 1,
𝜈1 = −𝑔1,

𝜈2 = −𝑔2 + 𝑔21 ,

𝜈3 = −𝑔3 + 2𝑔2𝑔1 − 𝑔31 ,

𝜈4 = −𝑔4 + 2𝑔3𝑔1 + 𝑔22 − 3𝑔2𝑔
2
1 + 𝑔41 ;

and, by the same way,

ln𝑇 (𝑧) = 𝜏0 + 𝜏1𝑧 + 𝜏2𝑧
2 + ...

with {𝜏} found from Eq. (5),

𝜏0 = ln𝑇,
𝜏1 = 𝑔1,

𝜏2 = 𝑔2 −
1

2
𝑔21 ,

𝜏3 = 𝑔3 − 𝑔2𝑔1 +
1

3
𝑔31 ,

𝜏4 = 𝑔4 − 𝑔3𝑔1 −
1

2
𝑔22 + 𝑔2𝑔

2
1 −

1

4
𝑔41 .

Integrating the series 𝑛0

∑︀𝑟
𝑖=0 𝑤𝑖𝑧

𝑖 for the product
𝑤(𝑧) ≡ 𝑛(𝑧) ln𝑇 (𝑧) according to Eq. (27) yields

𝑆𝑇 =Ω 𝑘B
5

2
𝑛0𝐿

[︂
𝑤0+

1

3
𝑤2(𝐿/2)

2+
1

5
𝑤4(𝐿/2)

4 + ...

]︂
.

(28)

The coefficients are convolutions over a discrete in-
dex, 𝑤𝑖 =

∑︀𝑖
𝑘=0 𝜈𝑘𝜏𝑖−𝑘. The substitution of the ex-

pressions for {𝜈} and {𝜏} yields

𝑤0 = ln𝑇,

𝑤2 = −𝑔2Λ1 + 𝑔21Λ3/2,

𝑤4 = −𝑔4Λ1 + 2𝑔3𝑔1Λ3/2 + 𝑔22Λ3/2 − 3𝑔2𝑔
2
1Λ11/6 +

+ 𝑔41Λ25/12,

where the notation Λ𝑓 ≡ ln𝑇 − 𝑓 has been used.
The amplitude in Eq. (28) reduces to Ω 5

2 (𝑃/𝑇 )𝐿.
Inserting expansion (13) for 𝑃 here and performing
some algebra in 𝑆𝑇 , we obtain

𝑆𝑇 = 𝑁𝑘B
[︀
𝑠𝑇,0 + 𝑠𝑇,2𝐿

2 + 𝑠𝑇,4𝐿
4 + ...

]︀
, (29)

where the coefficients are convolutions: 𝑠𝑇,0 ≡ 5
2𝑝0𝑤0,

𝑠𝑇,2 ≡ 5
2 [

1
12𝑝0𝑤2+𝑝2𝑤0], 𝑠𝑇,4 ≡ 5

2 [
1
80𝑝0𝑤4+

1
12𝑝2𝑤2 +

+ 𝑝4𝑤0] with 𝑝0 = 1. We express these in terms of
{𝑔} as follows:

𝑠𝑇,0 =
5

2
ln𝑇,

𝑠𝑇,2 =
5

23 3

[︂
𝑔2 −

3

2
𝑔21

]︂
,

𝑠𝑇,4 =
1

27 32
[︀
36𝑔4− 108𝑔3𝑔1− 34𝑔22+ 148𝑔2𝑔

2
1− 45𝑔41

]︀
.

Gathering together 𝑆𝑇 and 𝑆𝑃 given by Eqs. (29)
and (26) and 𝑆𝜉 results in the final formula for the en-
tropy of the weakly nonequilibrium heat-conduction
steady state:
𝑆 = 𝑆(0) + 𝑆(2) + 𝑆(4) + ... =

= 𝑁𝑘B
[︀
𝑠0 + 𝑠2𝐿

2 + 𝑠4𝐿
4 + ...

]︀
(30)
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with the coefficients 𝑠𝑖 ≡ 𝑠𝑇,𝑖 + 𝑠𝑃,𝑖 + 𝑠𝜉,𝑖:

𝑠0 = ln(Ω𝐿/𝑁) +
3

2
ln𝑇 + 𝜉5/2,

𝑠2 =
1

8
𝑔2 −

11

48
𝑔21 ,

𝑠4 =
1

27 32 5

[︀
108𝑔4 − 396𝑔3𝑔1 − 118𝑔22 +

+564𝑔2𝑔
2
1 − 173𝑔41

]︀
.

4.2. Compatibility with the second law

Next, we show explicitly that entropy (30) is less
than the entropy of the corresponding equilibrium
state. To this end, let us imagine that, at some in-
stant, we isolate the system at the boundaries 𝑧 =
= −𝐿/2 and 𝑧 = 𝐿/2. We let the gas to relax to the
equilibrium during a macroscopic interval of time.

The internal energy does not change at the relax-
ation: 𝐸 = const. The final equilibrium tempera-
ture 𝑇fin can be found from the well-known relation
𝐸 = 3

2𝑁𝑘B𝑇fin. According to Eq. (14), we find out

𝑇fin = 𝑇
[︀
1 + 𝑒2𝐿

2 + 𝑒4𝐿
4 + ...

]︀
.

Then expression (24) for the equilibrium entropy
yields

𝑆fin = 𝑁𝑘B

[︂
ln(Ω𝐿/𝑁) +

3

2
ln𝑇 + 𝜉5/2 +

+
3

2

(︂
𝑝2𝐿

2 +

[︂
𝑝4 −

1

2
𝑝22

]︂
𝐿4 + ...

)︂]︂
,

where we take in mind that 𝑒𝑘 = 𝑝𝑘, while ln[1 + ...]
has been expanded.

Finally, the difference Δ𝑆 ≡ 𝑆 − 𝑆fin reads

Δ𝑆 = 𝑁𝑘B

[︂
− 5

48
𝑔21𝐿

2 +

+
1

27 32
(︀
− 36𝑔3𝑔1 − 8𝑔22 + 60𝑔2𝑔

2
1 − 19𝑔41

)︀
𝐿4

]︂
.

The sign of Δ𝑆(4) ∼ 𝐿4 cannot be determined, as it
depends on the values of gradients. Nevertheless, due
to assumption (6), the inequality |Δ𝑆(4)| ≪ |Δ𝑆(2)|
holds, and Δ𝑆(4) can be neglected in our analysis.
The inequality Δ𝑆(2) < 0 shows that the entropy 𝑆
of the weakly nonequilibrium steady state is less than
its equilibrium counterpart 𝑆fin. Thus, our results are
in accordance with the second law of thermodynamics
for nonequilibrium processes [57].

4.3. Comparison with other theories

Kim and Hayakawa compare [46] the results of the
information theory (IT) [17, 28] and the kinetic the-
ory (KT) [45] for the nonequilibrium entropy density
of the weakly nonequilibrium heat-conduction steady
state, which can be written as

𝑠 = 𝑠l.eq. +Δ𝑠,

where

𝑠l.eq. ≡ −�̃�𝑘B ln

[︃
�̃�

(︂
𝑚

2𝜋𝑘B𝑇

)︂3/2]︃
+

3

2
�̃�𝑘B (31)

is the local-equilibrium entropy density of a low-
density gas of particles with classical statistics and

Δ𝑠 ≡ 𝜆𝑆
𝑚

�̃�𝑘2B𝑇
3
𝑞2

is the lowest nonequilibrium heat-flux correction. The
number coefficient 𝜆𝑆 takes values 𝜆IT

𝑆 = − 1
5 ,

𝜆KT,Mm
𝑆 = − 1

5 for Maxwell molecules and 𝜆KT,hs
𝑆 =

= −0.2035 for hard spheres. As the local functions
�̃� and 𝑇 depend on the position coordinate, the den-
sity 𝑠 cannot be integrated explicitly to give the total
entropy, as it is mistakenly stated in Ref. [17].

Similarly to Section 3, the substitution of the
Fourier law into Δ𝑠 leads to the expression:

Δ𝑠 = 𝜆𝑆
755

642𝜋
𝑘B

1

�̃�𝜎4

(∇𝑇 )2

𝑇 2

1

[Ω(2,2)*(𝑇 )]2
.

Though it cannot be integrated explicitly, one can
conclude that it differs substantially from our result:

𝑆(2) = 𝑁𝑘B

[︂
1

16

𝐺2

𝑇
− 11

48

𝐺2
1

𝑇 2

]︂
.

In addition, Δ𝑠 depends on the interaction potential
through Ω(2,2)*(𝑇 ), and it does not contain any con-
tribution from the local second gradient ∇∇𝑇 .

It is obvious that 𝑠 ≤ 𝑠l.eq. due to the negative
definiteness of Δ𝑠. But this inequality means some-
thing different from the consistence with the second
law of thermodynamics. If q tends to zero, 𝑠 tends to
some equilibrium entropy density 𝑠eq given by formula
(31) with corresponding equilibrium values 𝑛eq and
𝑇 eq substituted, rather than to the local-equilibrium
density 𝑠l.eq.. In order to verify whether 𝑠 satisfies
the second law of thermodynamics for nonequilibrium
processes, one should first calculate 𝑛eq and 𝑇 eq and
insert them into Eq. (31) to find the final equilibrium
counterpart 𝑠eq and compare it with 𝑠.
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5. Free Energy

As was discussed in Introduction, some authors at-
tempted by a variety of methods [7, 32, 41, 42] to
solve the problem of the free energy definition and
calculation for nonequilibrium or steady states. Their
purposes were to obtain the complete thermody-
namic description in the analogy with the equilib-
rium case. Our results of calculations of the pressure,
internal energy, and entropy evoke the expectation
that the way presented above can provide the free
energy of the weakly nonequilibrium heat-conduction
steady state explicitly. From the viewpoint of ther-
modynamics, it would give the complete description
of the low-density gas in this state.

Similarly to the entropy case, Eq. (23), the free
energy 𝐹 is defined by the integration [60]:

𝐹 ≡ Ω

𝐿/2∫︁
−𝐿/2

d𝑧 𝑓(𝑧). (32)

Its local density 𝑓(𝑧) is derived from the equilibrium
free energy 𝐹eq of the low-density gas (e.g. [5])

𝐹eq = −𝑁𝑘B𝑇eq

[︂
ln(Ω𝐿/𝑁) +

3

2
ln𝑇eq + 𝜉1

]︂
, (33)

where 𝜉1 ≡ 3
2 ln(2𝜋𝑘B𝑚/ℎ2) + 1. All the thermody-

namic quantities in the corresponding density 𝐹eq/Ω𝐿
are replaced by the local counterparts:

𝑓(𝑧) = −𝑃

[︂
5

2
ln𝑇 (𝑧)− ln

(︀
𝑃/𝑘B

)︀
+ 𝜉1

]︂
. (34)

Here, condition (9) has been used to express ln𝑛(𝑧)
through ln𝑇 (𝑧).

After the integration, this free energy density pro-
duces three contributions

𝐹 = 𝐹𝑇 + 𝐹𝑃 + 𝐹𝜉

of the following form:

𝐹𝑇 = −𝑃Ω𝐿
5

2

[︂
𝜏0 +

1

12
𝜏2𝐿

2 +
1

80
𝜏4𝐿

4 + ...

]︂
,

𝐹𝑃 = 𝑃Ω𝐿 ln
(︀
𝑃/𝑘B

)︀
,

𝐹𝜉 = −𝑃Ω𝐿𝜉1.

The sum of these terms, after the substitution of
Eq. (13) for 𝑃 , yields the free energy expansion [60]:

𝐹 (𝑁,Ω, 𝐿;𝑇, 𝑔1, ..., 𝑔4) =

= −𝑁𝑘B𝑇
[︁
𝑓0 + 𝑓2𝐿

2 + 𝑓4𝐿
4 + ...

]︁
. (35)

The coefficients 𝑓𝑖 are expressed in terms of Φ𝑝 ≡
≡ ln(Ω𝐿/𝑁) + 3

2 ln𝑇 + 𝜉 + 𝑝:

𝑓0 ≡ Φ1,

𝑓2 ≡ 1

12

[︀
𝑔2Φ5/2 − 𝑔21Φ5/4

]︀
,

𝑓4 ≡ 1

80

[︂
𝑔4Φ5/2 − 2𝑔3𝑔1Φ5/4 −

4

9
𝑔22Φ5/16 +

+
17

9
𝑔2𝑔

2
1Φ35/68 −

4

9
𝑔41Φ25/32

]︂
.

Next, we analyze this result from the viewpoint
of the Gibbs method of thermodynamic potentials of
equilibrium thermodynamics. As is well-known [5,57–
59], the free energy in the equilibrium state is a ther-
modynamic potential, if expressed through the vari-
ables of temperature 𝑇eq, volume 𝑉 , and number of
particles 𝑁 . Its exact differential reads

d𝐹eq = −𝑆eqd𝑇eq − 𝑃eqd𝑉 + 𝜇eqd𝑁,

where 𝜇eq is the equilibrium chemical potential. It is
necessary to consider whether the nonequilibrium free
energy given by Eq. (35) has thermodynamic poten-
tial properties for the set of variables (4). If we sup-
pose this is the case, then its exact differential can be
represented by

d𝐹 = −𝑆𝐹d𝑇 −Π⊥dΩ−Π‖d𝐿+ 𝜇d𝑁 +

𝑟∑︁
𝑖=1

𝛼𝑖dΓ𝑖,

where 𝑆𝐹 is the entropy obtained as the tempera-
ture derivative of 𝐹 ; we bear in mind that d𝑉 =
= 𝐿dΩ + Ωd𝐿, and the differentials dΩ and d𝐿 are
considered as independent; and 𝜇 is the nonequilib-
rium chemical potential. The variables {Γ} denote
gradients {𝐺} or {𝑔}, while {𝛼} is the set of corre-
sponding thermodynamic conjugates. We note that,
due to the isotropy of the pressure, the following con-
ditions must be satisfied: Π⊥/𝐿 = Π‖/Ω = 𝑃 .

There are various possibilities to choose {Γ}. In
the case {Γ} = {𝐺}, the derivatives of the free energy
read

Π⊥ ≡ −
(︂
𝜕𝐹

𝜕Ω

)︂
𝑁,𝐿,𝑇,{𝐺}

= 𝐿𝑃,

Π‖ ≡ −
(︂
𝜕𝐹

𝜕𝐿

)︂
𝑁,Ω,𝑇,{𝐺}

= Ω(𝑃 +Δ𝑃‖),

𝜇 ≡
(︂
𝜕𝐹

𝜕𝑁

)︂
Ω,𝐿,𝑇,{𝐺}

= 𝑘B𝑇
[︀
𝑚0 +𝑚2𝐿

2 +𝑚4𝐿
4 + ...

]︀
,
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𝑆𝐹 ≡ −
(︂
𝜕𝐹

𝜕𝑇

)︂
𝑁,Ω,𝐿,{𝐺}

= 𝑁𝑘B
[︀
𝑠𝐹,0 + 𝑠𝐹,2𝐿

2 +

+ 𝑠𝐹,4𝐿
4 + ...

]︀
,

where Δ𝑃‖ ≡ (𝑁/Ω)𝑘B𝑇 [2𝑓2𝐿+ 4𝑓4𝐿
3 + ...], the co-

efficients in the expansion of 𝜇 equal 𝑚𝑘 = 𝑓𝑘 − 𝑝𝑘,
while 𝑠𝐹,𝑘 are given elsewhere [60].

We have obtained Π‖/Ω ̸= 𝑃 due to the term Δ𝑃‖,
coming from the differentiation of powers of 𝐿 in
the expansion of 𝐹 . The reason is that if 𝐿 changes,
the values of gradients {𝐺} can also change. When
we introduce new variables Θ𝑘 ≡ 1

𝑘!𝐺𝑘𝐿
𝑘 instead

of {𝐺}, the derivative of the free energy expressed
through the new set yields a correct expression
for Π‖ ≡ −

(︀
𝜕𝐹
𝜕𝐿

)︀
𝑁,Ω,𝑇,{Θ} = Ω𝑃 . In addition, the new

isothermal compressibilities 𝜒⊥
𝑇,{Θ} and 𝜒

‖
𝑇,{Θ} be-

come equal to each other, and their equality to 1/𝑃
is fully recovered.

The derivative with respect to 𝑁 might be inter-
preted as the nonequilibrium chemical potential of the
gas being in contact with the particle reservoir char-
acterized by the same values of 𝑃, 𝑇, {𝐺} (or {Θ}).
But, until the thermodynamic status of 𝐹 is eluci-
dated, the meaning of its derivative 𝜇 stays unknown.

We have verified [60] that 𝑆𝐹 and 𝑆 differ from each
other in the second order. Which of the sets {𝐺}, {𝑔},
or {Θ} we use, the equality 𝑆𝐹 = 𝑆 cannot be attai-
ned. Multiplying these sets by an adjusting function
of the temperature does not improve the situation.

In other words, the quantity 𝐹 calculated by the in-
tegration of the local-equilibrium free energy density
does not possess the properties of a thermodynamic
potential. As a result, it does not ensure the com-
plete thermodynamic description. Possible solutions
are to find out a suitable set of variables or to search
for another function for the role of thermodynamic
potential.

6. Conclusions

The phenomenological approach of continuous media
has been applied to the thermodynamic description of
a low-density gas in the weakly nonequilibrium heat-
conduction steady state. Expressions for thermody-
namic quantities such as the pressure, internal energy,
and entropy are obtained in the forms of expansions
in small temperature gradients up to the fourth or-
der. The derived entropy is in agreement with the sec-
ond law of thermodynamics for nonequilibrium pro-

cesses. It is revealed that the calculated nonequilib-
rium free energy does not manifest the properties of
a thermodynamic potential.

The distinctive feature of the results concerning
the pressure, internal energy, and entropy consists in
that they do not contain neither dissipative properties
of the heat conduction process (as in the EIT), nor
phase-space integrations (as in the fluctuation theo-
rem approach for the free energy difference). These
quantities are expressed only through macroscopic
parameters. Such a form corresponds fully to the idea
of thermodynamic relations.

We expect that these results may be regarded
as the lowest approximation in the construction
of the thermodynamic theory of heat-conduction
steady states of gases and liquids within microscopic
approaches.
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Й.А. Гуменюк

ТЕРМОДИНАМIЧНI ВЕЛИЧИНИ ГАЗУ
НИЗЬКОЇ ГУСТИНИ У СЛАБОНЕРIВНОВАЖНОМУ
ТЕПЛОПРОВIДНОМУ СТАЦIОНАРНОМУ СТАНI

Р е з ю м е

Розглядається газ низької густини у теплопровiдному ста-
цiонарному станi. Засобами теорiї суцiльного середовища
отримано поправки до тиску та внутрiшньої енергiї, зу-
мовленi ґрадiєнтами локальної температури рiзних поряд-
кiв. Одержано вiдповiднi вирази для стисливостей вздовж
i впоперек теплового потоку, а також для теплоємностей.
Показано, що вираз для нерiвноважної ентропiї задоволь-
няє другий закон термодинамiки. Виявлено, що розрахова-
на вiльна енергiя не володiє властивостями термодинамi-
чного потенцiалу.
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