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ELECTRON SCATTERING
IN GRAPHENE BY REMOTE NANOMAGNETSPACS 75.50.-Xx, 75.75.-c

The elastic electron scattering by a nonuniform magnetic field of remote nanomagnets in
graphene is considered with the help of a modified Born approximation. The nanomagnets
are modeled by point-like magnetic dipoles oriented transversally and in parallel to the
graphene plane. They can form rather high magnetic fields without any damage of the graphene
plane. The electron scattering cross sections are obtained in the closed form and analyzed
numerically. It is shown that this mechanism of scattering has nonzero backscattering cross-
section and can considerably affect the graphene conductivity.
K e yw o r d s: graphene, nanomagnets, scattering amplitude.

1. Introduction

It is known that the electron scattering by charged
impurities in graphene is dominant over all other me-
chanisms scattering, but does not considerably affects
the very high mobility of charge carriers in graphene
[1]. The electron scattering in graphene by impurities
with electric and magnetic dipoles has been studied
in [2] with the help of a modified Born approxima-
tion. It was shown that the nonsymmetric scatter-
ing potential of these impurities causes the nonzero
backscattering cross-sections. The scattering effects
of the magnetic dipoles is negligible due to the com-
parative smallness of the magnetic moments of natu-
ral atoms and molecules.

Modern technology enables one to manufacture na-
nomagnets with anomalous magnetic moments that
can be more than 10 Bohr magnetons per atom of
a nanomagnet [3–4]. In this paper, we consider the
elastic electron scattering in graphene by the non-
homogeneous magnetic field of remote nanomagnets
with gigantic magnetic moments within the Born ap-
proximation. The remote nanomagnets can support
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the graphene plane or can be suspended above it and
produce no deformations. The magnetic field of these
nanomagnets is modeled by point dipoles and can be
rather large up to 0.1𝑇 . The nanomagnets with gigan-
tic magnetic moments considerably affect transport
properties of electrons in graphene.

The paper is tailored as follows. In the second sec-
tion, we formulate the problem and present the main
equations. The third and fourth sections are devoted
to obtaining the electron scattering cross-sections by
remote magnetic dipoles perpendicular and parallel
to the graphene plane and their numerical simula-
tion. The conclusion summarizes the results of the
paper.

2. Main Equations

The Schrödinger equation for the massless electron of
graphene in an external magnetic field can be written
as

𝑣F�̂� ·
(︁
𝑝− 𝑒

𝑐
A
)︁(︂

𝜓1

𝜓2

)︂
= 𝐸

(︂
𝜓1

𝜓2

)︂
, (1)

where 𝑣F is the Fermi velocity, �̂� = (�̂�𝑥, �̂�𝑦) are the
Pauli matrices, 𝑝 is the 2D momentum operator, A is
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Fig. 1. Schematic diagram of a point-like magnetic dipole of
a nanomagnet suspended above the graphene plane

the vector potential; 𝑒 and 𝑐 are the electron charge
and the speed of light in vacuum, respectively. The
functions 𝜓1 and 𝜓2 describe the electron in states
related to the two sublattices of graphene and satisfy
to the following coupled equations

𝑣F�̂�+𝜓1 = 𝐸𝜓2,

𝑣F�̂�−𝜓2 = 𝐸𝜓1,
(2)

where �̂�± = 𝑝± − 𝑒𝐴±/𝑐, 𝑝± = 𝑝𝑥 ± 𝑖𝑝𝑦, 𝐴± =
= 𝐴𝑥 ± 𝑖𝐴𝑦, where 𝑝𝑥, 𝑝𝑦 and 𝐴𝑥, 𝐴𝑦 are the com-
ponents of the momentum operator and the vector
potential, respectively, and 𝐸 is the electron energy.

Substituting 𝜓2 from the first equation in (2) into
the second one and vice versa, we obtain the following
independent Helmholtz-type equations for 𝜓1 and 𝜓2:

(∇2 + 𝑘2)𝜓1,2 = 𝑉1,2𝜓1,2. (3)

Here, we introduced the wavevector 𝑘 = 𝐸/(~𝑣F) and
the operator

𝑉1,2 =
1

~2

{︂
𝑒2

𝑐2
𝐴2 − 𝑒

𝑐
[2A · 𝑝± ~𝐵𝑧]

}︂
. (4)

At large distances from the scattering center, the left-
hand side of (4) is small, which allows us to seek its
solution in the form

𝜓1,2 = 𝜓
(0)
1,2 + 𝜓

(1)
1,2, 𝜓

(1)
1,2 ≪ 𝜓

(0)
1,2. (5)

The wave functions 𝜓(0)
1,2 describe the incident wave

and satisfy the homogeneous equation (3). We chose
them in the form of plane waves propagating along
the 𝑥-axis:

𝜓
(0)
1,2 =

1√
2
exp(𝑖𝑘𝑥). (6)

The factor 1/
√
2 provides the unit normalization of

the incident wave function

𝜓𝑖𝑛𝑐 =
1√
2

(︂
1
1

)︂
exp(𝑖𝑘𝑥). (7)

Substituting (5) in (3) with regard for (6) and the
explicit form of operator (4), we obtain the equations
for the scattered wave functions 𝜓(1)

1,2:

(∇2 + 𝑘2)𝜓
(1)
1,2 = 𝑉1,2𝜓

(0)
1,2. (8)

Here,

𝑉1,2 =
1

~2

{︂
𝑒2

𝑐2
𝐴2 − 𝑒~

𝑐
[2𝐴𝑥𝑘 ±𝐵𝑧]

}︂
. (9)

The scattered wave functions 𝜓(1)
1,2 at large distances

from the scattering center have the form

𝜓
(1)
1,2 = 𝑓1,2(𝜙)

exp(𝑖𝑘𝑟)√
𝑟

, (10)

where 𝑓1,2(𝜙) are the scattering amplitudes, and 𝜙
is the scattering angle. The asymptotic solutions of
(8) allows one to single out the scattering amplitudes
from the solutions of (10) [5]:

𝑓1,2(𝜙) = − 1

4
√
𝜋𝑘

∫︁
exp(−𝑖q · r)𝑉1,2(𝑟)𝑑2𝑟, (11)

where q is a wave vector transferred to the electron
under the elastic scattering 𝑞 = 2𝑘 sin𝜙/2. The dif-
ferential scattering cross-section is given by [2]

𝑑𝜎(𝜙)

𝑑𝜙
= 2|𝑓*1 (𝜙)𝑓2(𝜙)| = 2|𝑓1(𝜙)||𝑓2(𝜙)|. (12)

Next, we consider the elastic electron scattering in
graphene by the nonuniform magnetic field of a re-
mote nanomagnet. Let us find the scattering ampli-
tudes 𝑓1,2(𝜙) according to (11) and (9). The compo-
nents of A and 𝐵𝑧 enter into 𝑉1,2 (9). Let us model
the nanomagnet by a sphere of radius 𝑎 with the
built-in point magnetic dipole d. Let it be located
at the point (0, 0, 𝑙 ≥ 𝑎) above the graphene plane
(𝑥, 𝑦, 0) (see Fig. 1). The vector potential and the
corresponding magnetic field of the dipole can be ob-
tained with the help of the known formulas

A =
d × R
𝑅3

, B =
3(d · R)R −𝑅2d

𝑅5
. (13)

Here, 𝑅 is a distance from the dipole to the observa-
tion point. To find the vector potential and the mag-
netic field in the graphene plane, one has to specify
the orientation of the magnetic dipole d with respect
to the graphene plane and to set 𝑧 = 𝑙 in (13). Below,
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we consider the magnetic dipoles transversal and par-
allel to the graphene plane. It will be convenient to
use the dimensionless coordinates and measure the
distance in units 𝑙. For a vector of the dipole trans-
verse to the graphene plane d = (0, 0, 𝑑), we get the
following components of A and 𝐵𝑧 from (13):

𝐴𝑥 = − 𝑑

𝑙2
𝑦

�̄�3
, 𝐴𝑦 =

𝑑

𝑙2
𝑥

�̄�3
, 𝐴𝑧 = 0,

𝐵𝑧 =
𝑑

𝑙3
2− 𝑟2

�̄�5
.

(14)

If the magnetic moment is parallel to the graphene
plane, we get

𝐴𝑥 =
𝑑

𝑙2
sin𝛼

�̄�3
, 𝐴𝑦 = − 𝑑

𝑙2
cos𝛼

�̄�3
,

𝐴𝑧 =
𝑑

𝑙2
𝑦 cos𝛼− 𝑥 sin𝛼

�̄�3
,

𝐵𝑧 = 3
𝑑

𝑙3
𝑥 cos𝛼+ 𝑦 sin𝛼

�̄�5
.

(15)

Here, 𝛼 is the angle between d and the 𝑥-axis, �̄� =
=

√
1 + 𝑟2 is the dimensionless distance from the

dipole to a point of the graphene plane, 𝑟2 = 𝑥2+ 𝑦2,
with 𝑥 and 𝑦 being the dimensionless coordinates in
the graphene plane. The distance 𝑅 is related to �̄� as
𝑅 = 𝑙�̄�.

3. Scattering by a Magnetic
Dipole Transverse to the Graphene Plane

To find the scattering amplitudes 𝑓1,2(𝜙) according to
(11), we have to substitute A and 𝐵𝑧 given by (14)
in (9). In the accepted dimensionless coordinates, we
get

𝑉1,2 =
𝜆

�̄�3

{︂
𝜆𝑟2

�̄�3
+ [2𝑘𝑦 ∓ 2− 𝑟2

�̄�2
]

}︂
, (16)

where 𝑘 = 𝑘𝑙 is the dimensionless wave vector of the
electron, and

𝜆 = 𝑒𝑑/(𝑐~𝑙) (17)

is the dimensionless coupling constant. Let us esti-
mate its numerical value. The magnetic moment of a
spherical nanomagnet with radius 𝑎 is

𝑑 =
4𝜋

3
𝜇B𝑎

3𝑛𝑁, (18)

where 𝑁 is a number of Bohr magnetons 𝜇B per
one atom of the nanomagnet material, and 𝑛 is its

density number. Taking the numerical value 𝜇B =
= 10−20 Gs cm3 and 𝑛 = 1022, we get the evaluation

𝜆 ∼ 7× 10−5𝑁
𝑎

𝑙
𝑎2, (19)

where 𝑎 and 𝑙 must be in nanometers. It is reported
that 10 < 𝑁 < 100 [3–4]. If we take 𝑁 = 10, then,
for 𝑎 = 10 nm, nanomagnets are suspended over
the graphene plane at a distance of the same order,
𝜆 ∼ 10−2. In this case, we can neglect the term ∼𝜆2 in
(16). But, for “larger” nanomagnets 40 ≤ 𝑎 ≤ 102 nm,
we can easily get 0.1 ≤ 𝜆 ≤ 1. In this case, the term
∼𝐴2 in (9) must be taken into account. One more
possibility to increase 𝜆 is to arrange nanomagnets
from the both sides of the graphene plane. The maxi-
mum magnetic field created by a nanomagnet accord-
ing to (14), (15), and (18) is

𝐵 ∼ 𝜇B
𝑎3

𝑙3
𝑛𝑁. (20)

This formula shows that the magnetic field of a re-
mote magnetic dipole rapidly decreases with 𝑙. For
𝑙 ∼ 𝑎 and the numerical values of the parameters in
(20) as above, we obtain that 𝐵 ∼ 103 Gs = 0.1𝑇 .
Now, we calculate the scattering amplitudes 𝑓1,2(𝜙)
in the case under consideration. Let us substitute (16)
into (11), which we rewrite in the dimensionless co-
ordinates. We obtain

𝑓1,2(𝜙) = −𝜆
4

√︂
𝑙

𝜋𝑘

∞∫︁
0

𝑑𝑟′
2𝜋∫︁
0

𝑑𝜑′ exp(−𝑖𝑞𝑟′ cos𝜑′)×

×
{︂
𝜆𝑟′3

𝑅′6 + 2
𝑘𝑟′2 cos(𝜑′ − 𝜙/2)

𝑅′3 ∓ 2𝑟′ − 𝑟′3

𝑅′5

}︂
. (21)

Here, 𝑅′ =
√
1 + 𝑟′2, and 𝑞 = 2𝑘 sin𝜙/2 is the di-

mensionless transferred wavevector. The integration
in (21) is carried out in the coordinate system with
the 𝑦′ along the vector q̄, where q̄ · r′ = 𝑞𝑟′ cos𝜑′. It
is obtained by the anticlockwise rotation of the ini-
tial coordinate system 𝑥, 𝑦 by the angle 𝜙/2. In the
integrand, we substitute 𝑦′ = 𝑟′ cos(𝜑′−𝜙/2). The in-
tegration over 𝜑′ gives the Bessel functions according
to the known relation [6]

2𝜋∫︁
0

𝑑𝜑′ exp[𝑖(𝑧𝑐𝑜𝑠𝜑′ + 𝑛𝜑′)] = 2𝑖𝑛𝜋𝐽𝑛(𝑧), (22)
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where 𝐽𝑛(𝑧) is the Bessel function with an integer 𝑛.
While integrating (21) over 𝑟′, we obtain the integrals

𝐼(𝑝)𝑛𝑚(𝑞) =

∞∫︁
0

𝐽𝑛(𝑞𝑟)
𝑟𝑝𝑑𝑟

(1 + 𝑟2)𝑚/2
. (23)

They can be calculated in the closed form (see Ap-
pendix). Presenting the numerator of (23) as 𝑟𝑝 =
= (1 + 𝑟2 − 1)𝑟𝑝−2, we can obtain

𝐼(𝑝)𝑛𝑚(𝑞) = 𝐼
(𝑝−2)
𝑛 𝑚−2(𝑞)− 𝐼(𝑝−2)

𝑛𝑚 . (24)

With the help of (23) and (24), we present the scat-
tering amplitudes (21) as

𝑓1,2(𝜙) = −𝜆
2

√︂
𝜋𝑙

𝑘

{︁
𝐼±(𝑞) + 2𝑖𝑘𝐼

(2)
13 (𝑞) cos𝜙/2

}︁
, (25)

where 𝐼±(𝑞) = 𝜆𝐼
(3)
06 (𝑞)± [2𝐼

(1)
05 (𝑞)− 𝐼

(3)
05 (𝑞)].

In view of (25) and (39) of the Appendix, the dif-
ferential cross-section (12) can be presented as

1

𝐿

𝑑𝜎(𝜙)

𝑑𝜙
= 𝑘{𝐴2

+ sin2 𝜙/2 + exp(−2𝑞) cos2 𝜙/2}1/2×

×{𝐴2
− sin2 𝜙/2 + exp(−2𝑞) cos2 𝜙/2}1/2, (26)

where 𝐿 = 2𝜋𝜆2𝑙 is a quantity having dimension of
length and 𝐴± = 𝜆[𝐾1(𝑞) − 𝑞𝐾2(𝑞)/4]/2 ± exp(−𝑞),
𝐾1,2(𝑞) are the modified Bessel functions of the sec-
ond kind of the order 1 and 2, respectively.

It follows from (26) that the backscattering differ-
ential cross-section (𝜙 = 𝜋) is not equal to zero and
is given by the expression

1

𝐿

𝑑𝜎(𝜙)

𝑑𝜙

⃒⃒⃒⃒
𝜙=𝜋

= 𝑘

⃒⃒⃒⃒
𝜆2

4

[︂
𝐾1(2𝑘)−

𝑘

2
𝐾2(2𝑘)

]︂2
−exp(−4𝑘)

⃒⃒⃒⃒
.

(27)
Here, we used 𝑞 = 2𝑘 sin𝜋/2 = 2𝑘.

Formula (26) allows one to analyze the differen-
tial cross-section as a function of the scattering an-
gle 𝜙 and the dimensionless wave vector 𝑘 that is
connected with the energy of incident electrons 𝐸
by the relation 𝑘 = 𝐸𝑙/~𝑣F. The case of slow elec-
trons (𝑘 ≪ 1, 𝑘 > 𝜆) can be considered analytically,
by using the asymptotic expansions (41) of the Ap-
pendix. With account for the leading terms, relation
(26) yields

1

𝐿

𝑑𝜎(𝜙)

𝑑𝜙

⃒⃒⃒⃒
𝜙=𝜋

= 𝑘 exp(−4𝑘). (28)

It is necessary to note that the application of the Born
approximation to the electron scattering in graphene
by the nonhomogeneous magnetic field of remote
nanomagnets requires that the following inequality
~𝑘 ≫ (𝑒/𝑐)𝐴), which follows from (1), must be true
(the magnetic field of a nanomagnet must be a small
perturbation). Introducing 𝑘 = 𝑘𝑙 and the typical
value of the vector potential (14), (15) with account
of (17), we get the inequality

𝑘 ≫ 𝑒𝑑

~𝑐𝑙
≡ 𝜆. (29)

We note that, for 𝜆 ≪ 1, inequality (29) becomes
𝑘2 ≫ 𝜆2. It can be easily seen from (8) and (9), if we
use the dimensionless variables.

4. Scattering by a Magnetic
Dipole Parallel to the Graphene Plane

Next, we consider the electron scattering by remote
magnetic dipoles parallel to the graphene plane. For
the sake of simplicity, we consider two cases where
the incident beam of electrons propagates along the
magnetic dipole and transversally to it. The expres-
sions of 𝑉 ‖,⊥

1,2 (9) with A and 𝐵𝑧 from (15), where
we set 𝛼 = 0, 𝜋/2, respectively, can be written in the
dimensionless form as

𝑉
‖
1,2 =

𝜆

�̄�3

{︂
𝜆(1 + 𝑦2)

�̄�3
∓ 3

𝑥

�̄�2

}︂
, (30)

𝑉 ⊥
1,2 =

𝜆

�̄�3

{︂
𝜆(1 + 𝑥2)

�̄�3
+ 2𝑘 ∓ 3

𝑦

�̄�2

}︂
. (31)

With the help of these expressions, the scattering am-
plitudes (11) after passing to the coordinate system
with the 𝑦′-axis parallel to q like in the previous sec-
tion, we obtain the integrals

𝑓
‖
1,2(𝜙) = −𝜆

4

√︂
𝑙

𝜋𝑘

∞∫︁
0

𝑑𝑟′
2𝜋∫︁
0

𝑑𝜑′ exp(−𝑖𝑞𝑟′ cos𝜑′)×

×
{︂
𝜆[𝑟′ + 𝑟′3 cos2(𝜑′ − 𝜙

2 )]

𝑅′6 ∓ 3
𝑟′2 sin(𝜑′ − 𝜙

2 )

𝑅′5

}︂
, (32)

𝑓⊥1,2(𝜙) = −𝜆
4

√︂
𝑙

𝜋𝑘

∞∫︁
0

𝑑𝑟′
2𝜋∫︁
0

𝑑𝜑′ exp(−𝑖𝑞𝑟′ cos𝜑′)×

×
{︂
𝜆[𝑟′ + 𝑟′3 sin2(𝜑′ − 𝜙

2 )]

𝑅′6 +

+
2𝑘𝑟′

𝑅′3 ∓ 3
𝑟′2 cos(𝜑′ − 𝜙/2)

𝑅′5

}︂
. (33)
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Integrals over 𝜙′ and 𝑟′ in (32) and (33) are given in
the Appendix. The final results read

𝑓
‖
1,2(𝜙) = −𝜆

2

√︂
𝜋𝑙

𝑘

{︁
𝐼‖(𝑞)∓ 3𝑖𝐼

(2)
15 (𝑞) sin𝜙/2

}︁
, (34)

and

𝑓⊥1,2(𝜙) = −𝜆
2

√︂
𝜋𝑙

𝑘

{︁
𝐼⊥(𝑞)± 3𝑖𝐼

(2)
15 (𝑞) cos𝜙/2

}︁
. (35)

Here,

𝐼‖(𝑞) = 𝜆

[︂
𝐼
(1)
06 (𝑞)− 1

𝑞
𝐼
(2)
16 cos𝜙+ 𝐼306(𝑞) cos

2 𝜙/2

]︂
,

and

𝐼⊥(𝑞) = 𝜆

[︂
𝐼
(1)
06 (𝑞)+

1

𝑞
𝐼
(2)
16 (𝑞) cos(𝜙)+ 𝐼

(3)
06 sin2 𝜙/2

]︂
+

+2𝑘𝐼
(1)
03 (𝑞).

The differential scattering cross-sections by remote
magnetic dipoles parallel and perpendicular to the
incident beams of electrons in graphene according to
(12) and (34), (35) with usage of (40) from the Ap-
pendix are given by

1

𝐿

𝑑𝜎‖(𝜙)

𝑑𝜙
= 𝑘

[︂
𝜆2

64

[︂
𝑞𝐾2(𝑞) sin

2 𝜙

2
+

+𝐾1(𝑞)(2 + cos𝜙)

]︂2
+ exp(−2𝑞) sin2

𝜙

2

]︂
sin2

𝜙

2
,

1

𝐿

𝑑𝜎⊥(𝜙)

𝑑𝜙
= 𝑘

[︂(︂
𝜆

8
sin

𝜙

2

[︂
𝑞𝐾2(𝑞) cos

2 𝜙

2
+

+𝐾1(𝑞)(2− cos𝜙)

]︂
+exp(−𝑞)

)︂2
+

1

4
exp(−2𝑞) sin2 𝜙

]︂
.

(36)

These formulas show that the backscattering cross-
sections (𝜙 = 𝜋, 𝑞 = 2𝑘) are nonzero in both cases

1

𝐿

𝑑𝜎‖(𝜙)

𝑑𝜙
= 𝑘

{︂
𝜆2

64
[2𝑘𝐾2(2𝑘) +𝐾1(2𝑘)]

2+ exp(−4𝑘)

}︂
,

1

𝐿

𝑑𝜎⊥(𝜙)

𝑑𝜙
= 𝑘

(︂
3𝜆

8
𝐾1(2𝑘) + exp(−2𝑘)

)︂2
.

(37)

For 𝑘 > 1, the cross sections (36) are practically
equal, but they are small due the asymptotic behavior
(see Appendix).

Figure 2 depicts the graphs of 𝑑𝜎(𝜙)/𝑑𝜙 versus
the scattering angle 𝜙 in units 𝐿 for a particular

Fig. 2. Differential cross-section 𝑑𝜎/𝑑𝜙 in units of 𝐿 versus
the scattering angle 𝜙 for 𝜆 = 0.1 and 𝑘 = 0.8. Curve 1 for
the magnetic dipole moment of a nanomagnet perpendicular to
the graphene plane, curve 2 for the magnetic dipole moment
of a nanomagnet parallel to the incident electron beam in the
graphene plane, curve 3 for the magnetic dipole moment of a
nanomagnet parallel to the graphene plane and perpendicular
to the incident electron beam in the graphene plane

value of 𝑘 built according to (26) (curve 1 ) and
(36) (dipole parallel to the incident electron beam
curve 2, and a dipole transverse to the incident elec-
tron beam curve 3 ). Here, we consider 𝜆 = 0.1;
𝑘 = 0.8. Comparing curve 1 with the result ob-
tained in [2], the differential scattering cross-section
is enhanced 20 times. Curve 2 is drawn for the case
where the magnetic dipole of a nanomagnet is par-
allel to both the graphene plane and the incident
beam of electrons. As one can see from the graph,
the differential cross-section is much smaller than
those shown by curve 1 and 3. This indicates that
if one is interested to obtain large scattering lengths,
he/she has to arrange the electrons beam transverse
to the direction of the dipole of the nanomagnet. One
more feature of the graphs is the similarity between
curve 1 and 3. One common feature of the differ-
ential cross-section graphs is that, for 𝑘 ≪ 1, the
graphs show the isotropic property. For 𝑘 ≫ 1, it
goes to zero. The pattern of our graphs and the nu-
merical results are similar to the results obtained
in [8].

5. Transport Electron Cross-Sections

The transport cross-section or transport scattering
length, the quantity which controls the transport phe-
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Fig. 3. Transport cross-section 𝜎 divided by 𝐿 versus the
dimensionless energy 𝑘 for 𝜆 = 0.1. Curve 1 : the magnetic
dipole is transverse to the graphene plane. Curve 2 : the mag-
netic dipole is parallel to the graphene plane and parallel to
the incident beam of electrons. Curve 3 : the magnetic dipole
is parallel to the graphene plane and perpendicular to the in-
cident beam of electrons. Here, we consider few leading terms
of (26) and (36) and apply the extrapolation method

nomena, is given by the relation

𝜎𝑡𝑟 =

2𝜋∫︁
0

(1− cos𝜙)
𝑑𝜎

𝑑𝜙
𝑑𝜙. (38)

Graphs in Fig. 3 illustrate the electron transport
cross-section built in according to (38). The graphs
show that the electron transport cross-section, which
is directly related to the resistivity of the material is
large, when the electron beams in the graphene plane
are perpendicular to the suspended dipole of a nano-
magnet, curve 1 and 3. One common feature of these
curves is that they have maxima around 𝑘 = 1.8 with
little variation. Other numerical results show that the
peaks of these maxima are shifted to left for small
value of 𝜆.

Comparing the present result with [2], it is possible
to enhance the scattering length and the transport
cross-section 10 to 100 times depending on the value
of 𝜆, but we have to be alert about the inequality
given by (29). Our graphical results are similar to the
results obtained in [9].

6. Conclusions

In this paper, we have studied the elastic electron
scattering by remote nanomagnets transverse and

parallel to the graphene plane. We have analyzed the
scattering of massless Dirac fermions by a fixed mag-
netic dipole moment located at a height 𝑙 above the
origin of the 2D-graphene plane. With the help of the
specially developed Born approximation, we derived
the differential cross-section and the transport cross-
section. The differential scattering cross-section and
the transport cross-section are dominant when the
magnetic dipole of a remote nanomagnet is transverse
to the electron beam in the graphene plane. Our re-
sults show that one has to consider higher terms in
the expansion of the potential given by (9), which
has significant contribution to the scattering param-
eters, when the coupling parameter 𝜆 is of the or-
der of 0.1 to 1. We have found that the backscatter-
ing cross-section of electrons is nonzero for all ori-
entations.

APPENDIX

Integral entering into the electron differential cross-section by
remote nanomagnets with the magnetic moment transversal to
the graphene plane:

𝐼
(3)
06 =

𝑞

2

[︂
𝐾1(𝑞)−

𝑞

4
𝐾2(𝑞)

]︂
,

𝐼
(1)
05 =

1 + 𝑞

3
exp(−𝑞), 𝐼

(3)
05 =

2− 𝑞

3
exp(−𝑞),

𝐼
(2)
13 = exp(−𝑞).

(39)

Integrals entering into the electron differential cross-section by
remote nanomagnets with the magnetic moment parallel to the
graphene plane and parallel or perpendicular to the incident
beam of electrons:

𝐼
(1)
06 =

𝑞2

8
𝐾2(𝑞), 𝐼

(3)
26 =

𝑞2

8
𝐾0(𝑞),

𝐼
(2)
15 =

𝑞

3
exp(−𝑞), 𝐼

(1)
03 = exp(−𝑞), 𝐼

(2)
16 =

𝑞2

8
𝐾1(𝑞).

(40)

The asymptotic expansions of the modified Bessel functions are
given by [6]

𝐾0(𝑞) = −𝑙𝑛𝑞 − 𝛾 + 𝑙𝑛2, 𝑞 → 0,

𝐾𝑛(𝑞) = 2𝑛−1(𝑛− 1)! 𝑞(−𝑛), 𝑛 > 0, 𝑞 → 0,

𝐾𝑛(𝑞) =

√︂
𝜋

2𝑞
exp(−𝑞)

{︂
1 +

4𝑛2 − 1

8𝑞
+ ...

}︂
, 𝑞 ≫ 1,

(41)

where 𝛾 = 0.5772 is the Euler–Mascheroni constant.
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РОЗСIЯННЯ ЕЛЕКТРОНIВ
ДАЛЕКИМИ НАНОМАГНIТАМИ

Р е з ю м е

Розглянуто пружне розсiяння електронiв в графенi неодно-
рiдним магнiтним полем далеких наномагнiтiв у рамках мо-
дифiкованого борнiвського наближення. Наномагнiти моде-
люються точковими магнiтними диполями, орiєнтованими
перпендикулярно i паралельно площинi графена. Вони мо-
жуть створювати досить сильнi магнiтнi поля без пошко-
дження площини графена. Знайдено в замкнутому виглядi
i чисельно проаналiзовано перетини розсiювання електро-
нiв. Показано, що цей механiзм розсiювання мiстить нену-
льовий перетин розсiювання назад i може помiтно впливати
на провiднiсть графена.
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