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A novel method for regularization of environment-induced relaxation transitions in nanoscopic
systems is proposed. The method, being compatible with the chaotic, stochastic, and transient
time scales, is physically consistent and mathematically strict. It allows one to correctly reduce
the evolution of a system to a master equation for the balance of populations of its states with
the probabilities of transitions between states well satisfying both the temperature-independent
activationless limit and the Arrhenius exponentially temperature-dependent activation-like
limit. The results obtained are applied to the description of the kinetics of temperature-
independent desensitization and degradation observed in receptor and circadian protein macro-
molecules.
K e yw o r d s: nanoscopic system, environment-induced transitions, Liouville–von Neumann
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1. Introduction
In approaching the fine-grained kinetics of a finite-
level open system nonadiabatically coupled to the
noisy environment and exchanging with it by energy
and particles, one commonly sets a direct correspon-
dence between irreversible relaxation transitions from
the one energy level to another one and the time evo-
lution of the ensemble-average nonequilibrium popu-
lation of levels toward the equilibrium. At that, the
relaxation rates for the transitions are usually read off
from the rule of summing over a set of final system’s
states weighted with probability amplitudes for tran-
sitions from initial states. This is similar to the Fermi
golden rule for the rate of quantum-mechanically re-
versible transitions derived in the first order in weak
resonant-like (adiabatic) intrasystem interactions [1–
3]. However, contrary to the latter, the irreversible
transitions are generated by the second-order terms
in a perturbation expansion of the unitary evolu-
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tion in a weak relaxation-like (nonadiabatic) interac-
tion between the system and the environment. The-
refore, in general, these transitions are united under
the conventional name of “environment-induced tran-
sitions” [4, 5].

The environment-induced (also environment-dri-
ven and environment-assisted) transitions belong to
the very fundamental processes in science and tech-
nology [5–7]. However, in many cases, there is the
problem in exploring these transitions accurately. For
example, if one deals with the isolated finite-level
system, then it is straightforward to correctly calcu-
late its partition function, as well as its two-point
and higher correlation functions, as corresponding
well-defined convergent sums or integrals over finitely
many configurations in multiple dimensions. Rather,
if to go from the finite to infinite systems, e.g., by em-
bedding the finite-level closed (quantum) system in
an open contact with the infinite-level (macroscopic)
environment, then the partition functions and corre-
lation integrals become ill-defined functionals involv-
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ing divergent quantities [8]. This compels one to ap-
ply the special regularization techniques to the ac-
curate calculation of physical processes of interest in
the given order of perturbation theory, while trying to
reproduce the available experimental data sufficiently
well [9].

On the other hand, the environment-induced tran-
sitions, being so important and pervasive in the en-
ergy transformation processes, could essentially con-
tribute to a consistent operation of the system on the
different time and length scales, and to the time scale
compatibility of system’s relaxation kinetics with ex-
isting phenomenological laws as well. At the same
time, when resorting to a coarse-grained kinetics in-
stead of modeling a solely fine-grained one, for the
most of the physical, chemical, biological, and infor-
mation systems, it would be natural to simply regard
them as functional nanosystems. However, as com-
pared to the microscopic systems, the nanoscopic sys-
tems should be endowed with the fewer many relevant
degrees of freedom allowing one to condense the dif-
ferent coarsely averaged properties of a system in only
a few number of effective parameters that could be re-
alized just on the nanometer length scale [7].

In last years, the research of functional nanosys-
tems has been spurred strongly by having attracted
high interest after the discovery of their ability to op-
erate consistently and reproducibly not only in iso-
lation but also in noisy and changeful environments.
Instances of such an extraordinary performance are
well exemplified in a lot of natural nanoscopic sys-
tems. The striking supporting examples are most
nanomolecular structures of living organisms rang-
ing from photo-synthesizing reaction centers [10] to
ligand-operated molecular receptors [11] to voltage-
gated ion channels [12] to promoter-driven genetic cir-
cuits [13,14] to ATP-dependent molecular motors and
pumps [14,15], etc. The other significant examples are
functional implementations of nanosystems in tech-
nologically relevant nonequilibrium relaxation pro-
cesses such as the optical excitation energy transfer
[16], donor-acceptor electron and proton transitions
[6], nanomolecular conformational transformations
[14, 17], energy-matter conversion [18], assembly of
polyoxometalates [19], integration of semiconductor
nanowires [20], as well as the application of nanoparti-
cles and drug carriers in medicine [21], to name a few.

According to the formal definition taken from sur-
face chemistry [22], a nanoscale system represents

the specific superatomic or supramolecular nanoob-
ject organized so that to be able to assembly its dis-
tinct functional components and/or units, of size from
one to tens nanometers, together in three dimensions
[23,24]. But the size alone is not a key determinant for
the revealed nanoscopic functionality. What is more
important is that, because of generally strong surface
effects [25], the nanosystems possess in themselves
very specific energy spectra that are intermediate be-
tween the discrete energy-level spectrum of a separate
atom or molecule and the broad band energy con-
tinuum of bulk matter [26]. Moreover, a nanoscale
system is not static in space and time, as it could
be expected for an thermodynamically isolated ob-
ject [6]. Rather, being open to the fluctuating envi-
ronment and providing the exchange of energy and
particles with it through the environment-induced
transitions in the sub- to supra-gigahertz frequency
range, a nanosystem does constantly develop in space
and time, according to the Liouville–von Neumann
quantum evolution equation for the density matrix
of the whole system, on transiently shorter to longer
length and time scales [27–30]. On the other hand, the
permanent occurrence of environment-induced transi-
tions in nanoscopic systems is, as a rule, accompanied
by the creation or annihilation of environmental vi-
bration quanta (phonons). In this case, among relax-
ation transitions between the microscopically steady
energy levels brought about by a weak bilinear cou-
pling of the system to the environment, one must con-
sider also the multitude of stochastic additions to the
average position of energy levels owing to their ther-
modynamic fluctuations arisen because of nonlinear
correlation effects in the system-environment interac-
tion [31–35].

Nowadays, the existing phenomenological approach
to modeling the elementary acts of stochastic transi-
tions between energy levels on the macroscopic scale
is well recognized [36–38]. At the same time, the
more satisfactory kinetic formalism for describing the
environment-induced relaxation and fluctuation pro-
cesses occurring in nanosystems on the atomic to
molecular-level scales remains elusive. In this paper,
the nanoscopic approach to the evolution of a finite-
level open system weakly coupled to a noisy envi-
ronment is proposed for making a stochastic regu-
larization of the environment-induced transitions be-
tween system’s energy levels experiencing nanoscale
fluctuations. We begin with describing the methods
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of general use and then formulate the basic theoret-
ical approach that will allow us to provide the rig-
orous derivation of a stochastically averaged mas-
ter equation with microscopically balanced transi-
tion rate constants accounting for stochastic, kinetic,
and macroscopic (thermodynamic) system’s param-
eters. Further, we present particular applications of
the master equation to two nanoscopic effects with
concern to a description of one- and two-exponential
decay kinetics of specific circadian and receptor pro-
teins. Finally, we discuss the results obtained and end
with conclusions.

2. Methods

One of the most fundamental methodological con-
cepts in nanoscience is the concept of the whole sys-
tem. It comprises as basic factors inherent in the dy-
namics and kinetics of a nanoobject itself, as well
as the relevant effects of its surroundings, including
the apparatus impacts and influences of external con-
trols. But practically using this concept for realistic
nanoscale systems excels by the strong diversity and
dependence on the context of a problem, it appeals to
solve. Nevertheless, in order to appreciating the con-
cept in more formal terms, it is sufficient to use a
simple convention, by referring the whole system to
as of a compositionally closed one (𝐶), and further
to provide a partition of such a system into its finite-
level (quantum) and infinite-level (macroscopic) parts
like as 𝐶 = 𝐴+𝐵. With concern to the modeling, the
nanosystem can be regarded then as the correspond-
ing quantum part (𝐴) being the nonequilibrium open
system of interest, while the environment is consid-
ered as the respective macroscopic equilibrium part
(𝐵) representing the heat bath modeled by an infi-
nite set of non-interacting harmonic oscillators at the
temperature 𝑇 . Additionally, there occur thermody-
namic fluctuations of the particular (charged) func-
tional groups which randomly perturb the positions
of system’s energy levels, already found for the part
𝐴. This sets complementary conditions to provide an
averaging of the evolution over stochastic processes
meaningfully occurring in the sub- to supra-terahertz
frequency range with a necessary regularization pro-
cedure [27, 28].

At the same time, when called upon to operate well
under changeful noisy conditions, a nanoscopic sys-
tem should be functionally stable. This implies that,
to be accurate in modeling the state energy spectrum

of the part 𝐴, one is forced to maintain the randomly
fluctuating energy levels, in average, stationary and
keep the relaxation transitions between them, in de-
tail, balanced, both with respect to the oscillation fre-
quencies characteristic of the part 𝐵. Essentially, to
form the time-dependent positions of quantum levels
and to transit from the one level to another one, the
two processes well separated in time are: from tens of
femtoseconds to picoseconds, for the first, and from
milliseconds to seconds (or even hours), for the sec-
ond [29]. Consequently, in order to regularize the ki-
netics of environment-induced transition processes by
means of introducing the random energy fluctuations
on the nanoscopic time scale, it is necessary to pro-
vide the temporal behavior of the nanosystem with
the farther hierarchy of time scales so as to follow the
evolution not only at very short times, at which level
positions can be considered fixed, but also at interme-
diate times, during which the stochastization of the
positions of energy levels is completed, as well as at
far longer times, subsequent to which the relaxation
transitions between fluctuating energy levels can only
occur [6, 32, 34, 39].

The concept of the whole system is thus very gen-
eral and embodies, in fact, the use of many approxi-
mate methods in contemporary science. Some of these
methods are briefly outlined in this section.

2.1. Method of projection operator

Within the concept of the whole system, a most rigor-
ous methodology in the description of the time evolu-
tion of a finite-level open system contacting with the
fluctuating equilibrium environment is based on the
nonequilibrium density matrix theory [37–41]. The
adaptation of the theory to systems revealing the en-
ergy level randomization exploits the use of a mul-
titude of methods for research, e.g., [34, 35, 42–47]
and references therein. But the strictest of them is
the projection-operator method of Nakajima [48] and
Zwanzig [49, 50] applied to the whole closed sys-
tem 𝐶. It allows one to derive the generalized master
equation (GME) for the density matrix 𝜌0(𝑡) of the
open part 𝐴 of the whole closed system 𝐶, which
is subjected not only to a uniform but also to a
time-dependent (random or regular) external field
[51]. The idea of the method is that the interaction 𝑉
between a small open part 𝐴 and a large nearly closed
part 𝐵, with the respective Hamiltonians 𝐻0(𝑡) and
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𝐻𝐵 , is assumed weak enough to hardly ever or even
never affect the distribution of non-interacting states
in the 𝐵. Thus, independently of the distribution of
random energy levels in the 𝐴, the 𝐵 always remains
in the state of thermal equilibrium with the density
matrix 𝜌𝐵 = exp(−𝐻𝐵/𝑘B𝑇 )/𝑡𝑟𝐵 exp(−𝐻𝐵/𝑘B𝑇 )
(𝑘B is the Boltzmann constant; trace is over the
bath states). Moreover, the density matrix 𝜌(𝑡) of the
whole system 𝐶 is factorized into the nonequilibrium
density matrix 𝜌0(𝑡) of the 𝐴 and the equilibrium den-
sity matrix 𝜌𝐵 of the 𝐵 like as 𝜌(𝑡) = 𝜌0(𝑡)𝜌𝐵 . By in-
troducing the projection operators 𝑃 = 𝐼−𝜌𝐵𝑡𝑟𝐵 and
𝐼 − 𝑃 = 𝜌𝐵𝑡𝑟𝐵 and applying them to the Liouville–
von Neumann quantum evolution equation

�̇�(𝑡) = −𝑖𝐿(𝑡)𝜌(𝑡), (1)

with 𝐿(𝑡) = (1/~)[𝐻(𝑡), ...] standing for the Liouville
superoperator (~ is the Planck constant) that is re-
lated just to the Hamiltonian of the whole system 𝐶

𝐻(𝑡) = 𝐻0(𝑡) +𝐻𝐵 + 𝑉, (2)

one gets an exactly strict description for 𝜌0(𝑡) within
the GME [50]

�̇�0(𝑡) = −𝑖{𝐿0(𝑡) + 𝑡𝑟𝐵(𝐿𝑉 𝜌𝐵)}𝜌0(𝑡)−

−
𝑡∫︁

0

𝑑𝜏𝑡𝑟𝐵{𝐿𝑉 Θ̂(𝜏)Θ̂+(𝜏)𝐿𝑉 𝜌𝐵}𝜌0(𝜏) + 𝐹𝐴(𝑡). (3)

Here, the quantity

Θ̂(𝑡) = �̂� exp

{︂
− 𝑖

𝑡∫︁
0

𝑑𝜏(𝐿0(𝜏) + 𝑃𝐿𝑉 + 𝐿𝐵)

}︂
(4)

is the time-evolution superoperator with �̂� and
𝐿0(𝑡) = (1/~)[𝐻0(𝑡), ...], 𝐿𝐵 = (1/~)[𝐻𝐵 , ...], 𝐿𝑉 =
= (1/~)[𝑉, ...] being the Dyson time-ordering opera-
tor and the Liouville superoperators related to the re-
spective Hamiltonians of the open system, heat bath,
and their interaction.

GME (3) contains the inhomogeneous term
𝐹𝐴(𝑡) = 𝑖𝑡𝑟𝐵(𝐿𝑉 Θ̂(𝑡)𝑃𝜌(0)) associated with the den-
sity matrix at 𝑡 = 0. However, in the cases very
typical of nanoscale systems, the interaction 𝑉 ap-
pears to vary much slower than energy level fluc-
tuations. Thus, it can safely be assumed adiabati-
cally switched at a distant past, not impacting the
factorization condition 𝜌(𝑡) = 𝜌0(𝑡)𝜌𝐵 . Therefore,
one sets 𝜌(0) = 𝜌0(0)𝜌𝐵 , which yields 𝑃𝜌(0) = 0,

so that 𝐹𝐴(𝑡) = 0. An additional simplification oc-
curs if 𝑡𝑟𝐵(𝑉 𝜌𝐵) = 0. In this case, the first term
on the right-hand side of (3) is reduced to the
−𝑖𝐿0(𝑡)𝜌0(𝑡). But using the renormalized interaction
𝑉 = 𝑉 − 𝑡𝑟𝐵(𝑉 𝜌𝐵) instead 𝑉 and then substituting
𝐻0(𝑡) for �̃�0(𝑡) = 𝐻0(𝑡) + 𝑡𝑟𝐵(𝑉 𝜌𝐵), the aforemen-
tioned regularization is achieved without any loss of
generality.

For evident analytical reasons, the calculus of the
nonequilibrium density matrix from the complicated
integral differential Liouville–von Neumann evolution
equation (1)–(3), describing the temporal behavior of
a few-level open system, whose Hamiltonian can occa-
sionally depend on the time via some time-dependent
energy coupling (due, e.g., to environmental random
fluctuations or some time-dependent external force),
is generally intractable [52]. Furthermore, typically to
most chaotic systems, the form of the time-dependent
Hamiltonian not straightforwardly to be defined is al-
most unpredictable. Only some statistical properties
of stochastic trajectories of the temporal behavior of
quantum energy levels can be measured and described
sufficiently accurately [53].

Thus, even using both the nonequilibrium den-
sity matrix method and the Nakajima–Zwanzig
projection-operator method does not offer a clear an-
swer how to strictly describe the kinetic behavior, as
well as the dynamics of a nanoscopic system contact-
ing with the changeful noisy environment. The rea-
son for this is that these approaches do not provide
a unique solution and generally require employing
the additional approximations for the practical im-
plementation. Such approximations should be based
upon the other specific methods, particularly those
consistently providing a coarse-graining of the sys-
tem with the kinetics framework would be compati-
ble with reduced system’s description on the relevant
time scales in a mathematically simple, but physi-
cally correct form. Hence, to proceed further in find-
ing a solution of the GME (3) should be a method
that assumes the hierarchy of time scales for mak-
ing consistent averages of the overall dynamics of the
nonequilibrium density matrix [54].

2.2. Method of hierarchy of time scales

In quantum mechanics, the eigenstate vectors are not
accessible for the straightforward observation. The
same is so for the density matrices in the unitary (re-
versible) quantum dynamics of a closed system. Ho-
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wever, in both cases, one can conveniently deal with
the mathematical expectations by making the cor-
responding averages of the physical quantities of in-
terest over the respective state vectors and matri-
ces. On the other hand, in the open system, this
very simple realization, often being much compli-
cated, becomes indefinite or even unpredictable in
many cases. Therefore, to overcome this difficulty,
one needs to have recourse for establishing the rule
of primarily ordering and successively decomposing
the averaging procedures involved in employing the
calculations of one- and many-point functionals.

Let us consider the example. It is well known that
the exact relation of the nonequilibrium density ma-
trix 𝜌0(𝑡) to the observable ensemble-averaged prob-
ability of finding the open system 𝐴 in its mth quan-
tum state (or a population of the mth proper energy
level of the 𝐴) is given by

𝑃𝑚(𝑡) = ⟨⟨< 𝑚|𝜌0(𝑡)|𝑚 >⟩⟩. (5)

Here, the symbol ⟨⟨...⟩⟩ denotes the stochastic av-
eraging of stochastically non-averaged populations
𝑝𝑚(𝑡) =< 𝑚|𝜌(𝑑)0 (𝑡)|𝑚 > due to the exact relation
< 𝑚|𝜌(𝑑)0 (𝑡)|𝑚 >=< 𝑚|𝜌0(𝑡)|𝑚 >, while < 𝑚|...|𝑚 >
is the statistical ensemble averaging over the nonequi-
librium eigenstate vectors applied to the diagonal el-
ements of the density matrix 𝜌

(𝑑)
0 (𝑡) = 𝑇𝑑𝜌0(𝑡). The

latter is obtained according to the action of the di-
agonal projection operator 𝑇𝑑 that, together with
its off-diagonal counterpart 𝑇𝑛𝑑 = 𝐼 − 𝑇𝑑, can ex-
pand any operator into its diagonal (respectively, off-
diagonal) component, whose matrix elements are just
the state populations (respectively, the coherences of
states). In (5), one assumes, in fact, a perfect order of
averaging: at first, to perform the statistical ensemble
averaging with diagonalizing the density matrix and
then defining, by its diagonal elements, the eigenen-
ergy levels found at each time instant, and only then
to provide the stochastic averaging over the random
realizations of the positions of these levels. Therefore,
this example means that there will be a particular
relation between the characteristic times, at which
these operations are done. In other words, the time
required for making the statistical average has nec-
essarily to be much less than that for the stochastic
average.

Another example is a decoupling relation for the
stochastic averaging procedure. In many situations,

there may be the need to factorize the averaging of
products of the two-time stochastic functionals. To
circumvent this problem, we need to use the steady-
state approximation and then make the average of
separate factors. For the some stochastically variable
stationary functional 𝑓𝑚(𝑡, 𝑡′) revealing fast random
alternations and the non-averaged population 𝑝𝑚(𝑡)
varying more slowly, this approximation yields

⟨⟨𝑓𝑚𝑚′(𝑡, 𝑡′)𝑝𝑚(𝑡′)⟩⟩ ≡ ⟨⟨𝑓𝑚𝑚′(𝑡, 𝑡−Δ𝑡)𝑝𝑚(𝑡−Δ𝑡)⟩⟩ ≈
≈ 𝐹𝑚𝑚′(Δ𝑡)𝑃𝑚(𝑡). (6)

Here,

𝐹𝑚𝑚′(Δ𝑡) = ⟨⟨ 𝑓𝑚𝑚′(𝑡, 𝑡−Δ𝑡)⟩⟩ (7)

is the stochastically averaged correlation function
changing on fast stochastic intervals Δ𝑡 = 𝑡−𝑡′, while
𝑃𝑚(𝑡) = ⟨⟨𝑝𝑚(𝑡)⟩⟩ is the much slower stochastically
averaged population appeared as a result of the for-
mal expansion 𝑃𝑚(𝑡−Δ𝑡) = exp[−Δ𝑡(𝑑/𝑑𝑡)]𝑃𝑚(𝑡) ≈
≈ exp(−𝜅relΔ𝑡)𝑃𝑚(𝑡) ≈ 𝑃𝑚(𝑡). As one sees, this
example establishes the other type of relation be-
tween nanosystem’s characteristic times. Namely, on
the short-time scale, Δ𝑡 of steadying fast changes in
the energy level stochastic variation completing the
change in level populations with far slower relaxation
rate 𝜅rel ≪ (Δ𝑡)−1 can safely be neglected. The latter
conclusion is supported by the well-known observa-
tion that, in the Born approximation for an expansion
of the evolution dynamics over the relaxation inter-
action 𝑉 to the second order, the steady-state fast
intermittent process 𝑓𝑚(𝑡, 𝑡′) does not introduce any
noticeable change in a slow relaxation kinetics of the
population 𝑃𝑚(𝑡), if observed at the short times (5)–
(7) [40]. Hence, the main objective is to consistently
describe the kinetics of 𝑃𝑚(𝑡), by using the GME (3)
endowed with approximations (5)–(7) that can follow
from the supposed hierarchy of time scales.

For being referred to as consistent, such a hierar-
chy of the time scales in nanosystems can be reduced
to three most relevant ones – chaotic, stochastic, and
transient – attributed with the corresponding char-
acteristic times 𝜏ch, 𝜏st and 𝜏tr, respectively, to be
related by

𝜏ch ≪ 𝜏st ≪ 𝜏tr. (8)

On the first time scale, the microscopic structure of
the Hamiltonians of the whole closed system 𝐶, con-
ditioned with factorization of its density matrix, is
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formed. On the second time scale, the stationary dis-
tribution for random fluctuations of energy level posi-
tions in the open part 𝐴 of the 𝐶 is complete. On the
third time scale, the averaged probabilities of tran-
sitions between the levels of the part 𝐴 embodied in
the evolution of level populations are balanced. The
price to pay for using the time scales (8) is that
one does not regard the evolution of 𝐴 traced ex-
actly at every instant any more. Instead, one follows
up the evolution only subsequent to the chaotic time
𝑡 > 𝜏ch and only with a stationary distribution of
random fluctuations of energy levels, which must be
completed at the times 𝑡 ≥ 𝜏st independently of ini-
tial conditions. Moreover, for the nanosystem to be
ergodic, one should suppose this stationary distribu-
tion unique [55], particularly so as to be a Cauchy-
type distribution or a Lorenz-line-shape distribution
[56]. Note that, solely subsequent to those periods,
i.e., at intermediate times 𝑡 ≫ 𝜏st ≫ 𝜏ch, one could
be rigorous in saying something about the transient
kinetics of steady-state populations of the 𝐴 at the
times 𝑡 ≥ 𝜏tr, given initial conditions that are com-
patible with chaotic and stochastic boundary condi-
tions. Therefore, in order to understand the behavior
of 𝐴 in stricter terms, making a dynamic average over
the chaotic and stochastic processes at intermediate
times needs to be associated with the physical pro-
cesses, to which these chaotic and stochastic times
would be characterized.

As such, the chaotic attribute must indicate that,
to proceed further from the very short times 𝑡 ≪ 𝜏ch,
at which the 𝐴 energy levels are intrinsically highly
correlated to the chaotic times 𝑡 ≈ 𝜏ch, one will reduce
the groups of strongly interacted levels to the effec-
tively uncoupled ones and then chaotize them in ac-
cordance with some pre-existed distribution (e.g., the
Gaussian one). Thus, the chaotic time is expected to
be close to the interaction/encounter/scattering time
or to the time of establishment of a local equilibrium
within 𝐴 with a highest physical rate. On the other
hand, for the highly coherent dynamics of 𝐴, the ini-
tial chaotization implies that the individual positions
of energy levels become not time-independent, but
rather statistically distributed. There is, no doubt,
a situation of modeling such level positions micro-
scopically unchanged during the elapsed times be-
tween two successive encounters. Therefore, if micro-
scopically treating the problem, one can additionally
stochastize the eigenenergy levels of the Hamiltonian

of 𝐴 on such a stochastic coupling time scale (inverse
encounter rate scale), which has so to be largely ex-
tended from both the corresponding relaxation tran-
sition time and the pre-supposed random chaotic time
such as 𝜏st ≪ 𝜏tr in (6) and 𝜏st ≫ 𝜏ch in (5), respec-
tively, or as in (8), jointly.

2.3. Method of shortening of description

In physics, quantitatively treating nanoscale systems,
one recognizes that the hardness of the problem de-
pends on the complexity of the description. For ex-
ample, in the small 𝐴 characterized by 𝑀 + 1 levels
𝑚 = 0, 1, ...,𝑀 with energies 𝐸𝑚, the description of
the equilibrium population 𝑃∞

𝑚 of levels correspond-
ing to the Boltzmann–Gibbs distribution requires 𝑀
state variables, say, the energy differences Δ𝐸𝑚𝑚′ =
= 𝐸𝑚 − 𝐸𝑚′ counted from the lower level bound
usually let equal zero: 𝐸𝑚′=0 = 0. These form the
oscillation time scale 𝜏os = {|Ω−1

𝑚𝑚′ |} with Ω𝑚𝑚′ =
= Δ𝐸𝑚𝑚′/~ being the natural oscillation frequencies
associated with the energies of 𝐴. Rather, describing
the time-dependent behavior of the nonequilibrium
level population 𝑃𝑚(𝑡) expands this set of state vari-
ables to a far greater, possibly exponentially great,
number of independent parameters, say, the probabil-
ities 𝑊𝑚𝑚′ of transitions from level 𝑚 to level 𝑚′ ̸= 𝑚
constrained by the condition of detailed balance (the
principle of microscopic reversibility) [57, 58]. These
are brought about by the perturbations of 𝐴 induced
by its weak interaction 𝑉 with 𝐵 occurring on the
transition time scale 𝜏tr = {𝑊−1

𝑚𝑚′}. Here, the main
problem is to define a complete set of time constants
that will be characteristic of all relaxation transitions
between and irreversible decays of the different energy
levels of 𝐴. However, finding these constants requires
solving a set of 𝑀 + 1 ordinary differential equations
for generally non-conserved level populations 𝑃𝑚(𝑡)
with the exponentially large number of free parame-
ters and the given initial conditions, which comprises
the hard “number-of-states” problem [59]. Although
the locally Lyapunov-stable solution to this problem
always exists [60, 61], to perform an exact calculus
of the 𝐴 kinetics is often unnecessary and expensive
computationally. Instead, one intends to understand
how the potentially significant number 𝑀+1 of levels
is correlated so that the descriptions of both micro-
scopically reversible and macroscopically irreversible
kinetics are shortened to these for only a few, possi-
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bly two-three most relevant effective levels; and how
to control the correlations between levels in order to
be consistent in associating the calculated amplitudes
of level populations with the thermodynamic quasi-
averages like the level dimensionality and particles’
concentration. Note that this is in a direct correspon-
dence to Bogolyubov’s procedure of shortening of the
description of nonequilibrium systems originally for-
mulated as the principle of weakening of correlations
in solving the initial value problem for the infinite-
state integral differential equations, which is equiv-
alent to a procedure of contracting of the number
of independent variables in the boundary condition
problem for these equations in a distant past, by bas-
ing on the idea of a hierarchy of relaxation times in
the system [62–65].

2.4. Method of stochastic averaging

This is the case for many functionally significant
nanoscale systems that to provide their specific de-
scription on the different time and length scales
with a necessary accuracy requires giving the spe-
cific sense to the otherwise generally random fluctu-
ation processes inevitably observable at the level of
experimental data precision. To surmount such insuf-
ficiency, one necessitates the correct representations
of stochastic phenomena within the limited number of
effective parameters that adequately characterize the
distributions of random amplitudes and frequencies,
as well as biasing for signals. However, when one is
interested in obtaining the exact analytical results of
stochastic averaging, two general scenarios for provid-
ing the quantitative analysis can be pointed out. The
one scenario deals with modeling a stochastic process
by solely discrete random jumps like as in the Kubo–
Anderson or kangaroo process [66, 67], while another
scenario does with representing it by a continuous
time process like the Ornstein–Uhlenbeck process or
a Gaussian colored noise [67, 68]. Several important
calculations on both scenarios have been done in last
decades (see, e.g., [32,34,42–44,47,54] and references
therein). To signify the progress achieved in the field
thus far, let us accomplish the method of stochastic
averaging on specific examples in more details.

Consider, for instance, a time variation of the sto-
chastic value 𝛼(𝑡) that manifests the dichotomous or
trichotomous discrete random Markov process of the
kangaroo type (cf. Fig. 1). Let each deviation 𝜎𝑗 of

Fig. 1. Examples of two random processes performing dis-
crete jumps between the fixed levels 𝜎𝑗 with the stochastic
intervals 𝑇

(𝑖)
𝑗

the random quantity 𝛼(𝑡) be equipped with the prob-
ability 𝑤𝑗 = 𝑇𝑗/

∑︀𝑁
𝑗=1 𝑇𝑗 , where 𝑇𝑗 = 𝜈−1

𝑗 is the
mean stochastic life-time for the 𝑗th discrete state
of 𝛼(𝑡); 𝑗 = 1, ..., 𝑁 ; so that 𝜈𝑗 is the respective es-
cape frequency. In the theory of discrete stochastic
processes [69], the main problem is that, given distri-
butions for 𝜎𝑗 and 𝜈𝑗 , to provide the exact stochastic
averaging of the products of some stochastic quanti-
ties by representing the solution in the general form

⟨⟨𝛼(𝑡)𝑓(𝑡)⟩⟩ = −𝑖�̇� (𝑡), (9)

without using the decomposition approximation like
(6). Here, 𝑓(𝑡) ≡ 𝑓 [𝛼(𝑡); 𝑡] stands for the stochas-
tic functional being a dynamic variable obeying the
Kubo oscillator equation [70]

𝑓(𝑡) = 𝑖𝛼(𝑡)𝑓(𝑡), (10)

while

𝐹 (𝑡) ≡ ⟨⟨𝑓(𝑡)⟩⟩ = ⟨⟨exp[𝑖
𝑡∫︁

0

𝛼(𝑡′)𝑑𝑡′⟩⟩, (11)

is the stochastically averaged formal solution of
Eq. (10). Since this equation is inherent in many of
the stochastic problems of physics [66, 68], the av-
eraged quantity 𝐹 (𝑡) (11), representing the stochas-
tically averaged characteristic functional of the ran-
dom variable 𝛼(𝑡), is considered as the sought closed
solution.

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 7 633



V.I. Teslenko, E.G. Petrov

Following to the Brissaud–Frish approach [71], the
Laplace-transform 𝜑(𝑠) =

∫︀∞
0

𝑒−𝑠𝑡𝐹 (𝑡)𝑑𝑡 of 𝐹 (𝑡) can
be found from the equation

𝜑(𝑠) = 𝜑0(𝑠) + 𝜑1(𝑠)
1

⟨⟨𝜈⟩⟩ − 𝜑2(𝑠)
𝜑1(𝑠), (12)

where ⟨⟨𝜈⟩⟩ =
∑︀

𝑗 𝑤𝑗𝜈𝑗 is the mean escape frequency
of the random quantity and

𝜑𝑛(𝑠) =
∑︁
𝑗

𝑤𝑗

𝜈𝑛𝑗
(𝑠+ 𝜈𝑗) + 𝑖𝜎𝑗

(13)

is the partial contribution. With Eq. (13), Eq. (12)
reduces to the form 𝜑(𝑠) = Φ(𝑠)/Ψ(𝑠) with Φ(𝑠) and
Ψ(𝑠) being the polynomials in 𝑠. Thus, the general
form for the averaged function 𝐹 (𝑡) reads

𝐹 (𝑡) =
∑︁
𝑗

exp(𝑠𝑗𝑡)

𝑛(𝑗)∑︁
𝑙=1

𝑡𝑙−1

(𝑙 − 1)!
×

× lim
𝑠→𝑠(𝑗)

𝑑𝑙−1

𝑑𝑠𝑙−1

[︁
𝜑(𝑠)(𝑠− 𝑠𝑗)

𝑛(𝑗)
]︁
, (14)

where 𝑠1, 𝑠2, ..., 𝑠𝑁 are the roots of the polynomial
Ψ(s), and 𝑛(𝑗) is the multiplicity of the 𝑗th root
𝑠(𝑗) ≡ 𝑠𝑗 .

For applying (12)–(14) to the cases of dichoto-
mous and trichotomous processes, one has to iden-
tify both the random 𝛼(𝑡) and the averaged 𝐹 (𝑡)
quantities with the corresponding random frequency
shift 𝜔𝑚𝑚′(𝑡) = [𝜀(𝑡)𝑚 − 𝜀𝑚′(𝑡)]/~ between two lev-
els 𝑚 and 𝑚′ ̸= 𝑚 having the time-dependent energy
𝐸𝑚(𝑡) = 𝐸𝑚 + 𝜀𝑚(𝑡) with the stochastic addition
𝜀𝑚(𝑡), and the averaged correlation function 𝐹𝑚𝑚′(𝑡)
(6) of stochastically variable positions of these levels,
respectively.

a. Dichotomous case. An example of the random
behavior of 𝜔𝑚𝑚′(𝑡) ≡ 𝛼(𝑡) having two possible re-
alizations 𝜎1 and 𝜎2 is depicted in the upper part of
Fig. 1. The corresponding probabilities of these real-
izations are 𝑤1 = 𝜈2/(𝜈1+𝜈2) and 𝑤2 = 𝜈1/(𝜈1+𝜈2),
with each escape frequency 𝜈𝑗 = 𝑇−1

𝑗 expressed via
the mean escape time 𝑇𝑗 = lim

𝑡→∞
(1/𝑡)

∑︀
𝑘 Δ𝑇

(𝑘)
𝑗 and

the random time-interval Δ𝑇
(𝑘)
𝑗 , respectively. Using

(12) and (13) gives

𝜑(𝑠) = {𝑠+ 𝜈𝑐 + 𝑖[⟨⟨𝜔⟩⟩+Δ𝜎(𝑤2 − 𝑤1)]} /
/
{︀
(𝑠+ 𝑖⟨⟨𝜔⟩⟩)2 + (𝑠+ 𝑖⟨⟨𝜔⟩⟩)[𝜈𝑐 + 𝑖Δ𝜎(𝑤2 − 𝑤1)] +

+Δ𝜎2𝑤1𝑤2

}︀
, (15)

where ⟨⟨𝜔⟩⟩ =
∑︀

𝑗==1,2 𝑤𝑗𝜎𝑗 , 𝜈𝑐 = (𝜈1 + 𝜈2)/2,
and Δ𝜎 = 𝜎1 − 𝜎2 correspond to the mean stochas-
tic realization of 𝜔𝑚𝑚′(𝑡) ≡ 𝛼(𝑡), the arithmetic
mean frequency, and the difference between stochas-
tic realizations, respectively. Determining the roots
𝑠1,2 = −𝑖⟨⟨𝜔⟩⟩−𝜅1,2 of the polynomial in the denom-
inator of (15) finally yields

𝐹 (𝑡) = − exp(−𝑖⟨⟨𝜔⟩⟩𝑡)
[︀
𝜅2 exp(−𝜅1𝑡)−

−𝜅1 exp(−𝜅2𝑡)
]︀
(𝜅1 − 𝜅2)

−1, (16)

where

𝜅1,2 = (1/2) {(𝜈𝑐 ± 𝑞+) + 𝑖[Δ𝜎(𝑤1 − 𝑤2)± 𝑞−]}, (17)

and
𝑞± =

1√
2

√︀
𝑞2 ± (𝜈2𝑐 −Δ𝜎2);

𝑞2 =
√︀
(𝜈2𝑐 −Δ𝜎2)2 + 4𝜈2𝑐Δ𝜎2(𝑤2 − 𝑤1).

(18)

In the case of a symmetric dichotomous process,
when 𝜈1,2 ≡ 𝜈; 𝜎1,2 = ±𝜎; 𝑤1,2 ≡ 1/2 and ⟨⟨𝜔⟩⟩ = 0,
the faster and slower rate constants (17) in (16) fully
coincide with the corresponding roots in (15), re-
ducing them to the well-known form 𝜅1,2 = 𝑠1,2 =
= −(1/2)(𝜈 ±

√
𝜈2 − 4𝜎2), see [32, 34]. Therefore,

if the energy levels exhibit the high-frequency, but
low-amplitude dichotomous jumps 𝜈 ≫ 2𝜎, then
the respective rates simply become 𝜅1 = −𝜈; 𝜅2 =
= −𝜎2/𝜈. Hence, the main time evolution mostly oc-
curs in this case in the moderately extended charac-
teristic time interval 𝜈−1 ≪ Δ𝑡 ≪ 𝜎−1 with

𝐹 (𝑡) ≈ exp[−(𝜎2/𝜈) 𝑡] (19)

describing the very high frequency (quantum) limit
for the stochastically averaged coarse-grained dynam-
ics in (10), (11).

b. Trichotomous case. A random behavior of
𝜔𝑚𝑚′(𝑡) ≡ 𝛼(𝑡) is represented in the lower case of
Fig. 1, with realizations of 𝛼(𝑡) given by the quanti-
ties 𝜎0(= 0); 𝜎+ and 𝜎−. The probability of the 𝑗th
realization 𝑤𝑗 = 𝑇𝑗/(𝑇0 + 𝑇+ + 𝑇−) is determined by
the mean escape times 𝑇0; 𝑇+, and 𝑇− or, equally,
escape frequencies 𝜈𝑗 = 𝑇−1

𝑗 with 𝑗 = (0,+,−). For
the sake of simplicity, it is enough to consider the
case where the positive and negative deviations, 𝜎+

and 𝜎−, are equal to each other 𝜎± = ±𝜎𝑇 , equally
probable 𝑤± = 𝑤𝑇 , and realized with equal frequen-
cies 𝜈± = 𝜈𝑇 . So, noting that 𝜎0 = 0, we get

𝜑(𝑠) =
[︀
𝑠2 + 𝑠𝜈𝑇 (1 + 𝜉) + 𝑤0𝜎

2
𝑇 + 𝜉𝜈2𝑇

]︀
/
[︀
𝑠3 +
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+ 𝑠2𝜈𝑇 (1 + 𝜉) + 𝑠(𝜎2
𝑇 + 𝜉𝜈2𝑇 ) + 2𝜉𝑤𝑇 𝜈𝑇𝜎

2
𝑇

]︀
, (20)

where 𝜉 = 𝜈0/(𝑤0𝜈0 + 2𝑤𝑇 𝜈𝑇 ) is the relative es-
cape frequency. Since the denominator of (20) has
three roots 𝑠𝑗 , there are three characteristic times
𝜏𝑗 = |𝑠𝑗 |−1 associated with the time evolution with
the slowest time 𝜏slow corresponding to the asymp-
totic behavior of 𝐹 (𝑡) in (11). It follows from (16)
that, on the slowest time scale Δ𝑡 ∼ 𝜏slow, one
achieves the result more general than in (19):

𝐹𝑚𝑚′(𝑡) = exp(−𝛾𝑚𝑚′ 𝑡) (21)

with

𝛾𝑚𝑚′ ∼= 𝜏−1
slow = |𝑠slow| =

2𝜉𝑤𝑇 𝜈𝑇𝜎
2
𝑇

𝜉𝜈2𝑇 + 𝜎2
𝑇

(22)

defining the effective half-width of (or a decay rate
for) the 𝑚,𝑚′-pair of energy levels arisen owing to
their stochastic fluctuations. The same quantity is as-
sociated with the friction coefficient for the move-
ment within the system that, in accordance with
the Stokes law, is proportional to the viscosity of
the environment. In the case of the Anderson–Kubo
trichotomous process where 𝜈0 = 𝜈𝑇 ≡ 𝜈 and so
𝑤0 = 𝑤𝑇 = 1/3, the effective half-width (decay) pa-
rameter (22) reduces to the expression

𝛾𝑚𝑚′ ≈ �̃�2/𝜈 (23)

with �̃� = 𝜎𝑇 /
√
3 and 𝜈 = 𝜈 + (1/4𝜈)𝜎2

𝑇 being
the effective amplitude and frequency parameters of
the trichotomous process, which differ from those,
𝜎 and 𝜈, respectively, for the dichotomous process
(19). This gives a correct calculus of 𝐹𝑚𝑚′(𝑡) (21)
not only in the quantum limit 𝜈 ≫ 𝜎 of fast stochas-
tic fluctuations as in (19), but also in the classical
limit 𝜎 ≫ 𝜈 of moderate stochastic fluctuations re-
alized in nanosystems on a much longer time scale
Δ𝑡 ≫ 𝜈−1 ≫ 𝜎−1 ≫ 𝜈/𝜎2. Thus, in the latter case,
the half-width (decay rate) of (21) turns out to be
insensitive to 𝜎

𝛾𝑚𝑚′ = 4𝜈/
√
3, (24)

whereas in the former case, the same quantity to
within the redefinition of a natural stochastic ampli-
tude �̃� = 𝜎 is equal to the half-width of (19),

𝛾𝑚𝑚′ = 𝜎2/𝜈. (25)

c. Sum of infinitely many dichotomous processes. The
afore-described trichotomous process, being richer as
compared with the dichotomous one in quantitatively
characterizing the stochastic behavior of a nanosys-
tem on the different time scales corresponds, in ef-
fect, to the case of the sum of two identical and
statistically independent dichotomous processes with
stochastic amplitude �̃� and frequency 𝜈. However, in
the case of an infinite sum of dichotomous processes
𝛼𝑗(𝑡) with identical frequencies 𝜈, where the respec-
tive random value 𝛼(𝑡) =

∑︀∞
𝑗=1 𝛼𝑗(𝑡) is regarded

bounded in a sense of having the finite summary dis-
persion 𝜎2 = ⟨⟨[𝛼(𝑡)]2⟩⟩ = lim

𝑁→∞

∑︀𝑁
𝑗=1⟨⟨[𝛼𝑗(𝑡)]

2⟩⟩, us-

ing Eq. (14) for the calculus of the stochastically av-
eraged characteristic functional 𝐹 (𝑡) (11) that has the
infinite number of denominator’s roots becomes im-
practicable. But, according to the central limit the-
orem, this case comprises the Ornstein–Uhlenbeck
noise (which is a Gaussian process) [67], for which
the corresponding functional exactly reads [68]

𝐹 (𝑡) = exp

[︂
−𝜎2

𝜈2
(︀
𝜈𝑡+ 𝑒−𝜈 𝑡 − 1

)︀]︂
. (26)

In a full accordance with cases of both the di-
chotomous (16) and trichotomous (21) processes con-
strained to considering the slowest time scale Δ𝑡 ≫
𝜈−1, the Ornstein–Uhlenbeck process (26) provides
𝐹 (𝑡) to have a half-width (decay rate) being depen-
dent on both 𝜎 and 𝜈 at such extended times 𝑡 ≫ 𝜈−1

like (25). However, contrary to (19) and (23), expres-
sion (26) allows one to correctly cover the extremely
short times 𝑡 ≪ 𝜈−1 as well. Indeed, in this case,

𝐹 (𝑡) = exp(−𝜎2𝑡2/2). (27)

This form directly corresponds to the familiar
Gaussian (or normal) distribution for the characteris-
tic correlation functional (11) [68] with the dispersion
𝜎2 and the apparent half-width

𝛾 = 𝜎
√
2 ln 2 (28)

that now is independent of 𝜈.

2.5. Method of regularization of transitions

Making a stochastic average of random quantities is
the generic situation in physics. Particularly, there is
a crucial necessity in stochastic averaging methods
above, when the regularization procedures are used
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to introduce a definiteness into divergent terms of the
perturbation expansion of a physical quantity of inter-
est in some small parameters [8, 9]. For example, the
hyperbolic-function terms responsible for the appear-
ance of environment-induced transitions in a power
series of the expansion of an evolution operator in
the weak system-environment interaction up to a sec-
ond order are generally ill-defined. Hence, one needs
to provide these terms with a new stochastically aver-
aged parameter able to transform them into the well-
regularized functionals of the Lorenzian or Gaussian
type with the single effective width parameter. This
comprises the core of applying any stochastic aver-
aging methods, consisting, for instance, in the in-
troduction of exponential cut-offs in the correspond-
ing divergent integrals (see, e.g., [32, 42–44, 47]). To
go further in this direction, one can make more
sense for stochastic quantities, by using a thermo-
dynamic model for random fluctuations of the en-
ergy of a harmonic oscillator of characteristic fre-
quency 𝜔𝑐 that relates the dispersion and the fre-
quency of such fluctuations with the corresponding
values (see, e.g. [34, 35, 54]) 𝜎2 = 𝜔2

𝑐𝑛(𝜔𝑐)[𝑛(𝜔𝑐) + 1]
and 𝜈 = 𝜔𝑐[𝑛(𝜔𝑐) + 1/2], respectively. Thus, given a
(𝑚,𝑚′)-pair of energy levels, the effective half-width
(23) reads

𝛾𝑚𝑚′ =
2𝜔𝑐𝑛(𝜔𝑐)[𝑛(𝜔𝑐) + 1]

2𝑛(𝜔𝑐) + 1
. (29)

It is a very remarkable property of this model that,
in the case of classical modes 𝜔𝑐 ≪ 𝑘B𝑇/~, which are
associated with the adiabatic coupling of a nanosys-
tem to an auxiliary molecule oscillating in the giga-
hertz frequency range at room temperature, the both
aforementioned values are reduced to 𝜎2 = (𝑘B𝑇/~)2,
𝜈 = 𝑘B𝑇/~ and so

𝛾𝑚𝑚′ ≈ 𝑘B𝑇/~ ≈ 4× 1013 s−1. (30)

Consequently, for such classical modes, the effec-
tive half-widths in (23)–(25), (28) are of the same
order and enter with a factor close to 1 into Eq. (21)
equivalently for all (𝑚,𝑚′) as

𝐹𝑚𝑚′(𝑡) = exp[(−𝑘B𝑇 /~)𝑡]. (31)

Due to its generality, this equation comprises the
valuable means for providing the truncation reg-
ularization of divergent integrals, when describing

the environment-induced transitions that occur with
slowest relaxation rates 𝜅rel ∼ 𝜏−1

tr , to be much slower
than the energy fluctuation rates 𝜅fluc ∼ 𝜏−1

st ≫ 𝜏−1
tr

at room temperature, according to a hierarchy of time
scales introduced by (8).

There are other important circumstances for
properly attaining the regularization objective in
nanoscopic systems. First, representing a nanosystem
as the small open part of the much bigger closed sys-
tem assumes that the energy levels one involves for
the former (cf. (1)–(4)) do not be inferred determin-
istically but rather chaotically by supposing an aver-
aged position of levels fixed on the very short chaotic
time scale Δ𝑡 ≈ 𝜏ch of femtoseconds, while letting
an immediate position of levels randomly fluctuating
on the longer stochastic time scale Δ𝑡 ≈ 𝜏st ≫ 𝜏ch
of picoseconds. Second, accounting for random fluc-
tuations is made unperturbatively so that using it
to provide the regularization of environment-induced
transitions treated within the second-order perturba-
tion theory in the interaction 𝑉 between the nano-
system and its environment is adequate. Third, since
the dimensionality of the nanosystem (or the num-
ber of most relevant degrees of freedom necessary
to describe the kinetic behavior) grows exponentially
with the number of its states, considering the evo-
lution of not only level populations, but also states
coherences (respective on- and off-diagonal elements
of the nonequilibrium density matrix) is almost un-
decidable and rejected. Finally, last and most, the
nanoscopic systems could generally be considered as
the very flexible and intrinsically disordered nanoob-
jects [72–74]. They can make as very fast diffusive
jumps over their multidimensional energy surfaces by
turning, coiling, bending, twisting, and looping, as
well the relaxation transitions between these surfaces
of forming the covalent and non-covalent bonds. This
leads, in fact, to reducing nanoscale systems to those
having that band energy spectrum, which is com-
posed of a large variety of isolated (local) energy lev-
els of stable and/or meta-stable bound states, as well
as the very narrow bands of quasiisoenergetic energy
levels. Moreover, the latter are becoming only occa-
sionally degenerated, not because of overlapping the
respective nearest-neighboring states between each
other, but owing to the great number of near-degene-
rate weakly interacting configurations present around
nanosystem’s functional groups within the inherently
unstructured disordered regions and in bulk [73, 74].
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Thus, to bear the responsibility in providing a
proper functionality of nanosystems, there are two
principal factors. One is to model the energy level
structure for a system of interest, and another is to
introduce the interaction of such a system with its
environment. However, to provide a capacity for be-
ing constructive, that interaction should be involved
consistently at the different time scales. Indeed, the
highly local interatomic interactions are associated
with the formation of nanosystem’s energy levels at
fast chaotic times. Forcing these levels to adiabat-
ically fluctuate round average positions at moder-
ate stochastic times is rather associated with more
extended van der Waals interactions, whereas in-
ducing nonadiabatic transitions between the levels
at far longer transient times are almost due to
the very weak, highly delocalized interactions of
nanosystem’s states responsible for the slow relax-
ation processes. In these cases, to form the time-
dependent energy levels, to maintain the levels sta-
tionary, and to transit a steady-state level to another
one with the particular rate are in a direct corre-
spondence to the environment-driven, environment-
controlled, and environment-induced processes, re-
spectively. Therefore, to rigorously describe differ-
ent environment-dependent processes at the molec-
ular level necessitates introducing, for nanoscopic
systems, a consistent kinetics framework compatible
with the temporal behavior of the most significant mi-
croscopic, mesoscopic, and macroscopic physical phe-
nomena on the chaotic, stochastic, and transient time
scales (8).

3. Theory

In nanoscopic systems, any dynamic or transient pro-
cess contains contributions from the different types
of environmental vibrations. Some of them define the
common potential energy surfaces involved in tran-
sitions, while the others can be referred to as of a
heath bath. Just due to a coupling with the equili-
brated vibrations of a heat bath, transitions between
the different energy levels of a nanosystem appear
in the form of time-irreversible kinetic processes. The
latter comprise the evolution of nanosystem’s levels
toward the thermal equilibrium, where their popu-
lations obey the Boltzmann relations. However, the
stochastic fields created by the interior motion of
nanosystem’s charged groups significantly influence

the time evolution of state populations. One natural
way to account for these fields is to directly intro-
duce them into the unperturbed nanosystem Hamil-
tonian. This simplifies the quantitative description of
kinetic processes and allows one to use only a lim-
ited number of stochastic field parameters like the
averaged intensity (or amplitude) 𝜎 and the mean
frequency 𝜈 (23), (25).

3.1. Stochastic Hamiltonian

When the exact positions of all atoms in the
nanoscopic system is unknown or even indefinite
(could be the case for many functional macromole-
cules), the modeling of environment-induced transi-
tion processes should be based on general physical
principles embracing the multiple time scales within
the consistent kinetics framework. To practically con-
struct a model, three different types of motion in func-
tional nanoscopic systems and their exterior might
be considered. First, to form the eigenenergy levels
for the nanoscopic system states and the bath states
with regard for the chaotization of the positions of
these levels due to the action of the strongest in-
teractions within the system. This type of motion
is attributed by the shortest time 𝜏ch termed as
chaotic. Second, to force the eigenenergy levels, de-
fined at chaotic times, to adiabatically fluctuate due
to the action of not very strong random fields. This
type of motion, induced by high frequency fluctua-
tions of charged molecular groups, is attributed by
the shorter time 𝜏st so-called stochastic. Third, to
transit some eigenenergy level of the nanosystem to
another one due to a normal vibration (phonon) ex-
change with the heat bath, in result of a weak nonadi-
abatic interaction accounted for in second-order per-
turbation theory. This type of motion, appearing as
the irreversible relaxation process, when the phonon
energy exactly covers the energy level difference, is
attributed with well longer time 𝜏tr named tran-
sient. The three times above are combined into a hi-
erarchy of time scales (8).

Consider now the microscopic model, where na-
nosystem’s eigenenergy levels exhibit the stochastic
shifts caused by the interaction with the surround-
ing structural groups, while the relaxation transitions
between these levels are associated with harmonic vi-
brations (phonons) of the heat bath. Let the respec-
tive Hamiltonian of the whole system (nanosystem +
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+ bath + interaction) have the form

𝐻(𝑡) =
∑︁
𝑚

{︂
𝐸𝑚(𝑡) +

∑︁
𝜆

[︂
𝜅(𝜆)
𝑚 (𝛽+

𝜆 + 𝛽𝜆)+

+ ~𝜔𝜆(𝛽
+
𝜆 𝛽𝜆 + 1/2)

]︂}︂
|𝑚⟩⟨𝑚|+

+
∑︁
𝑚𝑚′

𝑉𝑚𝑚′(1− 𝛿𝑚𝑚′)|𝑚⟩⟨𝑚′|. (32)

Here, 𝐸𝑚(𝑡) = 𝐸𝑚 + 𝜀𝑚(𝑡) is the energy of the
mth nanosystem state (𝐸𝑚 is the adiabatic steady-
state energy held in the absence of a random time-
dependent classical field in nanosystem’s interior,
𝜀𝑚(𝑡) is the addition due to this field), 𝜅(𝜆)

𝑚 is the pa-
rameter that describes the deviation of nuclei along
the 𝜆th normal coordinate from the nuclear equi-
librium position, and 𝜔𝜆 is the 𝜆th vibration mode
(phonon) belonging to the bath Hamiltonian 𝐻𝐵 ,
supposed time-independent, with 𝛽+

𝜆 and 𝛽𝜆 being,
respectively, the operators of creation and annihila-
tion of the corresponding phonon in the heat bath.

In this consideration, the whole system consists of
two basic parts. The first part is the nanoscale sys-
tem (𝐴) with the set of distinct states {|𝑚⟩} and re-
spective time-dependent energies {𝐸𝑚(𝑡)}. The sec-
ond part is the heat bath (𝐵) with a set of non-
interacting vibrational modes {𝜔𝜆}. Both sets are re-
ferred to as of forming at every time instant, but with
advance of the chaotic times Δ𝑡 ≥ 𝜏ch, while the
random alternations of energy levels {𝜀𝑚(𝑡)}, being
regarded less frequent, are completed stationary in
advance of the stochastic times Δ𝑡 ∼ 𝜏st ≫ 𝜏ch. The
transitions between already steady-state levels are de-
termined by the last term in (32) containing the ma-
trix elements 𝑉𝑚𝑚′ . These are modeled separately de-
pending on the character and the intensity of the in-
teraction between the nanosystem and the environ-
ment. However, for most functional nanoscale sys-
tems, this interaction can be considered weak enough,
so that it can be attributed with a sufficiently large
characteristic time of its occurring, namely the tran-
sient time 𝜏tr ≫ 𝜏st ≫ 𝜏ch, in a full accordance with
relation (8). In these cases, it is possible to expand
the interaction in the nuclear displacements (𝛽+

𝜆 −𝛽𝜆)
of the heat bath and then, neglecting the zero-order
term, which is trivial for the eigenstate basis {|𝑚⟩}, to
consider the corresponding linear (one-pnonon) and
nonlinear (multi-phonon) terms of this expansion as
respective perturbations. To accumulate these in a

single term at all orders is the Holstein (polaron-like)
transformation [75, 76] using a unitary matrix 𝑈 =

= exp(
∑︀

𝑚 𝑢𝑚|𝑚⟩⟨𝑚|), with 𝑢𝑚 =
∑︀

𝜆 𝑔
(𝜆)
𝑚 (𝛽+

𝜆 − 𝛽𝜆)
being the operator of nuclear displacements in the
mth state, and 𝑔

(𝜆)
𝑚 = 𝜅

(𝜆)
𝑚 /~𝜔𝜆 is the dimensionless

coupling. Multiplying Eq. (32) from the left by 𝑈 and
from the right by 𝑈+ arrives exactly at Eq. (2), where

𝐻0(𝑡) =
∑︁
𝑚

(︀
𝐸𝑚 + 𝜀𝑚(𝑡)−

∑︁
𝜆

|𝜅(𝜆)
𝑚 |2/~𝜔𝜆

)︀
|𝑚⟩⟨𝑚|

(33)

is the angstrom-scale Hamiltonian, whose eigenenergy
levels include not only the immediate stochastic (sec-
ond term in brackets) but also the polaron-like (third
term in brackets) shifts,

𝐻𝐵 =
∑︁
𝜆

~𝜔𝜆(𝛽
+
𝜆 𝛽𝜆 + 1/2), (34)

is the heat bath Hamiltonian, and

𝑉 =
∑︁
𝑚𝑚′

(1− 𝛿𝑚𝑚′)𝑉𝑚𝑚′ exp(𝑢𝑚𝑚′)|𝑚⟩⟨𝑚′| (35)

is the operator of interaction characterizing the relax-
ation transitions between “phonon-dressed” nanosys-
tem’s states with the operators of nuclear displace-
ments 𝑢𝑚𝑚′ =

∑︀
𝜆 𝑔

(𝜆)
𝑚𝑚′(𝛽

+
𝜆 − 𝛽𝜆) and relative di-

mensionless couplings 𝑔
(𝜆)
𝑚𝑚′ = [𝜅

(𝜆)
𝑚 − 𝜅

(𝜆)
𝑚′ ]/~𝜔𝜆.

Thus, the processes of energy level chaotization
within both the nanosystem and the heat bath are
assumed to be almost due to the strongest physical
interactions immediate in duration and intermittent
in occurrence frequency. On the other hand, the in-
teractions underlying the random fluctuations of en-
ergy levels are supposed less strong in magnitude and
not so rapid in switching time. Yet, these interactions
moderate in frequency are adiabatically slaved with
respect to far weaker interactions embodied in much
slower relaxation transitions between the different en-
ergy levels. Moreover, the former reveal themselves
in regard to the latter not as a stochastic process
of discrete energy shifts, but rather as a stationary
Cauchy (Lorentz-like) distribution of the energy levels
[56] ultimately appearing as a statistically ensemble-
averaged regulator of the environment-induced relax-
ation transition processes.
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3.2. Stochastic equation
for a diagonal part of the nonequilibrium
density matrix

To perform a kinetic analysis of the temporal be-
havior of a nanoscale system, the master equation
for the evolution of the observable level populations
𝑃𝑚(𝑡) (5), being as statistically, as well stochas-
tically averaged, is required. However, practically
achieving this objective is usually done in two steps
[32, 34, 35]: to derive a statistically averaged equa-
tion for the stochastically non-averaged diagonal part
of the nonequilibrium density matrix and to provide
the averaging of such a stochastic equation to ob-
tain the master equation for state populations. On
the first step, one usually starts from the stochastic
Liouville–von Neumann equation in its common form
(1) and acts on it by the projection operators 𝑇𝑑 and
𝑇𝑛𝑑 = 𝐼 − 𝑇𝑑. This generates the following coupled
system of differential equations for the corresponding
diagonal and off-diagonal parts of the density matrix,
𝜌(𝑑)(𝑡) = 𝑇𝑑 𝜌(𝑡) and 𝜌(𝑛𝑑)(𝑡) = 𝑇𝑛𝑑 𝜌(𝑡), respectively:⎧⎪⎪⎨⎪⎪⎩
�̇�(𝑑)(𝑡) = −𝑖𝑇𝑑𝐿𝑉 𝜌

(𝑛𝑑)(𝑡),

�̇�(𝑛𝑑)(𝑡) = −𝑖𝑇𝑛𝑑[𝐿0(𝑡) + 𝐿𝑉 ]𝜌
(𝑛𝑑)(𝑡)−

− 𝑖𝐿𝑉 𝜌
(𝑑)(𝑡).

(36)

Substituting the second equation into the first one
leads to the integral differential equation for the di-
agonal part of the density matrix

�̇�(𝑑)(𝑡) = −
𝑡∫︁

0

𝑑𝑡′
[︁
𝑇𝑑𝐿𝑉 𝑆(𝑡, 𝑡

′)𝐿𝑉 𝜌
(𝑑)(𝑡′)

]︁
, (37)

where

𝑆(𝑡, 𝑡′) = exp

⎡⎣−𝑖

𝑡∫︁
𝑡′

𝑑𝜏𝑇𝑛𝑑 (𝐿0(𝜏) + 𝐿𝑉 )

⎤⎦ (38)

is the stochastic evolution operator. In view of the
definition of the nonequilibrium density matrix of a
nanoscopic system Eq. (37) reads

�̇�
(𝑑)
0 (𝑡) = 𝑡𝑟𝐵 �̇�

(𝑑)(𝑡′). (39)

However, owing to both the factorization con-
dition 𝜌(𝑡) = 𝜌0(𝑡)𝜌𝐵 for the density matrix of
the whole system and Boltzmann’s equilibrium con-
dition for the density matrix of the heat bath

𝜌𝐵 = exp(−𝐻𝐵/𝑘B𝑇 )/𝑡𝑟𝐵 exp(−𝐻𝐵/𝑘B𝑇 ) well-
established in advance of chaotic times Δ𝑡 ≥ 𝜏ch
within a hierarchy (8), one can safely execute the
coarse-graining of the generally complicated stochas-
tic equation (39):

�̇�
(𝑑)
0 (𝑡) = −

𝑡∫︁
0

𝑑𝑡′�̂�(𝑡, 𝑡′)𝜌
(𝑑)
0 (𝑡′), (40)

where
�̂�(𝑡, 𝑡′) = 𝑡𝑟𝐵

(︁
𝑇𝑑𝐿𝑉 𝑆(𝑡, 𝑡

′)𝐿𝑉 𝜌𝐵

)︁
(41)

is the stochastic transition kernel superoperator.

3.3. Stochastic kinetic equation
for non-averaged state populations

Equations (40) and (41) can be treated as the ba-
sic coarse-grained stochastic equations for a mathe-
matically strict and physically rigorous description of
environment-induced relaxation transitions between
nanosystem’s levels on the transient time scale Δ𝑡 ∼
∼ 𝜏tr within the hierarchy of time scales (8). The form
of (40) is very convenient for providing the expansion
procedures in the interaction 𝑉 of the nanoscopic sys-
tem with the environment. Particularly, in the Born
approximation, one can simply provide 𝑉 = 0 for the
evolution superoperator (38), which yields

�̇�
(𝑑)
0 (𝑡) = −(1/~2)

𝑡∫︁
0

𝑑𝑡′ 𝑡𝑟𝐵

{︂
𝑇𝑑[𝑉,𝑈(𝑡, 𝑡′)

[︂
𝑉, 𝜌

(𝑑)
0 (𝑡′)×

× 𝜌𝐵

]︂
𝑈+(𝑡, 𝑡′)]

}︂
, (42)

where 𝑈(𝑡, 𝑡′) = �̂� exp
[︁
−(𝑖/~)

∫︀ 𝑡

𝑡′
𝑑𝜏 (𝐻0(𝜏) +𝐻𝐵)

]︁
is the respective zero-order two-time evolution super-
operator.

Since we are mainly interested in the environment-
induced relaxation processes occurring in a nanosco-
pic system on the transient time scale, let us, in what
follows, consider only those transitions between the
different energy levels, which are caused by their weak
coupling to bath phonons. In this case, the “dressed”
transition operators 𝑉𝑚𝑚′ exp(𝑢𝑚𝑚′) with the off-
diagonal relaxation interaction (35) are considered as
perturbations [34, 35]. Employing perturbation the-
ory to a second order on these operators, one derives

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 7 639



V.I. Teslenko, E.G. Petrov

the stochastic kinetic equation for the non-averaged
level populations

𝑝𝑚(𝑡) = −
∑︁
𝑚′

𝑡∫︁
0

𝑑𝑡′
[︂
𝐺𝑚𝑚′(𝑡, 𝑡′)𝑝𝑚(𝑡′)−

−𝐺𝑚′𝑚(𝑡, 𝑡′)𝑝𝑚′(𝑡′)

]︂
, (43)

where the kernel

𝐺𝑚𝑚′(𝑡, 𝑡′) = (2/~2)|𝑉𝑚′𝑚|2𝑅𝑒
{︀
𝑄𝑚𝑚′(𝑡− 𝑡′)×

× 𝑓𝑚𝑚′(𝑡, 𝑡′) exp[𝑖Ω𝑚𝑚′(𝑡− 𝑡′)]
}︀

(44)

exhibits a random behavior through the frequency
stochastic process 𝜔𝑚𝑚′(𝜏) = [𝜀𝑚(𝜏) − 𝜀𝑚′(𝜏)]/~ in-
volved in the functional

𝑓𝑚𝑚′(𝑡, 𝑡′) = exp

⎧⎨⎩𝑖
𝑡∫︁

𝑡′

𝑑𝜏 𝜔𝑚𝑚′(𝜏)

⎫⎬⎭, (45)

while Ω𝑚𝑚′ = (1/~)
(︁
𝐸𝑚 −

∑︀
𝜆 |𝜅

(𝜆)
𝑚 |2/~𝜔𝜆 − 𝐸𝑚′+

+
∑︀

𝜆 |𝜅
(𝜆)
𝑚′ |2/~𝜔𝜆

)︁
is the “dressed” natural oscil-

lation frequency and 𝑄𝑚𝑚′(𝑡 − 𝑡′) = 𝑡𝑟𝐵{𝜌𝐵×
× exp[𝑢𝑚𝑚′(0)] exp[𝑢𝑚𝑚′(𝑡 − 𝑡′)]} is the correlation
function reflecting a coupling to the heat bath. If the
bath is associated with non-interacting harmonic os-
cillators (phonon normal modes), then

𝑢𝑚𝑚′(𝜏) =
∑︁
𝜆

𝑔
(𝜆)
𝑚𝑚′

[︀
𝑏+𝜆 exp(−𝑖𝜔𝜆𝜏)− 𝑏𝜆 exp(𝑖𝜔𝜆𝜏)

]︀
.

(46)
So, we have

𝑄𝑚𝑚′(𝜏) = exp [−Φ𝑚𝑚′(𝜏)], (47)

where

Φ𝑚𝑚′(𝜏) =
1

2𝜋

∞∫︁
0

𝑑𝜔
𝐽𝑚𝑚′(𝜔)

𝜔2

[︂
coth

~𝜔
𝑘B𝑇

×

× (1− cos𝜔𝜏) + 𝑖 sin𝜔𝜏

]︂
(48)

is of basic importance for any calculations done within
the spin-boson model [77–79]. In Eq. (48),

𝐽𝑚𝑚′(𝜔) = 2𝜋
∑︁
𝜆

(︁
𝑔
(𝜆)
𝑚𝑚′𝜔𝜆

)︁2
𝛿(𝜔 − 𝜔𝜆) (49)

is the spectral function that includes the informa-
tion on both the normal-mode spectral properties of
nanoscopic systems and characteristics of their cou-
pling to the bath vibrational modes.

The representation of 𝑄𝑚𝑚′(𝜏) in (47) is not unique
and can be presented in the equivalent form

𝑄𝑚𝑚′(𝜏) = exp(−𝐷𝑚𝑚′)ϒ𝑚𝑚′(𝜏), (50)

where 𝐷𝑚𝑚′ =
∑︀

𝜆(𝑔
(𝜆)
𝑚𝑚′)2[2𝑛(𝜔𝜆) + 1] specifies the

temperature-dependent Debye–Waller factor, while
the function

ϒ𝑚𝑚′(𝑡) =

∞∫︁
−∞

𝑑𝜔
∏︁
𝜆

exp(𝑖𝜔𝑡)

∞∑︁
𝑞(𝜆)=−∞

𝐼|𝑞(𝜆)|(𝑧𝜆)×

×
[︂

𝑛(𝜔𝜆)

𝑛(𝜔𝜆) + 1

]︂𝑞(𝜆)/2
𝛿

(︃
𝜔 −

∑︁
𝜆

𝑞(𝜆)𝜔𝜆

)︃
(51)

defines the time-dependence of the correlation func-
tion 𝑄𝑚𝑚′(𝑡 − 𝑡′) in (44), with 𝐼𝑞(𝑧) and 𝑛(𝜔) =
= [exp(~𝜔/𝑘B𝑇 ) − 1]−1 being the modified Bessel
function and the Bose distribution function, both,
respectively, being temperature-dependent. The cou-
pling to the phonons is concentrated in the param-
eter 𝑧𝜆 ≡ 2(𝑔

(𝜆)
𝑚𝑚′)2

√︀
𝑛(𝜔𝜆)[𝑛(𝜔𝜆) + 1], while index

𝑞(𝜆) indicates the number of phonons of the 𝜆th mode
that accompany the transition. The minimal number
of phonons is equal to 1, so that

∑︀
𝜆 𝑞(𝜆) ≥ 1. Form

(50) is advantageous with respect to (47), particularly
in the case of small nuclear displacements along the
𝜆th normal coordinate, when 𝑧𝜆 ≪ 1. This allows us
to get the asymptote 𝐼|𝑞|(𝑧) ≈ (𝑧/2)|𝑞|/|𝑞|!, pointing
to a single-phonon process as the main contribution to
the transition. Therefore, setting both 𝐼0(𝑧 ≪ 1) ≈ 1
and 𝐼1(𝑧 ≪ 1) ≈ (𝑧/2) and regarding the other terms
in (51) insignificant reduce it to

ϒ𝑚𝑚′(𝑡) =
∑︁
𝜆

(︁
𝑔
(𝜆)
𝑚𝑚′

)︁2
𝑅𝜆(𝑡), (52)

where 𝑅𝜆(𝑡) = 𝑛(𝜔𝜆) exp(𝑖𝜔𝜆𝑡) + [𝑛(𝜔𝜆) + 1]×
× exp(−𝑖𝜔𝜆𝑡) is the respective one-phonon correla-
tion function. Moreover, since exp(−𝐷𝑚𝑚′) ≈ 1 in
this case, one can further specify the stochastic ki-
netic equation (43), (44) by solely a single-phonon
kernel simply setting

𝑄𝑚𝑚′(𝑡− 𝑡′) =
∑︁
𝜆

(︁
𝑔
(𝜆)
𝑚𝑚′

)︁2 {︀
𝑛(𝜔𝜆) exp[𝑖𝜔𝜆(𝑡− 𝑡′)] +

+ [𝑛(𝜔𝜆) + 1] exp[−𝑖𝜔𝜆(𝑡− 𝑡′)]
}︀
. (53)
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3.4. Stochastically averaged master equation

Deriving the equation for observable populations
𝑃𝑚(𝑡) necessitates to provide an averaging of the sto-
chastic equation (43) within a hierarchy of time scales
(8). To this end, the second inequality in (8) implies
that the duration of an observation of a target pop-
ulation, provided for a long transient time 𝜏tr, is as-
sumed, in fact, to be much longer than a stochastic
time 𝜏st, which so bounds, by itself, the very capa-
bility of such observation. This factorizes the averag-
ing of products of the stochastic functionals involved
in (43), by employing the possibility for making an
average of their separate stationary parts like in (6)
with determining both the corresponding observable
population 𝑃𝑚(𝑡) (5) and the stochastic correlation
functional 𝐹𝑚𝑚′(𝑡) (7), respectively.

There are two additional problems in practically
performing the calculation of the populations 𝑃𝑚(𝑡)
basing on the otherwise strict equation (43). First,
the order of taking on the calculus of (43) is of quite
basic importance: at first to take a sum over the in-
finite number Λ → ∞ of phonon modes 𝜆 = 1, ...,Λ,
which diverges in general, and only then to take the
integral over time 𝑡′ in the interval from 0 to 𝑡. To
change the orders of summing and integrating in (43),
we must make assumptions about the interrelation
between 𝛾𝑚𝑚′ in 𝐹𝑚𝑚′(𝑡) (7) and {|Ω𝑚𝑚′ |} in (44),
as well as the dependence of the reduced environment-
induced coupling parameters on 𝜆:

|𝜒𝜆
𝑚𝑚′ |2 = |𝑉𝑚𝑚′ |2[𝑔(𝜆)𝑚𝑚′ ]

2. (54)

Second, setting kernel (53) in Eqs. (43) and (44)
assumes that to cover the difference between energy
levels involved in the relaxation of the nanosystem is
mainly the process of creation or annihilation in the
bath of only a one phonon, while the role of multi-
phonon processes is minor. But this assumption is not
critical for describing the transition processes caused
by the weak coupling of nanosystem’s levels to bath
vibrations and can be relaxed in the Born approxi-
mation over the nonadiabatic interaction [80, 81].

The both aforementioned arguments allow one to
safely turn the upper limit of the integral over 𝑡′ in
(43) to infinity on the transient time scale. As a re-
sult, by using (29) and (32) in order to make the av-
erage for different stochastic realizations of the non-
Markovian integral differential equation (43), one can
reduce it to the master equation in the stochastically

averaged form

�̇�𝑚(𝑡) = −𝑃𝑚(𝑡)
∑︁
𝑚′

𝑊𝑚𝑚′ +
∑︁
𝑚′

𝑃𝑚′(𝑡)𝑊𝑚′𝑚. (55)

Here, the populations 𝑃𝑚(𝑡), averaged due to (5)
and normalized as

∑︀
𝑚 𝑃𝑚(𝑡) = 1, are supposed

Markovian on both the transition and the stochas-
tic time scales, as well as regarded properly bal-
anced with the rate constants (transition probabili-
ties) given by

𝑊𝑚𝑚′ =
2𝑅𝑒

~2

∞∫︁
0

𝑑𝜏 exp[(𝑖Ω𝑚𝑚′ − 𝛾𝑚𝑚′)𝜏 ]×

×
∑︁
𝜆

|𝜒𝜆
𝑚𝑚′ |2

{︀
𝑛(𝜔𝜆) exp(𝑖𝜔𝜆𝜏)+

+ [1 + 𝑛(𝜔𝜆)] exp(−𝑖𝜔𝜆𝜏)
}︀
. (56)

The master equation (55) is typical of the dif-
ferent approaches to the description of the nona-
diabatic transition processes in nonequilibrium con-
densed phase systems [82]. Here, it appears as a result
of the averaging over random fluctuations of the en-
ergy levels of a nanoscopic system on the stochastic
time scale 𝜏st and is necessary for the calculation of
the transition probabilities (56) in a wide range of in-
volved characteristic times including the longest tran-
sient times 𝜏tr. Importantly, the hierarchy of those
times (8) does not enter the master equation (55) ex-
plicitly, but is especially required for its derivation in
the form of a balance of populations with the rate
constants (56). Any information about the involved
time scales is neither lost nor filtered out, but rather
is correctly accounted for by the corresponding aver-
ages – equilibrium occupation phonon numbers 𝑛(𝜔𝜆)
formed in the bath at chaotic times 𝜏ch, intensities
𝛾𝑚𝑚′ of the stationary adiabatic fluctuations of the
energy levels established in the nanoscopic systems at
stochastic times 𝜏st, and parameters |𝜒𝜆

𝑚𝑚′ |2 of the
phonon assisting (i.e. environment-induced) nonadia-
batic interaction between the nanoscopic system and
the bath, thus being responsible for the irreversible
relaxation processes occurred at transition times 𝜏tr,
respectively.

3.5. Transition rate constants

As suggested by its form, the probability of transi-
tions between the different states of a nanoscopic sys-
tem (56) appears as some kind of the Fermi golden
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rule where, however, the main attention is paid not
to summing over a proper dense set of energy lev-
els of nanosystem’s final state [1, 2, 39], but rather to
providing a correct averaging on stochastic trajecto-
ries for transitions with their different exponentially
weighted contributions, according to a Cauchy distri-
bution [56]. This allows one to analyze the different
regimes for transition processes dependently on the
relation between the thermal broadenings (30) of en-
ergy levels controlled by the temperature of the heat
bath and the natural frequencies {|Ω𝑚𝑚′ |} of quan-
tum oscillations varying from zero to infinity subject
to the energy spectrum of a nanosystem.

Taking on the integral over 𝜏 in (56) simply yields

𝑊𝑚𝑚′ =
2𝜋

~2
∑︁
𝜆

|𝜒𝜆
𝑚𝑚′ |2

{︀
𝑛(𝜔𝜆)Λ

(+)
𝑚𝑚′(𝜔𝜆)+

+ [1 + 𝑛(𝜔𝜆)]Λ
(−)
𝑚𝑚′(𝜔𝜆)

}︀
, (57)

where Λ
(±)
mm′(𝜔𝜆) = 𝛾𝑚𝑚′{𝜋[𝛾2

𝑚𝑚′ +(Ω𝑚𝑚′ ±𝜔𝜆)
2]}−1

is the high-frequency limit for the stochastic field gen-
erated (SFG) Lorentzian [34,35]. However, to further
take on the sum over 𝜆 in (57) requires knowing the
energy level spectrum of the nanosystem and the rel-
evant values of environment-induced relaxation pa-
rameters responsible for its functioning. Therefore,
if focusing on a simple, but correct description of
relaxation processes in functional nanosystems on
the molecular-level scale, one will be interested in
only the calculable cases for transition probabili-
ties (57). Moreover, in order to be associated with
the specific reaction rates, these transition proba-
bilities must easily be interpretable in the different
situations.

Let us confine ourselves to considering the impor-
tant situation for a nanoscopic system in two limiting
cases: the nonadiabatic transitions with |Ω𝑚𝑚′ | ≈
≈ 𝜔𝜆 ≫ 𝛾𝑚𝑚′ → +0 and the adiabatic transitions
with 𝛾𝑚𝑚′ ≫ 𝜔𝜆 ≥ |Ω𝑚𝑚′ | → +0. Since relation (30)
for 𝛾𝑚𝑚′ = 𝑘B𝑇/~ holds, these cases correspond to
the quantum and classical limits, ~|Ω𝑚𝑚′ | ≫ 𝑘B𝑇
and ~|Ω𝑚𝑚′ | ≪ 𝑘B𝑇 , respectively. Furthermore, ir-
respective of the temperature, one can introduce
a single rate limit for the symmetric frequency-
independent asymptotes 𝐽𝑚𝑚′ = 𝐽𝑚′𝑚 ≡ 𝐽𝑚𝑚′(𝜔 ≈
≈ |Ω𝑚𝑚′ |) of the one-phonon spectral function (49):

𝐽𝑚𝑚′ = lim
𝜔𝜆→|Ω𝑚𝑚′ |

(2𝜋/~2)
∑︁
𝜆

(|𝜒𝜆
𝑚𝑚′ |2/𝜔𝜆) =

= (2𝜋/~2)
∑︁
𝜆

|𝜒𝜆
𝑚𝑚′ |2𝛿(|Ω𝑚𝑚′ | − 𝜔𝜆). (58)

Consequently, by introducing the distribution func-
tion

𝑛(Ω𝑚𝑚′) = [exp(~Ω𝑚𝑚′/𝑘B𝑇 )− 1]−1, (59)

with regard for the property 𝑛(Ω𝑚𝑚′) + 𝑛(Ω𝑚′𝑚) =
= −1, and the generalized signum function

sgn(Ω𝑚𝑚′) =

⎧⎨⎩
1, Ω𝑚𝑚′ > 0,
0, Ω𝑚𝑚′ = 0,
−1, Ω𝑚𝑚′ < 0

(60)

defined for all Ω𝑚𝑚′ including Ω𝑚𝑚′ = 0 with a con-
vention 𝑛(0) sgn(0) = 1, one can transform the rate
constant (57) to the following generalized form:

𝑊𝑚𝑚′ = 𝐽𝑚𝑚′ 𝑛(Ω𝑚𝑚′) sgn(Ω𝑚𝑚′). (61)

This mathematically unified and physically rigor-
ous relation satisfies the principle of microscopic re-
versibility (a condition of detailed balance)

𝑊𝑚𝑚′ = 𝑊𝑚′𝑚 exp(~Ω𝑚𝑚′/𝑘B𝑇 ) (62)

regardless of the presence of even irreversible kinetic
processes in a nanosystem by considering the reverse
rates for them to be infinitely rare or almost insignif-
icant. Moreover, expression (61) reproduces well the
activationless limit

𝑊𝑚′𝑚 = 𝐽𝑚𝑚′ (63)

having the near zero or negligibly small activation en-
ergy 𝐸act ≡ |~Ω𝑚𝑚′ | ≪ 𝑘B𝑇 , as well as the Arrhenius
activation-like limit

𝑊𝑚𝑚′ = 𝐽𝑚𝑚′ exp(−𝐸act/𝑘B𝑇 ) (64)

characterized by the sufficiently larger activation en-
ergy 𝐸act ≡ |~Ω𝑚𝑚′ | ≫ 𝑘B𝑇 . Therefore, on the
stochastic time scale 𝜏st, one can provide the rates
of transitions between fluctuating energy levels of
a nanoscopic system with accurate regularization
and then, on the transient time scale 𝜏tr, consis-
tently endow them with classification by only one of
two important types: the mechanistic type (63) of
temperature-independent transitions and the Arrhe-
nius type (64) of exponentially temperature depen-
dent transitions.
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4. Experimental Support

To illustrate how the rate of the aforementioned
environment-induced relaxation transitions (61) cal-
culated for nanosystems on the transient time scale
𝜏tr with the use of the regularization of these tran-
sitions performed on the stochastic time scale 𝜏st
is implemented in the specific functional biomolec-
ular structures, particularly for interpretation of the
temperature-independent kinetics of receptor and cir-
cadian proteins in living cells, let us consider two ap-
plications, where the comparison of the theory and
experiment is salient.

4.1. Temperature-independent
desensitization of ATP P2X3 receptors
kinetics of protein macromolecules

The P2X3 receptors belong to the family of ionotropic
receptors widely evolved in the peripheral nervous
system. These receptors are highly specific membrane
proteins, which link the binding of ATP molecules
and/or their analogs to the opening and the clos-
ing of the special gate of a selective transmembrane
ion pore [83]. Therefore, analyzing the kinetics of the
opening and closing processes in the P2X3 receptors
can be compared with the main consequences that
follow from the theoretical expressions devised above
(61)–(64).

Experimental data reproduced in the upper case
of Fig. 2 with the corresponding symbols have been
obtained for P2X3 receptors at the various physiologi-
cally important temperatures of 25, 30, 35, and 40 ∘C,
respectively [84]. It has been shown that the different
ATP-induced transients measured as activated selec-
tive ionic currents at distinct thermostatically con-
trolled temperatures manifest themselves as the same
(almost identical) two-stage decrease. To our knowl-
edge, this was the first quantitative observation of
a temperature-independent kinetics in application to
the gating process of a specific biomolecular struc-
ture functioning at the cell membrane level [84]. The
evolution of the transient is well described by the the-
oretical curve shown as a solid line in the upper case
of Fig. 2. This curve reflects the double-exponential
kinetics for transitions between the open “op” and
the closed “cl” (or desensitized) states according to
the equation for the desensitization probability:

𝑃cl(𝑡) = 1− 𝑃op(𝑡) = 1−𝐴 exp(−𝑡/𝜏1)−
− (1−𝐴) exp(−𝑡/𝜏2), (65)

Fig. 2. Two-exponential (upper case) and one-exponential
(lower case) temperature-independent kinetics corresponding
to the onset of the desensitization of P2X3 receptors (adapted
from [84]) and the degradation of bioluminescence of PER2
protein (adapted from [85]), respectively, and their fit by
the expression (65) in the text (solid line) with 𝐼(𝑡)/𝐼(𝑜) ≡
𝑃op(𝑡) = 1− 𝑃cl(𝑡) and 𝐴1 = 1−𝐴2 ≡ 𝐴 at different temper-
atures (shown)

with 𝐴 = 0.968, 𝜏1 = 14.7 ms and 𝜏2 = 231 ms
being the pre-exponential weight and the two tempe-
rature-independent characteristic time constants, res-
pectively.

The physical explanation of the temperature inde-
pendence of the desensitization process, specifically
responsible for the pain sensitivity that to be phys-
iologically relevant should be the same at different
temperatures, is straightforward. Especially, it is di-
rectly reflected by expression (63) for the mechanistic
type of activationless temperature-independent tran-
sitions. Nevertheless, the irreversible essentially tran-
sient character of the decay (65) can point to the
case of highly exoergic quantum limit of (64), which
is also temperature-independent. The alternative ex-
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planations particularly based on the interpretation of
the desensitization process as an order-disorder tran-
sition or that which occurs between the nearly de-
generate energy levels generally present in the flexi-
ble biomolecular structures on the nanoscopic length
scale can also be provided [34, 35].

4.2. Temperature-independent
kinetics of degradation of circadian proteins

The direct observation of a temperature-independent
conformational transformation in proteins has re-
cently been provided at the level of a living clock cell
[85]. It is known that a circadian periodicity in differ-
ent organisms from bacteria to mammals, which are
functioning well under different ambient conditions,
should remain very robust in the extended tempera-
ture range [86]. One explanation of such a basic prop-
erty is that it occurs due to the temperature insen-
sitivity of the degradation of the specific PER2 pro-
tein, which is the key period-determining protein in
the mammalian circadian clock cascade. In this con-
text, a circadian periodicity appears to be quite simi-
lar to the pain sensation and, hence, can be explained
analogously. It has been shown that the phosphory-
lated PER2 degrades with a particular rate, which
is extremely sensitive to a variety of chemical per-
turbations, but is remarkably unaffected by a physi-
cal perturbation such as temperature shifts [85]. In
vivo, the degradation of the endogenous PER2 is
regulated by the casein kinase 𝐼𝜀-dependent phos-
phorylation. During the phosphorylation, the ATP
molecule is hydrolyzed, thus donating inorganic phos-
phate oxygen groups to the chemical structure of
PER2. These groups, being negatively charged, can
generate hydrogen bond fluctuations at thermal fre-
quencies on the stochastic time scale 𝜏st ∼ ~/𝑘B𝑇
(30) which will affect, in turn, the protein degrada-
tion related to far slower conformation motions on
the transient time scale 𝜏tr ≫ 𝜏st. Therefore, as for
the previous example of P2X3 receptors, where the
characteristic decay times 𝜏1 and 𝜏2 are on the tran-
sient time scale, while the duration of a dynamical
mixing between nearly isoenergetic levels is on the
stochastic time scale, the method of regularization of
the kinetics for the stochastic time scale regulation of
the temperature-independent transition rate of degra-
dation of the endogenous PER2 is quite applicable.

Experimentally, the PER2 degradation is moni-
tored by the bioluminescence decay (the lower case

in Fig. 2). It appears as a single exponential drop of
the reduced bioluminescence amplitude, which the-
oretically corresponds to expression (65) for 𝑃op(𝑡)
with 𝐴 = 1 and 𝜏1 = 588 𝑠. As one can see (cf. the
inset in the lower case of Fig. 2), the half-times of
decays have negligible temperature dependence and
may so be considered as temperature-insensitive. The
physical mechanism of such temperature indepen-
dence in the physiologically significant temperature
region may be also associated with equilibrium ther-
modynamic fluctuations occurring on the stochastic
time scale against the background of order-disorder
transformations in the structure of the protein and
its exteriors. This reduces the kinetics of quasiisoen-
ergetic transitions to the irreversible one with the
temperature-independent time constant 𝜏1 analogous
to the activationless effect of (63).

5. Discussion and Conclusions

In this contribution, a novel method for the compat-
ible regularization of the environment-induced relax-
ation transitions in functional nanoscopic systems on
the chaotic, stochastic, and transient time scales is
proposed. The method is limited to the case of treat-
ing the Liouville–von Neumann quantum evolution
equation (1) for a density matrix of the whole closed
system (𝐶) (2) by the Nakajima–Zwanzig method (3)
which considers 𝐶 as a sum of its small open (𝐴)
part (functional nanosystem) and the environment
(𝐵) part (heat bath) plus their interaction (𝑉 ) with
projecting the overall evolution of 𝐶 on state variables
of 𝐴 only. We use the Born–Markov approximation to
reduce the dynamic integral differential master equa-
tion (40) for the density matrix of 𝐴 to the kinetic
equation (42) and then to the balance master equa-
tion (55) for state populations (5). To provide a gain-
loss balance for those with relaxation rates by aver-
aging them over both the random fluctuations in 𝐴
and the equilibrium vibrations in 𝐵, we use the quan-
tum approach originally formulated in [32]. In this
approach, the Hamiltonian of 𝐴 (33) is modeled as
a diagonal operator involving stochastic additions to
eigenenergies, the Hamiltonian of 𝐵 (34) is considered
secular represented by an infinite sum of harmonic os-
cillators, whereas the operator 𝑉 of weak interaction
between 𝐴 and 𝐵 (35) nonadiabatically couples the
transitions in 𝐴 and the processes of creation or anni-
hilation of a one vibrational quantum (phonon) in 𝐵
with holding the energy balance in 𝐶 [32, 34, 35, 43].
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To be regarded as compatible, the proposed me-
thodolody for the regularization of the environment-
induced transitions in a nanoscopic system is based
upon the method of a hierarchy of time scales. This
method provides the nanosystem with a specific ki-
netics framework that would generally be inherent in
it. Such kinetics framework could be thought of that
which is able to consistently follow the evolution of
populations of the energy levels (5), being statistically
and stochastically (see (6) and (7)) averaged on the
different time scales. One distinguishes between three
most well-separated time scales – chaotic, stochas-
tic, and transient – attributed with the correspond-
ing characteristic times 𝜏ch, 𝜏st, and 𝜏tr, respectively
(8). On the first time scale Δ𝑡 ≈ 𝜏ch, the angstrom-
level Hamiltonians of the weakly interacted 𝐴 and 𝐵
(2), (32)–(35) developed in time due to the Liouville–
von Neumann quantum evolution equation (1) for the
factorizable density matrix of 𝐶 are formed. On the
same time scale, the reduced equations for the time
evolution of diagonal elements of the density matrix
of 𝐴 (37)–(43) governed by the respective transition
kernels (44)–(53) are generated. On the second time
scale Δ𝑡 ≈ 𝜏st ≫ 𝜏ch, the stationary distribution (7)
for fluctuations of random positions of the energy
levels of 𝐴 (6) is complete, and stochastically aver-
aged master equations (55) balanced with the respec-
tively averaged transition probabilities (56) are estab-
lished. On the third time scale Δ𝑡 ≈ 𝜏tr ≫ 𝜏st ≫ 𝜏ch,
the nonstationary transient evolution of the observ-
able populations (5) with the stochastically aver-
aged reaction rates (57) is realized. The price to pay
for quantitatively employing the time scales above
is that one cannot consider the observable kinetics
as a property would be equally controllable at all
times. Instead, one should feature the kinetic charac-
teristics as averaged, but changeable and then treat
them as those depending on the external controls act-
ing on the different time scales.

To make the method of regularization of the envi-
ronment-induced transitions constructive, two other
general methods are used. These are the method of
shortening of description and the method of stochas-
tic averaging. The first method is very useful in pro-
viding a nanoscopic system with the contracted num-
ber of the most relevant degrees of freedom, allowing
one to accurately treat the degenerate energy levels
within the efficient two-level schemes (65). Rather,
the second method is at the heart of regulariza-

tion techniques developed for the quantitative ki-
netic analysis. Thus, just the stochastic averaging of
the discrete dichotomous (16)–(19) and trichotomous
(21), (22) random processes, as well as the continu-
ous Gaussian process (26), (27), provides a method
of regularization with the remarkable expression for
the energy level half-width (29) due to the thermody-
namic fluctuations in a nanosystem. This expression
gives the reaction rate constants (57) by exponential
cut-offs (31) leading to the convergence even at high
temperatures (61)–(64).

In application, we consider the nanoscopic phe-
nomenon, for which the regularization of environ-
ment-induced relaxation transitions is very essen-
tial. This is the temperature-independent kinetics of
nonstationary nanosystems, with the main atten-
tion being focused on the nearly isoenergetic tran-
sitions. Here, the physical mechanism intended to
explain the temperature-independent effect at room
temperature largely differentiates from that refer-
ring to the quantum tunneling mechanism accom-
panied by the emission of high-frequency (optical)
phonons. Instead, being mechanistic, it works in the
classical region of ambient temperatures and at the
weak coupling to the environment phonons. Under
such conditions, the transition is accompanied by
the creation or annihilation of a single low-frequency
(acoustic) phonon. The lack of the temperature de-
pendence in the rate constants (63) occurs due to
the commonly attended thermodynamic stochastic
alternation of participating energy levels with the
thermal frequencies. Two experimental observations
of the temperature-independent phenomena confirm
the proposed approach. Essentially, both observa-
tions show the presence of specific band-like energy
spectra containing the nearly degenerate bands and
the separated energy levels as well in nanoscopic sys-
tems. This points to a hierarchy of time scales within
the kinetics framework, embodying as short chaotic
and stochastic times, as well far longer transient
times, at which the environment-induced transitions
could only be observed.

In conclusion, the functional nanosystems repre-
sent the superatomic structures efficiently operat-
ing in changeful noisy environments on the chaotic,
stochastic, and transient time scales. Chaotic times
have the order of femtoseconds. Before these times,
one can hardly say something definite about a na-
noscopic system, but, subsequent to them, both the
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number and the position of system’s energy levels
can be determined. The energy levels of the nano-
system persistently fluctuate around their means ac-
cording to some averaged distributions completed
on the stochastic time. The order of the stochas-
tic time scale is ranged from hundreds of femtose-
conds to picoseconds, so forming the upper bound
for random fluctuations of the thermodynamic en-
vironment. Therefore, to have a finite discrete state
energy spectrum, the nanosystem first decohers fast
at chaotic times on the angstrom (atomic-level) scale
and then classicalizes more slowly at stochastic times
on the nanoscopic (single-molecule) scale, before any-
thing of relevant significance happens on the far
slower microscopic (macromolecular) and mesoscopic
(supramolecular) scales. The functional nanosystems
work due to the coupling to the environmental struc-
tures. Such a coupling is much weaker than the in-
teraction, which stabilizes both the nanosystem it-
self and the environment. The bilinear coupling orig-
inates from the environment-induced transitions be-
tween nanosystem’s energy levels. This coupling con-
cerns with the occurrence of one-phonon (harmonic)
processes, while higher-order interactions provide a
nanoscopic system with the multiphonon (anharmo-
nic) fluctuation processes in positions of the energy
levels. The environment-induced transitions occur on
the most slow transient time scale, ranging from
microseconds to seconds (or even hours), whereas
levels’ fluctuations are guaranteed for the steady-
state completion certainly subsequent to nanosec-
ods. The rate constants describing the environment-
induced transitions are well characterized by only
one of two types: the mechanistic-like activationless
temperature-independent type of isoergic or highly
exoergic transitions and the Arrhenius activation-like
exponential temperature-dependent type of highly
endoergic transitions. Other rate constants can be re-
duced to these two types by learning the number and
position of the energy levels for a specific functional
nanoscopic system under study.

Most generally, using the method for a compati-
ble regularization of environment-induced relaxation
transitions consistently describes the evolution of var-
ious functional nanoscopic systems on the chaotic,
stochastic, and transient time scales. Doing this for
nanosystems having isolated energy levels and narrow
nearly degenerate energy-level bands, the respective
description provides a physical understanding of not

only the phenomena exponentially depending on the
temperature such as the enzyme catalysis, but also
temperature-independent processes like as the pain
desensitization onset or the circadian periodicity in
living cells.
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РЕГУЛЯРИЗАЦIЯ IНДУКОВАНИХ СЕРЕДОВИЩЕМ
ПЕРЕХОДIВ У НАНОСКОПIЧНИХ СИСТЕМАХ

Р е з ю м е

Запропоновано новий метод регуляризацiї релаксацiйних
переходiв, що iндукуються середовищем у наноскопiчних
системах. Являючи сумiснiсть з хаотичною, стохастичною
та перехiдною шкалами часу, метод є фiзично послiдов-
ним та математично строгим. Вiн дозволяє коректно ре-
дукувати еволюцiю системи до керуючого рiвняння ба-
лансу заселеностей її станiв iз ймовiрностями переходiв
мiж станами, якi добре задовольняють як температурно-
незалежнiй безактивацiйнiй границi, так й аренiусовськiй
експоненцiйно температурно-залежнiй границi активацiй-
ного типу. Отриманi результати прикладаються до опису
кiнетики температурно-незалежних процесiв десенситиза-
цiї та деградацiї, що спостерiгаються в рецепторних i цир-
кадних бiлкових макромолекулах.
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