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A Hamiltonian for the electron-phonon system in the double-well resonant tunneling structure
in the dc electric field has been obtained, by using the models of rectangular potential profile
and effective mass for electrons and the dielectric continuum model for phonons. This structure
is a separate cascade of the injectorless quantum cascade laser. The renormalized parameters
of the electron spectrum are calculated for an arbitrary temperature, by using the method of
thermodynamic Green’s functions. It is shown that, in accordance with the experiment, the
laser radiation band broadens out and weakly shifts with the temperature growth.
K e yw o r d s: resonant tunneling nanostructure, quantum cascade laser, interface phonons,
electron-phonon interaction, Green’s function.

1. Introduction

Since first quantum cascade lasers (QCLs) have been
created [2, 3], a hard work of researchers directed at
improving the performance characteristics of those
nanodevices has been continued. Quantum cascade
lasers on the basis of various semiconductor ma-
terials (InGaAs/AlInAs, GaAs/AlGaAs, InAs/AlSb,
InGaAs/AlAsSb, InGaAs/GaAsSb) and with vari-
ous geometric designs have already been created and
are successfully exploited. Though the parameters of
QCLs were improved, the general concept of their
work has not be changed in principle and remained
the same as for the early QCLs. The idea consists in
that this nanodevice is composed of a certain num-
ber of cascades of the same type (active zone with
an injector), each of them being a plane multilay-
ered resonant tunneling structure (RTS). Electrons,
when tunneling through the active zone of a sepa-
rate cascade, perform quantum transitions between
two excited working levels and emit electromagnetic
field quanta. To provide the inverse level population,
a three-level scenario is used as a rule, in which
electrons from the first excited level transit into
the ground state with the creation of a phonon at
the radiationless transition. When tunneling further
through the injector, they get into the following QCL
cascade with an energy corresponding to that of the
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local second excited state. If the magnitude of the dc
electric field strength is chosen properly, the synchro-
nization of the work of all cascades is attained.

In recent years, a considerable attention of sci-
entists was given to the experimental research of
the so-called injectorless QCLs [1, 4–7], which have
a number of advantages over the QCLs with injec-
tors. The injectorless QCLs are more compact in di-
mensions, have lower excitation currents, a compa-
rable or sometimes higher efficiency, and so on. The
operating frequencies of those nanodevices can extend
into the terahertz region, which overlaps both the
atmosphere transparency windows and the radiation
emission frequencies for many molecules. The unique
characteristics of injectorless QCLs make them at-
tractive to various applications in the military sphere,
medicine, communication media, environment moni-
toring, and other domains. Modern injectorless QCLs
are already applied in a wide range of temperatures,
including those that slightly exceed room tempera-
ture (𝑇 ≈ 300 K), where dissipative processes be-
come essential. In particular, one might expect that,
because of the dependence of the phonon occupation
numbers on the temperature, the role of electron-
phonon interaction should grow with the medium
temperature. Therefore, it is necessary to examine
the influence of the phonon subsystem on the oper-
ational parameters of QCLs and, hence, on the laser
frequency range.
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The first injector [2, 3, 8] and injectorless [7, 9]
QCLs are known to have operated at low temper-
atures. Therefore, the applied and fundamental re-
searches were directed at studying and improving the
operational parameters of those nanodevices, their
physical and geometric characteristics [7–17], focus-
ing no attention on the issues of electron-phonon in-
teraction. With the appearance of QCLs, which are
capable to function at high temperatures, the num-
ber of the works devoted to the research of the
electron-phonon interaction in RTSs considerably in-
creased [10,18–23]. Their overwhelming majority was
based on the model of effective masses for electrons
and the model of dielectric continuum for optical
phonons. The latter, as was shown as long ago as 1989
by Mori and Ando [24], are divided into two types:
confined (L) and interface (I) ones. The Hamiltoni-
ans of the electron-phonon systems in the representa-
tion of phonon occupation numbers and in the coor-
dinate representation for the electron variables were
used to study the probabilities of quantum transitions
between the electron states with the help of Fermi’s
golden rule. The renormalization of spectral param-
eters of the QCL radiation emission band (its shift
and broadening) due to the electron-phonon interac-
tion was practically not analyzed.

In this work, the Hamiltonian of the electron–
interface phonon system in the occupation-number
representation for all variables will be obtained for
a double-well RTS in a dc electric field. The result al-
lowed us, by using the method of temperature Green’s
functions, to study not only the damping, but also a
shift of three working electron states in the double-
well cascade of the injectorless QCL. The influence of
various mechanisms of electron–interface phonon in-
teraction on spectral parameters of the electron states
and the lasing band, as well as their dependence on
the geometric configuration of the double-well RTS
and the strength of the applied dc electric field at
zero and finite temperatures are studied in detail.

2. Hamiltonian and Green’s
Function for the System of Electrons
Interacting with Interface Phonons
in the Double-Well RTS in the Electric Field

A plane double-well RTS in a uniform electric field
of the strength 𝐹 is considered in the Cartesian co-
ordinate system (Fig. 1) as a separate cascade of a
injectorless QCL [1]. The theory of the electron in-

Fig. 1. Energy profile in the double-well RTS in a dc electric
field

teraction with optical interface phonons is developed
for the model of closed RTS, where the electron is
described by a complete system of orthonormalized
wave functions. Additionally, the models of rectangu-
lar potentials and effective electron masses are used,
and the non-parabolic dispersion law for the conduc-
tion band is taken into consideration:

𝑈(𝑧) =

{︃
𝑈, in regions 𝑗 = 0, 2, 4;

0, in regions 𝑗 = 1, 3;
(1)

𝑚(𝑧, 𝐸) =

⎧⎨⎩𝑚𝑏(𝐸) = 𝑚𝑏

(︁
1− 𝑈−𝐸

𝐸𝑔𝑏

)︁
, 𝑗 = 0, 2, 4;

𝑚𝑤(𝐸) = 𝑚𝑤

(︁
1 + 𝐸

𝐸𝑔𝑤

)︁
, 𝑗 = 1, 3.

(2)

Here, 𝐸 is the electron energy; 𝑚𝑤 and 𝑚𝑏 are
the effective electron masses in the wells and barri-
ers, respectively, of the nanosystem, when the non-
parabolic character of dispersion in not taken into
account; and 𝐸𝑔𝑤 and 𝐸𝑔𝑏 are the energy gap widths
in the semiconductor materials of the wells and bar-
riers, respectively.

Under the action of the dc electric field with the
strength 𝐹 on the double-well RTS with the linear
size 𝑑, the profile of the rectangular potential becomes
so deformed that it decreases linearly along the axis
𝑂𝑧 in each region of the nanosystem,

𝑈𝐹 (𝑧) = 𝑈(𝑧)− 𝑒𝐹{𝑧[Θ(𝑧)−Θ(𝑧− 𝑑)] + 𝑑Θ(𝑧− 𝑑)}.
(3)

To find the energy spectrum and the wave functions
of an electron in the examined RTS, the solution of
the stationary Schrödinger equation[︂
−~2

2
∇ 1

𝑚(𝑧, 𝐸)
∇+ 𝑈𝐹 (𝑧)

]︂
Ψ𝑛k(r) = 𝐸𝑛kΨ𝑛k(r) (4)
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is sought in the form

Ψ𝑛k(r) =
𝑒ik𝜌𝑒

√
𝑆

Ψ𝑛(𝑧) (r = 𝜌𝑒 + 𝑧n𝑧), (5)

where k and 𝜌𝑒 are the quasimomentum and the ra-
dius vector, respectively, of the electron in the plane
𝑥𝑂𝑦; 𝑆 is the area of the main region in this plane;
and n𝑧 the unit vector directed along the axis 𝑂𝑧. As
a result, the total energy of the electron,

𝐸𝑛k = 𝐸𝑛 +
~2k2

2𝑚𝑛
, (6)

is obtained as the sum of the energy of longitudinal
motion, 𝐸𝑛, and the kinetic energy of motion in the
plane 𝑥𝑂𝑦, with the electron effective mass being cor-
related over the RTS, as was done in work [25],

1

𝑚𝑛
=

∞∫︁
−∞

|Ψ𝑛(𝑧)|2

𝑚(𝑧, 𝐸𝑛)
𝑑𝑧. (7)

The energy spectrum 𝐸𝑛 and the wave func-
tions Ψ𝑛(𝑧) are determined from the one-dimensional
Schrödinger equation[︂
−~2

2

𝑑

𝑑𝑧

1

𝑚(𝑧, 𝐸)

𝑑

𝑑𝑧
+ 𝑈𝐹 (𝑧)

]︂
Ψ𝑛(𝑧) = 𝐸𝑛Ψ𝑛(𝑧). (8)

The exact solutions of the latter in each 𝑗-th region
of the RTS are the functions

Ψ𝑛(𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ
(𝑗)
𝑛 (𝑧) = 𝐴

(𝑗)
𝑛 𝑒𝜒

(𝑗)
𝑛 𝑧, 𝑗 = 0,

Ψ
(𝑗)
𝑛 (𝑧) = 𝐴

(𝑗)
𝑛 Ai[𝜉(𝑗)𝑛 (𝑧)] +

+𝐵
(𝑗)
𝑛 Bi[𝜉(𝑗)𝑛 (𝑧)], 𝑗 = 1, 2, 3,

Ψ
(𝑗)
𝑛 (𝑧) = 𝐴

(𝑗)
𝑛 𝑒−𝜒(𝑗)

𝑛 𝑧, 𝑗 = 4,

(9)

where

𝜒
(0)
𝑛 = ~−1

√︀
2𝑚𝑏(𝐸𝑛)(𝑈 − 𝐸𝑛);

𝜒
(4)
𝑛 = ~−1

√︀
2𝑚𝑏(𝐸𝑛)(𝑈 − 𝐸𝑛 − 𝑉 );

𝑉 = 𝑒𝐹𝑑;

(10)

𝜉(𝑗)𝑛 (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
(︂
2𝑚𝑤(𝐸𝑛)𝑉 𝑑2

~2

)︂1/3(︂
𝐸𝑛

𝑉
+

𝑧

𝑑

)︂
, 𝑗 = 1, 3;

−
(︂
2𝑚𝑏(𝐸𝑛)𝑉 𝑑2

~2

)︂1/3(︂
𝐸𝑛 − 𝑈

𝑉
+

𝑧

𝑑

)︂
, 𝑗 = 2;

and Ai(𝜉) and Bi(𝜉) are the Airy functions of the first
and second kinds, respectively.

The continuity conditions for the wave function and
the flux of its density across all interfaces between the
media,

Ψ
(𝑗)
𝑛 (𝑧𝑗) = Ψ

(𝑗+1)
𝑛 (𝑧𝑗); (11)

1

𝑚𝑗(𝐸𝑛)

𝑑Ψ
(𝑗)
𝑛 (𝑧)

𝑑𝑧

⃒⃒⃒⃒
⃒
𝑧=𝑧𝑗

=
1

𝑚𝑗+1(𝐸𝑛)

𝑑Ψ
(𝑗+1)
𝑛 (𝑧)

𝑑𝑧

⃒⃒⃒⃒
⃒
𝑧=𝑧𝑗

together with the normalization condition

∞∫︁
−∞

Ψ*
𝑛(𝑧)Ψ𝑛′(𝑧)𝑑𝑧 = 𝛿𝑛𝑛′ (12)

unequivocally determine all unknown coefficients 𝐴(𝑗)
𝑛

and 𝐵
(𝑗)
𝑛 , the functions Ψ

(𝑗)
𝑛 , the energies 𝐸𝑛, and,

hence, the total energy spectrum 𝐸𝑛k and the com-
plete orthonormalized system of the wave func-
tions Ψ𝑛k(r).

Changing from the coordinate representation of the
electron Hamiltonian to the second-quantization rep-
resentation for the quantized wave function

Ψ̂(r) =
∑︁
𝑛,k

Ψ𝑛k(r)�̂�𝑛k (13)

with the fermionic annihilation, �̂�𝑛k, and creation,
�̂�+𝑛k, operators for the electron states, the electron
Hamiltonian in the occupation-number representa-
tion reads

�̂�𝑒 =

∫︁
Ψ̂+(r)𝐻𝑒(r)Ψ̂(r)𝑑r =

∑︁
𝑛k

𝐸𝑛k�̂�
+
𝑛k�̂�𝑛𝑘. (14)

In the dielectric continuum model [18–22,24,26,27],
the polarization field potential, Φ(r), and the spec-
trum of interface phonons are determined by the
equation

𝜀𝑗(𝜔)∇2Φ(r) = 0 at 𝜀𝑗(𝜔) ̸= 0, (15)

where 𝜀𝑗(𝜔) is the dielectric permittivity of the 𝑗-th
medium in the nanosystem. This parameter is deter-
mined by the Lyddane–Sachs–Teller relation,

𝜀𝑗(𝜔) = 𝜀𝑗∞
𝜔2 − 𝜔2

𝐿𝑗

𝜔2 − 𝜔2
𝑇𝑗

, (16)

where 𝜀𝑗∞ is the high-frequency dielectric permittiv-
ity of the bulk material, which the 𝑗-th nanosystem
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layer is made of, and 𝜔𝐿𝑗 and 𝜔𝑇𝑗 are the longitudinal
(L) and transverse (T), respectively, frequencies of vi-
brations in this material. The solution of Eq. (15) is
sought in the form

Φ(r) =

4∑︁
𝑗=0

∑︁
q

𝐶(𝑞)𝜙𝑗(𝑞, 𝑧)𝑒
𝑖q𝜌, (17)

where

𝜙𝑗(𝑞, 𝑧) = 𝛼𝑗𝑒
−𝑞𝑧 + 𝛽𝑗𝑒

𝑞𝑧, (18)

and q and 𝜌 are two-dimensional vectors. The func-
tions 𝜙𝑗 satisfy the system of equations⎧⎪⎨⎪⎩
𝜙𝑗(𝑞, 𝑧𝑗) = 𝜙𝑗+1(𝑞, 𝑧𝑗);

𝜀𝑗(𝜔)
𝜕𝜙𝑗(𝑞, 𝑧)

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝑧𝑗

= 𝜀𝑗+1(𝜔)
𝜕𝜙𝑗+1(𝑞, 𝑧)

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝑧𝑗

,
(19)

which is obtained from the continuity conditions for
the polarization field strength and induction across
the RTS interfaces (𝑗 = 0÷3) and from the require-
ment of phonon field disappearance at infinity,

𝜙0(𝑞, 𝑧)|𝑧→−∞ = 𝜙4(𝑞, 𝑧)|𝑧→∞ → 0. (20)

The system of equations (19) and (20) unambiguously
determines the coefficients (𝛼𝑗 , 𝛽𝑗) and, hence, makes
the potential Φ(r) of the interface phonon polariza-
tion field known. System ([19]) is solved, by using
the transfer matrix method. The condition of non-
triviality of a solution gives rise to the dispersion
equation

3∏︁
𝑗=0

⎛⎝
(︁
1 + 𝜀𝑏(Ω)

𝜀𝜔(Ω)

)︁ (︁
1− 𝜀𝑏(Ω)

𝜀𝜔(Ω)

)︁
𝑒−2𝑞𝑧𝑗(︁

1− 𝜀𝑏(Ω)
𝜀𝜔(Ω)

)︁
𝑒2𝑞𝑧𝑗

(︁
1 + 𝜀𝑏(Ω)

𝜀𝜔(Ω)

)︁
⎞⎠ =

=
(︁
1 0
0 1

)︁
, (21)

which is applied to find the energy spectrum Ω𝜆q =
= ~𝜔𝜆q of interface phonons with the quasimo-
mentum q belonging to the 𝜆-th branch. In the
non-degenerate case, the number of phonon energy
branches coincides with the doubled number of all
interfaces between the nanosystem media.

After quantizing the polarization field following
the standard quantum-mechanical method, which in-
cludes the change from the Fourier components to

normal generalized coordinates and momenta [24, 26,
27] and, afterwards, to the bosonic creation, 𝑏+𝜆q, and
annihilation, 𝑏𝜆q, operators, we obtain the Hamilto-
nian of interface phonons in the form

�̂�𝐼 =
∑︁
𝜆q

Ω𝜆q(�̂�
+
𝜆q�̂�𝜆q + 1/2) (𝜆 = 1− 8). (22)

The Hamiltonian of electron-phonon interaction in
the coordinate representation for electron variables is
determined by the potential of the interface phonon
polarization field,

�̂�𝑒−𝐼 = −𝑒Φ(𝜌, 𝑧) =

= −
4∑︁

𝑗=0

∑︁
𝜆q

𝑒𝐶𝜆(𝑞)𝜙𝜆𝑗(𝑞, 𝑧)𝑒
𝑖q𝜌

(︁
𝑏𝜆q + �̂�+𝜆−q

)︁
. (23)

The transformation to the representation of electron
occupation numbers is carried out with the help of the
quantized wave function (13). As a result, the Hamil-
tonian of electron-phonon interaction in the second-
quantization representation for both the electron and
phonon variables of the system has the form

�̂�𝑒−𝐼 =
∑︁
𝑛′,𝑛

𝜆,q

𝐹𝑛′𝑛(𝜆,q)�̂�
+
𝑛′k+q�̂�𝑛k(�̂�𝜆q + �̂�+𝜆−q), (24)

where the coupling functions look like

𝐹𝑛′𝑛(𝜆, 𝑞)=−

√︃
4𝜋𝑒2~

𝑞𝑆𝑁(𝑠, 𝑞)

4∑︁
𝑗=0

𝑧𝑗∫︁
𝑧𝑗−1

𝑑𝑧Ψ
(𝑗)*

𝑛′ (𝑧)Ψ(𝑗)
𝑛 (𝑧)×

×
[︀
𝛼𝑗(𝜆, 𝑞)𝑒

−𝑞𝑧 + 𝛽𝑗(𝜆, 𝑞)𝑒
𝑞𝑧
]︀
, (25)

and contain the normalizing coefficient

𝑁(𝑠, 𝑞) =

4∑︁
𝑗=0

𝜕𝜀𝑗(𝜔)

𝜕𝜔

⃒⃒⃒⃒
⃒
𝜔=𝜔𝜆𝑞

[𝛽2
𝑗 (𝜆, 𝑞)(𝑒

2𝑞𝑧𝑗 −

− 𝑒2𝑞𝑧𝑗−1)− 𝛼2
𝑗 (𝜆, 𝑞)(𝑒

−2𝑞𝑧𝑗 − 𝑒−2𝑞𝑧𝑗−1)]. (26)

The obtained Hamiltonian of the electron-phonon
system,

�̂� = �̂�𝑒 + �̂�𝐼 + �̂�𝑒−𝐼 , (27)

makes it possible to calculate the Fourier transform
of the electron Green function following the Feyn-
man–Pines diagram technique [27, 29] at finite tem-
peratures.

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 9 787



Yu.O. Seti, M.V. Tkach, M.V. Pan’kiv

At low electron concentrations and a weak electron
coupling with interface phonons, the Fourier trans-
form of Green’s function is determined by the Dyson
equation

𝐺𝑛(k, ~𝜔) = [~𝜔 − 𝐸𝑛k −𝑀𝑛(~𝜔,k)]−1 (28)

with the mass operator 𝑀𝑛(~𝜔,k) calculated in the
one-phonon approximation (𝜂 → +0),

𝑀𝑛(~𝜔,k) =
∑︁
𝑛′𝜆q

𝐹 *
𝑛𝑛′(𝜆,q)𝐹𝑛′𝑛(𝜆,q)×

×
[︂

1 + 𝜈𝑗
~𝜔 − 𝐸𝑛′(k− q)− Ω𝑗 + 𝑖𝜂

+

+
𝜈𝑗

~𝜔 − 𝐸𝑛′(k+ q) + Ω𝑗 + 𝑖𝜂

]︂
. (29)

Here, the first term in the brackets describes the pro-
cesses giving rise to the creation of phonons with
the average occupation numbers 𝜈𝜆q = (𝑒Ω𝜆q/𝑘𝑇 −
− 1)−1, whereas the second one describes their anni-
hilation. The obtained mass operator (29) allows the
contributions of various mechanisms of electron–in-
terface phonon interaction to the renormalization of
spectral parameters (the energy shifts Δ𝑛 and the
dampings Γ𝑛) of electron states in the double-well
RTS to be calculated and analyzed. Supposing the
electrons to get into the nanosystem normally to its
plane and to interact weakly with phonons, it is pos-
sible to put k = 0 in Eq. (29) and neglect the fre-
quency dependence of the mass operator in vicinities
of the electron energies 𝐸𝑛. Then the real and imag-
inary parts of the mass operator determine the shift,
Δ𝑛 = Re𝑀𝑛(~𝜔 = 𝐸𝑛,k = 0), and the damping,
Γ𝑛 = −2 Im𝑀𝑛(~𝜔 = 𝐸𝑛,k = 0), for the 𝑛-th elec-
tron energy band.

In order to further analyze the contributions of var-
ious mechanisms of electron-phonon interaction to the
total energy shifts and dampings, it is expedient to
write those parameters in the form

Δ𝑛 = Δ𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Δ𝑛𝑛′ , (30)

Γ𝑛 = Γ𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Γ𝑛𝑛′ , (31)

where Δ𝑛𝑛 and Γ𝑛𝑛 are the partial contributions of
the intraband electron-phonon interaction to the to-
tal shift and damping, respectively, of the 𝑛-th state;
and Δ𝑛𝑛′ and Γ𝑛𝑛′ are the partial contributions to Δ𝑛

and Γ𝑛 for the interband interaction of electrons with
I-phonons. So, the developed theory makes it possible
to calculate the energy levels 𝐸𝑛 = 𝐸𝑛 + Δ and the
dampings Γ𝑛 of electron states, both renormalized by
I-phonons, for the double-well RTS located in an elec-
tric field and regarded as a cascade of the injectorless
QCL [1].

3. Finite-Temperature Analysis
of Parameters of the Electron Spectrum
in the Double-Well QCL Cascade
Renormalized by Interface Phonons

On the basis of the theory of electron-phonon inter-
action developed in the previous section, we now con-
sider the influence of interface phonons on the elec-
tron spectrum in the double-well RTS located in a
dc electric field. The RTS was regarded as a separate
cascade in an injectorless QCL [1] with GaAs wells
and Al0.15Ga0.85As barriers. The physical character-
istics of the examined nanostructure are as follows:
𝜀∞𝑤 = 10.89, 𝜀∞𝑏 = 10.48, ~𝑤𝐿𝑤 = 36.25 meV,
~𝑤𝐿𝑏 = 35.31 meV, ~𝑤𝑇𝑤 = 33.29 meV, ~𝑤𝑇𝑏 =
= 33.17 meV, 𝑚𝑤 = 0.067𝑚𝑒, 𝑚𝑏 = 0.080𝑚𝑒,
𝐸𝑇=0K

𝑔𝑤 = 1520 meV, 𝐸𝑇=0K
𝑔𝑏 = 1626.5 meV,

𝐸𝑇=121K
𝑔𝑤 = 1481.3 meV, 𝐸𝑇=121K

𝑔𝑏 = 1589 meV,
𝑈𝑇=0 K = 130 meV, 𝑈𝑇=121 K = 125 meV, and the
geometric parameters are chosen to be the same as
in the experimental work [1]: 𝑎1 = 7.1 nm, 𝑎2 =
= 16.7 nm, and 𝑏 = 3.1 nm.

In order to study the renormalization of the elec-
tron spectrum by interface phonons, we calculate
firstly the energy spectrum Ω𝜆𝑞 of I-phonons in the
RTS with the same geometric parameters as in a cas-
cade of the experimental QCL [1]. The calculation re-
sults obtained for the dependence of Ω𝜆𝑞 on the quasi-
momentum 𝑞 are depicted in Fig. 2. The figure testi-
fies that there are eight energy branches of I-phonons
in the system. Four branches form a low-energy group
located between the energies Ω𝑇𝑤 = 33.29 meV and
Ω𝑇𝑏 = 33.17 meV of transverse optical phonons in the
bulk analogs of the RTS well and barrier media. The
other four branches form a high-energy group be-
tween the energies Ω𝐿𝑤 = 36.25 meV and Ω𝐿𝑏 =
= 35.31 meV of longitudinal optical phonons. In a
vicinity of the small quasimomentum 𝑞, each group
contains two branches with the positive and nega-
tive dispersions. As 𝑞 grows, these branches degener-
ate into a miniband. Note that the dc electric field
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does not affect the spectrum and the potential of the
phonon field.

According to the idea of the experimental work [1],
laser radiation is emitted by a separate cascade of the
injectorless QCL, when an electron performs a quan-
tum transition from state |3⟩ into state |2⟩ and gen-
erates an electromagnetic wave with the quantum en-
ergy 𝐸32 ≈ 19 meV. The following radiationless elec-
tron transition from the second level |2⟩ to the ground
one |1⟩, with the energy difference between them cor-
responding to the energy of an optical phonon, pro-
vides the maintenance of the important condition of
inverse population. The coordinated work of all QCL
cascades is ensured by applying the dc electric field
with the strength 𝐹 = 17 kV/cm.

To clarify the role of various mechanisms of elect-
ron-i-phonon interaction in the renormalization of the
electron spectrum parameters, we calculated the en-
ergies 𝐸𝑛 of three lowest (working) electron states
making no allowance for the electron-phonon inter-
action, as well as the total shifts Δ𝑛 and dampings
Γ𝑛, and their partial components connected with the
interaction of electrons with I-phonons through in-
traband states (Δ𝑛𝑛,Γ𝑛𝑛) and with the interband
interaction (Δ𝑛𝑛′ ̸=𝑛,Γ𝑛𝑛′ ̸=𝑛). The results of calcula-
tions of the indicated quantities for various RTS con-
figurations, i.e. for various widths of the input well,
𝑎1, at the fixed width of the common potential well,
𝑎 = 𝑎1 + 𝑎2 = 23.8 nm, in the dc electric field
𝐹 = 17 kV/cm, without the field (𝐹 = 0), and at
𝑇 = 0 K are exhibited in Fig. 3.

From Fig. 3, one can see that the appearance and
the growth of the dc electric field give rise to an al-
most linear, in the field strength 𝐹 , shift of the en-
ergies of all electron states toward the low-frequency
region. The shift is rather large, so that all states,
starting from the lowest one, get into the region with
negative energies. In the absence of an electric field,
the dependences of the energies 𝐸𝑛 of all three elec-
tron states on the position of the internal barrier be-
tween the external ones in the nanosystem are sym-
metric with respect to the center of the total poten-
tial well (𝑎1 = 𝑎/2). The appearance of the electric
field breaks this symmetry: the distortion is larger
for higher field strengths.

The renormalization of the spectral parameters of
electron states by the interaction with phonons at
the absolute zero temperature (𝑇 = 0 K, 𝜈𝜆𝑞 = 0)
formally takes place only when virtual phonons are

Fig. 2. Dependences of interface phonon energies Ω𝜆𝑞 on the
quasimomentum 𝑞 (in the 𝜋/𝑎𝑔 units, where 𝑎𝑔 is the lattice
constant of the well medium) in the RTS [1]

created, so that the electron energies can only de-
crease. Therefore, as is seen from Fig. 3, the energy
shifts Δ𝑛 of all three working electron states are neg-
ative. Their evolution with a change of the geometric
RTS configuration in the absence of an electric field,
similarly to the energy spectrum, demonstrates a
symmetric dependence with respect to the barrier po-
sition at the center of the total well (𝑎1 = 𝑎/2). From
Fig. 3, one can also see that the shifts of the energy
levels Δ1 and Δ2 of two lowest electron states are
mainly formed by the intraband interaction within
the whole interval of 𝑎1-variation. Concerning the en-
ergy shift of the third working state, Δ3, the intra-
band interaction is essential everywhere, except for
those geometric RTS configurations, where the anti-
crossing of the third and fourth levels takes place. In
such RTS configurations, the interband interaction
prevails over the intraband one (Δ3𝑛′ > Δ33).

The appearance of the dc electric field consider-
ably modifies functions of the electron-phonon cou-
pling by changing the probabilities for an electron to
stay in both potential wells of the RTS. As a result,
the dependences of the total shifts Δ𝑛 and their par-
tial components Δ𝑛𝑛′ also change for all three elec-
tron levels. As is seen from Fig. 3, the electric field
deforms the dependences of Δ𝑛 on 𝑎1 by shifting the
positions of the corresponding maxima and minima
toward the interval of larger 𝑎1-values, but does not
change the magnitudes of electron level shifts sub-
stantially.

The dampings Γ𝑛 of electron states at the zero tem-
perature (𝑇 = 0 K, 𝜈𝜆𝑞 = 0) are determined by the
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Fig. 3. Dependences of the electron energy spectrum, the total, Δ𝑛, and partial, Δ𝑛𝑛′ , shifts
of energy levels for three working states (𝑛 = 1, 2, 3) at the zero temperature (𝑇 = 0 K) on the
double-well RTS configuration in the electric fields 𝐹 = 0 and 17 kV/cm
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imaginary part of the mass operator ([29]) in terms
of the 𝛿-functions, 𝛿(𝐸𝑛 − 𝐸𝑛′ − Ω𝜆q − ~2𝑞2/2𝑚). It
is evident that, at 𝑛 ≤ 𝑛′, the damping of the 𝑛-
th state equals zero (Γ𝑛 = 0), because 𝛿(𝐸𝑛 − 𝐸𝑛′ −
−Ω𝜆q−~2𝑞2/2𝑚) = 0. This means that, at 𝑇 = 0 K,
the intraband interaction of an electron in the 𝑛-th
state and the interband interaction with virtual in-
terface phonons through higher states (𝑛′≥ 𝑛) occur
without damping. That is why the damping of the
ground state is absent at 𝑇 = 0 K (Γ1 = 0). The
damping of excited states (Γ𝑛≥2) appears only as a
result of the interband interaction with low-energy
states (𝑛′< 𝑛), provided that 𝐸𝑛 − 𝐸𝑛′ < Ω𝜆q when
𝛿(𝐸𝑛 − 𝐸𝑛′ − Ω𝜆q − ~2𝑞2/2𝑚). The main properties
of Γ𝑛 at the zero temperature are similar to those
typical of the dampings Γ𝑇

𝑛 of electron states at finite
temperatures (𝑇 ̸= 0 K) and therefore are not dis-
cussed here. The properties of dampings Γ𝑇

𝑛 will be
analyzed below.

Hence, our calculations showed that, at 𝑇 = 0 K,
the interaction of electrons in the working states char-
acterized by the energies 𝐸1 = −18.9 meV, 𝐸2 =
= 16.0 meV, and 𝐸3 = 35.1 meV with virtual inter-
face phonons in the double-well RTS with the geo-
metric parameters of the experimental QCL cascade
𝑎exp1 = 7.1 nm, 𝑎exp2 = 16.7 nm, and 𝐹 = 17 kV/cm [1]
brings about negative shifts of the energy levels for all
three states (Δ1 = −0.91 meV, Δ2 = −1.97 meV, and
Δ3 = −1.40 meV) and weak damping of both excited
states (Γ2 = 0.0003 meV and Γ3 = 0.0018 meV).

The energies of electron states and their shifts and
dampings at the temperature of the injectorless QCL
functioning 𝑇 = 121 K [1] were calculated analo-
gously. It turned out that, owing to the dependence
of the potential barrier heights and the effective elec-
tron mass magnitudes on the energy gap widths in the
semiconductor media of the wells and barriers, which
depend, in turn, on the temperature, the energies of
all electron states weakly shift toward lower energies
as the temperature grows (𝐸𝑇

1 = −19.0 meV, 𝐸𝑇
2 =

= 15.5 meV, and 𝐸𝑇
3 = 34.5meV) if the electron-

phonon interaction is not taken into considera-
tion. The general dependences of the energies 𝐸𝑇

𝑛 on
the geometric parameters of an RTS configuration
and the electric field strength are not discussed, be-
cause they are the same as the corresponding depen-
dences obtained at the zero temperature.

At finite temperatures, there are real phonons in
the system, so that not only the processes with the

creation of phonons are possible, but also with their
absorption. Hence, at 𝑇 ̸= 0 K, the electron-phonon
interaction gives rise to the renormalization of the
energies and dampings for all electron states including
the ground one.

In Fig. 4, the 𝑎1-dependences of the total and par-
tial shifts (Δ𝑇

𝑛 , Δ𝑇
𝑛𝑛′) and dampings (Γ𝑇

𝑛 ,Γ
𝑇
𝑛𝑛′) for

three (𝑛 = 1, 2, 3) working electron states in the
double-well RTS in the dc electric field with the
strength 𝐹 = 17 kV/cm at the temperature 𝑇 =
= 121 K are exhibited. From this figure, one can see
that the dependences of Δ𝑇

𝑛 on the geometric RTS
configuration and the hierarchy of corresponding par-
tial contributions made by intra- and interband inter-
actions are qualitatively similar to those obtained at
𝑇 = 0 K.

Concerning the dampings of electron states at fi-
nite temperatures, it is evident from Fig. 4 that, at
𝑇 = 121 K, they are complicated nonlinear functions
of 𝑎1. For instance, the contribution of the intraband
interaction Γ𝑇

11 to the ground state damping Γ𝑇
1 pre-

vails only in a vicinity of the 𝐸1 and 𝐸2 anticross-
ing. In all other intervals of the 𝑎1 variation, the in-
terband interaction is more considerable. The damp-
ings of excited states are mainly formed by the inter-
band electron-phonon interaction through the lower
states. Note that the partial components Γ14 and Γ24

are so small that they are not visible in Fig. 4.
The results of calculations show that the shift of

energy levels and the dampings of electron states in
the experimental RTS configuration at 𝑇 = 121 K
are as follows: Δ𝑇

1 = −0.93 meV, Δ𝑇
2 = −1.92 meV,

Δ𝑇
3 = −1.41 meV, Γ𝑇

1 = 0.044 meV, Γ𝑇
2 = 0.028 meV,

and Γ𝑇
3 = 0.077 meV. The analysis of the quoted

magnitudes for Δ𝑛 and Δ𝑇
𝑛 testifies that, as the tem-

perature increases, the electron-I-phonon interaction
shifts the first and third energy levels downward by
Δ̃𝑇

1 = Δ𝑇
1 −Δ1 = −0.02 meV and Δ̃𝑇

3 = Δ𝑇
3 −Δ3 =

= −0.01 meV, respectively, whereas the second level,
on the contrary, becomes shifted upward by Δ̃𝑇

2 =
= Δ𝑇

2 − Δ2 = 0.05 meV. The dampings of all three
states increase with the temperature.

In Fig. 5, the dependences of Δ𝑇
𝑛 (panel a) and

Γ𝑇
𝑛 (panel b) on the temperature for an RTS with

experimental geometric parameters in the dc electric
field 𝐹 = 17 kV/cm are depicted. From panel a, one
can see that the magnitude of the ground state en-
ergy shift Δ𝑇

1 grows weakly non-monotonically with
the temperature, changing from Δ1 = −0.91 meV at
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Fig. 4. Dependences of the total (Δ𝑇
𝑛 ,Γ𝑇

𝑛 ) and partial (Δ𝑇
𝑛𝑛′ ,Γ

𝑇
𝑛𝑛′ ) shifts and dampings of the energy levels for

three working electron states (𝑛 = 1, 2, 3) on the RTS configuration in the electric field 𝐹 = 17 kV/cm and at the
temperature 𝑇 = 121 K

𝑇 = 0 K to Δ𝑇
1 = −1.03 meV at room temperature

(𝑇 = 300 K). The shift of the third level is almost
temperature-independent (Δ𝑇

3 ≈ −1.40 meV). The
shift of the second energy level as a function of the

temperature 𝑇 grows with 𝑇 and reaches the max-
imum value Δ𝑇

2 = −1.911 meV at 𝑇 = 90 K. If the
temperature grows further, the magnitude of Δ𝑇

2 de-
creases. The anomalous dependence of Δ2 on the

792 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 9



Role of Interface Phonons

Fig. 5. Temperature dependences of the total shifts Δ𝑇
𝑛 and

dampings Γ𝑇
𝑛 of the energy levels of three working electron

states in the RTS with the geometric parameters of the double-
well cascade of an injectorless QCL [1] in the electric field 𝐹 =

= 17 kV/cm

temperature results from the competitive contribu-
tions of the electron-phonon interaction at the pro-
cesses of phonon absorption and emission. Figure 5, b
illustrates that the damping magnitudes grow weakly
nonlinearly with the temperature for all the states
concerned.

The obtained values of renormalized energies �̃�𝑛 =
= 𝐸𝑛 + Δ𝑛 and dampings Γ𝑛 for the electron
states make it possible to determine the temperature-
induced energy change Δ𝐸32 = (�̃�𝑇

3 −�̃�𝑇
2 )−(�̃�3−�̃�2)

and broadening ΔΓ32 = (Γ̃𝑇
3 + Γ̃𝑇

2 ) − (Γ̃3 + Γ̃2) of
the laser radiation band. The corresponding calcula-
tion showed that, in the experimental configuration

of the double-well QCL cascade [1], the temperature-
induced shift owing to the interaction of electrons
with I-phonons is practically absent, and the broaden-
ing amounts to 0.1 meV. Hence, the theoretical value
of the energy of laser radiation 𝐸32 = 18.8 meV agrees
well with its experimental value 𝐸exp

32 = 19 meV.

4. Conclusions

On the basis of the effective mass and rectangular
potential models for electrons and the dielectric con-
tinuum model for interface phonons, the theory of
electron-phonon interaction in the double-well plane
resonant tunneling nanostructure located in a dc elec-
tric field and regarded as the separate cascade of an
injectorless QCL has been developed. The contribu-
tions of the intra- and interband electron-phonon in-
teractions to the renormalization of spectral charac-
teristics (shifts and dampings) of the electron states
and their dependences on the geometric RTS configu-
ration, dc electric field strength, and temperature are
studied. It is shown that the interaction of electrons
with interface phonons almost does not change the
energy of laser radiation in a wide range of tempera-
tures (from the absolute zero to room one), although
gives rise to a weak broadening of the radiation fre-
quency interval.
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РОЛЬ IНТЕРФЕЙСНИХ ФОНОНIВ
У ФУНКЦIОНУВАННI БЕЗIНЖЕКТОРНОГО
КВАНТОВОГО КАСКАДНОГО ЛАЗЕРА

Р е з ю м е

У моделi прямокутного потенцiального профiлю та ефе-
ктивної маси електрона i в моделi дiелектричного кон-
тинууму для iнтерфейсних фононiв отримано гамiльто-
нiан електрон-фононної системи у двоямнiй резонансно-
тунельнiй структурi у постiйному електричному полi. Ця
система вiдiграє роль окремого каскаду безiнжекторного
квантового каскадного лазера [1]. Методом температур-
них функцiй Грiна розраховано перенормування параме-
трiв електронного спектра при довiльнiй температурi та
показано, що, у вiдповiдностi з експериментом, смуга ла-
зерного випромiнювання зазнає розширення, але слабо змi-
щується зi збiльшенням температури.
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