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INTERNAL STATES OF HADRONS
IN RELATIVISTIC REFERENCE FRAMESPACS 03.30.+p, 03.65.-w

The internal state of an aggregate of a few bound particles and its transformation, when
changing from the reference frame, where this combined particle is at rest, to a reference frame,
where it moves relativistically, have been considered. It is supposed that the internal state of the
combined particle in its rest frame can be considered in the non-relativistic approximation. This
internal state is shown to remain the same, when changing from one inertial reference frame to
another one. In other words, a particle that is spherically symmetric in its rest frame does not
change its form in any other reference frame and does not undergo the Lorentz contraction
in the direction of motion of any reference frame with respect to the rest one. A possible
application of the results obtained to describe the scattering of hadrons considered as bound
states of quarks has been discussed.
K e yw o r d s: hadrons, reference frame, bound states of quarks, hadron scattering, state trans-
formation.

1. Introduction
In our previous work [1], it was shown that the pro-
cesses of elastic hadron scattering can be described
in the framework of the Laplace method. However,
the corresponding calculations were carried out only
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for model scalar theories, which allowed experimental
results to be reproduced only at a qualitative level
[2, 3]. On the other hand, the obtained qualitative
agreement gave hope for that the key features in the
behavior of experimentally observed quantities can
be described in the framework of perturbation the-
ory even in the case of strong interaction. Therefore,
there emerged an idea to apply the Laplace method
in the framework of quantum chromodynamics per-
turbation theory [4].

Following this way, we are faced with the known
problem: in diagrams, the quark and gluon lines are
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used, while we deal in the initial and final states with
the bound states of quarks – the hadrons. As a result
and contrary to what takes place in the “standard”
scattering theory, the interaction between quarks can-
not be switched-on or -off. Accordingly, neither the
state nor the Hamiltonian for the system of scattered
particles asymptotically approach the corresponding
quantities for free quarks. Therefore, we obtain two
problems: for the state and for the Hamiltonian. The
former consists in that how the initial and final scat-
tering states can be assigned with regard for the in-
teraction between quarks. The essence of the latter is
that, while considering the scattering amplitude with
the use of the diagram technique considerably related
to the switching-on and -off of the interaction, we ob-
tain an energy-momentum conservation law, which is
applied to the four-momenta of quarks, rather than
hadrons, i.e. contrary to what it occurs in experi-
ment. In the present paper, we examine the problem
of states. The solution of the problem concerning the
“correct” form for the energy-momentum conservation
law was considered in our works [5,6]. The results ob-
tained in those works were substantially based on the
conclusions presented in this paper below.

As a rule, hadrons in scattering processes are de-
scribed in the framework of the parton model [7].
However, the relativistic description of the internal
hadron state demands that a considerable number
of many-parton distribution functions should be as-
signed, if we do not confine ourselves to the inclusive
description, and this task substantially complicates
the problem [8, 9]. The solution of this problem can
be made easier, by using the following speculations. If
we assume that a free hadron consists of a certain
number of certain constituent quarks in its initial or
final scattering state, this means that new constituent
quarks cannot be born as a result of the interaction
between those quarks. As a result, we suppose that
at least some effects of elastic and inelastic hadron
scatterings can be described, if the internal state of
a free hadron is considered in the rest frame of this
hadron, rather than in the non-relativistic approxi-
mation. This approach does not exclude the fact that
the purely relativistic description should be applied
to some specific effects (see, e.g., work [10]).

It should be emphasized that the matter concerns
just a free hadron, before or after its scattering. In
the course of the scattering, the interaction between
the quarks belonging to different hadrons must un-

doubtedly be described relativistically. Such a de-
scription is not a subject of this work, but it was
made in works [5, 6]. Nevertheless, the initial and fi-
nal states at the scattering process contain several
hadrons each. Therefore, generally speaking, we can-
not choose the reference frame in such a way that
it would be a rest frame for all those hadrons, or at
least that all hadrons in this reference frame would
be non-relativistic.

Hence, there emerges a problem to transform the
non-relativistic internal state and the Hamiltonian,
when changing from particle’s rest frame to a re-
ference frame, where this particle moves relativis-
tically. The essence of this problem can be explai-
ned, by using the following simple example. Suppose
that there are the simplest quantum-mechanical non-
relativistic system – a hydrogen atom – with the
spherically symmetric ground state and an inertial
observer moving relative to this atom with a rela-
tivistic velocity. We would like to know the coordi-
nates and momenta of the particles composing this
system, as measured by this observer. More specifi-
cally, which probability amplitude describes the re-
sults of measurements, and how is this amplitude re-
lated to the probability amplitude measured in the
rest system of a hydrogen atom (the rest frame for
the center-of-mass of the constituting particles)?

If the hydrogen atom could be considered from the
standpoint of classical rather than quantum mechan-
ics, the procedure could be as follows. First, a stan-
dard problem of two bodies interacting by means of
a given potential is solved in atom’s rest frame. Then
we can apply the Lorentz transformations to this so-
lution, rather that consider a relativistic problem on
the self-consistent dynamics of three interacting ob-
jects: the nucleus, electron, and electromagnetic field
(the dynamic characteristics of each of them are not
fixed in this case and should be determined in the
course of solution). Doing in such a manner, we could
avoid a necessity to apply the relativistic description
of the interaction field between the nucleus and the
electron. Our purpose in this work is to implement
an approach of this kind, but in the framework of
quantum rather than classical mechanics. Namely, we
intend to use the Schrödinger equation with a def-
inite potential energy in the reference frame of the
center-of-mass of a two-particle system, to transform
the state determined in the rest frame into the ref-
erence frame that moves relativistically with respect

1034 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 12



Internal States of Hadrons in Relativistic Reference Frames

to the center-of-mass reference frame, and to avoid
the quantum-mechanical field description associated
with the creation and destruction of virtual particles
in the system.

Bearing in mind that we are interested in hadrons,
we will not consider the hydrogen atom below, but
a meson consisting of a quark and an antiquark as
the example of a two-particle system. Afterward, we
will apply the obtained results to more complicated
three-quark systems, baryons, assuming that the in-
ternal states of those particles, similarly to a hydro-
gen atom, can be described in the non-relativistic ap-
proximation in their rest frames. The example with
a hydrogen atom was given to emphasize that, in
this work, we do not discuss a possibility to apply
the non-relativistic approximation in the rest frame
of the combined particle, as we have no necessity to
do this in the case of a hydrogen atom. We consider
the problem in the following formulation: supposing
that the internal state of a combined particle is non-
relativistic in its rest frame, we have to determine its
state in a reference frame that moves at a relativistic
velocity relative to the rest reference frame.

This problem is a bit atypical. As a rule, various
quantities associated with the same event are mea-
sured in different reference frames. But in the case
of the probability amplitude for many-particle sys-
tems, the situation is different. Really, consider two
inertial observers, the primed and unprimed ones.
From the viewpoint of the unprimed observer, the
probability amplitude for a two-particle system (it
will be denoted as Ψ(𝑡, r1, r2)) describes the re-
sult of coordinate measurements that were perfor-
med simultaneously in the unprimed system and
at the time moment 𝑡 according to the clock in
this system. Analogously, the probability amplitude
Ψ′ (𝑡′, r′1, r

′
2) for the primed observer describes the

result of coordinate measurements performed simul-
taneously with respect to this observer, at the time
moment 𝑡′ according to his/her clock. However, the
measurements that are simultaneous for one observer
are not simultaneous for another one, and vice versa.

This is an essential difference between the prob-
lem concerned and the classical problem about the
Lorentz contraction. In the latter, the coordinate
measurement of rod’s ends must be simultaneous
in the reference frame, relative to which the rod
moves. However, it can be non-simultaneous in rod’s
rest frame. Therefore, rod’s length can be calculated

in terms of coordinates of the same events, but mea-
sured in different reference frames. In our case, a pair
of events consisting in that one observer detects par-
ticles in close vicinities of some points and a similar
pair of events for the other observer comprise sub-
stantially different pairs of events. It is so because
the events in the first pair must be simultaneous for
the first observer, as well as two events in the second
pair for the second observer. Therefore, those two ob-
servers cannot use the same measurement, when ex-
pressing its results with the use of the variables of
the corresponding own reference frame. Each of the
observers should realize his/her own, simultaneous
with respect to his/her, independent measurement.
As a result, there is no relation between the (𝑡, r1, r2)-
and (𝑡′, r′1, r

′
2)-values, because such a relation can

exist only between the time coordinates of the same
event measured in different reference frames. In other
words, there are no relations, like Lorentz transfor-
mations, between the arguments of the probability
amplitudes in both reference frames. (Hereafter, the
word argument has a sense of the variable, on which
a function depends, rather than an argument of the
function value as a complex number.) Therefore, the
conclusions about the length contraction or the time
dilation as a consequence of Lorentz transformations
become invalid.

The conclusion that neither Lorentz nor any other
transformations can relate arguments of many-partic-
le probability amplitudes in different reference frames
considerably distinguishes the approach of this work
from approaches applied in other works on this sub-
ject, which are known to us. The authors of those
works explicitly or implicitly assume that the argu-
ments of many-particle probability amplitudes in dif-
ferent reference frames can be related to one another
by Lorentz transformations. In particular, the indi-
cated problem concerning the simultaneity was al-
ready considered in the literature. For example, in
work [11], the simultaneity that is invariant with re-
spect to Lorentz transformations was proposed to
be defined as a simultaneity in the center-of-mass
frame. In the most known work on this subject [12],
an analog of two-particle probability amplitudes was
introduced as a matrix element of the product of
two one-particle creation operators in the Heisenberg
representation. The arguments of those two operator
functions were considered as four-vectors with respect
to Lorentz transformations, which brings us to the
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well-known problem of relative times. A further pro-
jection of the Bethe–Salpeter function on a certain
space-like hypersurface in the Minkowski space, which
is used in the quasipotential method [13], was aimed
at avoiding the problem of relative times by intro-
ducing an invariant time-like variable; i.e. this proce-
dure also assumes that the arguments of probability
amplitudes can be interrelated by means of Lorentz
transformations.

The same is true for the works, in which the dy-
namics of a light front was considered (see, e.g., works
[14–16]). In the seminal work [17] on this subject,
the main purpose was to reject the idea of simul-
taneous description; however, the matter concerned
the construction of expressions for the generators of
the Poincaré group. At the same time, the analysis of
the front-form dynamics from the viewpoint of state
space [14,15] in which those generators operate again
brings about “light-cone wave functions”, which ar-
guments are also assumed to be related by means of
Lorentz transformations.

The attention should be attracted to the fact that
the speculations given above about the impossibility
to interrelate the arguments of many-particle proba-
bility amplitude have nothing to do with our inten-
tion to apply the non-relativistic approximation in
one of the reference frames. In the relativistic situa-
tion, when the state is described by a Fock column
[18, 19], the above-mentioned problem of simultane-
ous measurement arises for every component of this
column starting from the second one. Therefore, on
the basis of the same reasons that were presented
above, we again arrive at a conclusion that the argu-
ments of the components in the Fock columns, which
describe the same state of a relativistic quantum sys-
tem in different reference frames, cannot be related to
one another in any way. A key method for the solution
of the problem concerning the Fock state transforma-
tion, when changing from one inertial reference frame
to another one, is given by the field quantization pos-
tulate formulated in work [18]. According to it, the
role of the generators of a Lorenz group representa-
tion in the Fock space is played by the components of
the angular momentum operator for the correspond-
ing relativistic system. More specifically, in our situ-
ation, this means the following.

It is known that the change from one inertial frame
to another one can be presented as a product of two
rotations and one boost. The indicated problem of

simultaneity evidently does not arise in the case of
rotations, so that the problem of state transformation
does not arise as well. Therefore, only the boost case
will be considered below.

Taking into account that it is enough to consider
a boost only along one of coordinate axes, let us an-
alyze the case of the boost along the axis 𝑂𝑍. The
boost rapidity will be designated as 𝑌 . According to
the quantization postulate [18], the generator of the
state transformation in this case is the operator of
the angular momentum component �̂�03. That is the
state |Ψ′⟩ (the non-relativistic probability amplitude
or the relativistic Fock column) in the primed refer-
ence frame is related to the corresponding state |Ψ⟩
in the unprimed reference frame by means of the re-
lation

|Ψ′⟩ = �̂�(𝑌 )|Ψ⟩,
�̂�(𝑌 ) = exp(𝑖�̂�03𝑌 ).

(1)

The generator �̂�03 is an operator-valued func-
tional of the creation and annihilation operators in
the Fock space. If the field operators and the Fock
state |Ψ⟩ are considered in the Heisenberg represen-
tation, then, in accordance with Noether’s theorem,
the generator �̂�03 is time-independent. Therefore, in
any other representation, where both the state and
the generator depend on the time, we obtain that
the time value in the expressions for the state and
the generator is the same. Furthermore, �̂�03 is an
integral of the corresponding density over the coor-
dinates. Hence, the action of this operator in Eq. (1)
does not result in the appearance of new independent
variables. Therefore, since the variables, on which the
components of the column |Ψ⟩ depend, are not ex-
pressed in any way, we obtain that the components
of the column |Ψ′⟩ depend on the same variables. So,
the action of the operator �̂� (𝑌 ) changes only the
form of dependences. Hence, being unable to estab-
lish a relationship between the probability amplitude
values corresponding to the same event, when consid-
ering the problem of a probability amplitude trans-
formation between inertial reference frames, we can
establish, nevertheless, a relationship between those
values obtained at the same values of arguments, as
is done, when considering internal symmetries. More
specifically, if we consider equality (1), e.g., in the
coordinate representation, its left-hand side contains
the time and coordinates that correspond to some
events, which are simultaneous in the initial refer-
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ence frame. At the same time, on the right-hand
side of this equality, other events are considered,
and their spatial and temporal coordinates are the
same as on the left-hand side, but expressed in the
new reference frame and simultaneous with respect
to it. Proceeding from the aforesaid, the notation
Ψ′ (𝑡, r1, r2) will be used for the two-particle prob-
ability amplitude in the primed coordinate system.

In the relativistic case, in addition to the difficulties
indicated above and associated with the definition of
a Fock state, we face another one, which consists in
that the operator �̂�03 for systems with interaction
does not depend quadratically on the creation and
annihilation operators. Therefore, the functional in-
tegral that describes its action in the Fock space [19]
is not Gaussian. In other words, even if we could de-
fine a Fock state, the problem of its transformation
with the use of Eq. (1) would be very difficult. This
is another argument for the attempt to simplify the
situation within the non-relativistic approximation.

However, in this case, we should construct a corre-
sponding non-relativistic approximation for the gen-
erator �̂�03. If such an approximation is constructed
in the center-of-mass frame for a bound system, the
operator �̂� ′

03 can be expressed in any other reference
frame in terms of �̂�03 and other angular momentum
components, which can also be defined in the non-
relativistic approximation with the help of the tensor
transformation rule. The following section is devoted
to the formulation of such approximations.

Before proceeding to the solution of the described
problem, we should pay attention to the following ca-
pability of its simplification. Let us consider a hadron
in its rest frame. Here, the state of the system has
to be an eigenstate for the operator of total momen-
tum of all constituting particles, P̂, and to correspond
to the zero eigenvalue. Even before making the non-
relativistic approximation, the temporal evolution of
the Fock state |Ψ⟩ in the system of particles that form
the hadron can be written in the form

|Ψ(𝑡)⟩ = exp(−𝑖�̂�𝑡)|Ψ(𝑡 = 0)⟩, (2)

where �̂� is the relativistic Hamiltonian for the system
of fields, whose quanta form the hadron. According to
work [18], in the reference frame obtained from the
initial one by applying the boost transformation, we
have

|Ψ′(𝑡)⟩ = �̂�(𝑌 )(exp(−𝑖�̂�𝑡)|Ψ(𝑡 = 0)⟩). (3)

Here, �̂� (𝑌 ) is the unitary operator of state transfor-
mation owing to the boost with rapidity 𝑌 , which is
defined by relation (1). Taking into account that we
consider an eigenstate of the total momentum corre-
sponding to the zero eigenvalue, relation (3) can be
rewritten in the form

|Ψ′(𝑡)⟩ = �̂�(𝑌 )×

× (exp(−𝑖(�̂�𝑡− (P̂ ·R)))|Ψ(𝑡 = 0)⟩), (4)

where R is a set of three arbitrary coordinates. Their
specific choice is not important, because operator
(4) acts on that eigenfunction of the operator P̂,
which corresponds to its zero eigenvalue. However,
we may consider now the set of four numbers (𝑡 and
R) as components of a four-vector with respect to
the Lorentz transformations. The set of the opera-
tors �̂� and P̂ can also be considered as an oper-
ator four-vector. This circumstance can be used as
follows.

Let us rewrite expression (4) in the form

|Ψ′(𝑡)⟩ = �̂�(𝑌 )�̂�(𝑥)�̂�−1(𝑌 )�̂�(𝑌 )|Ψ(𝑡 = 0)⟩, (5)

where the notations

𝑥 ≡ (𝑡, 𝑅𝑥, 𝑅𝑦, 𝑅𝑧),

�̂�(𝑥) ≡ exp(−𝑖(�̂�𝑡− (P̂ ·R)))
(6)

were introduced. The expression �̂� (𝑌 ) �̂� (𝑥) �̂�−1 (𝑌 )
is formally identical to that arising at the transforma-
tion of operator field functions [18]. Therefore, desig-
nating the matrix of a boost along the axis 𝑂𝑍 as
Λ(0) (𝑌 ), we obtain

�̂�(𝑌 )�̂�(𝑥)�̂�−1(𝑌 ) = �̂�(Λ(0)(𝑌 )𝑥). (7)

Then, instead of Eq. (5), we may write

|Ψ′(𝑡)⟩ = exp(−𝑖𝑡(ch(𝑌 )�̂� − sh(𝑌 )𝑃𝑧))×

× exp(𝑖𝑅𝑧(sh(𝑌 )�̂� − ch(𝑌 )𝑃𝑧))×

× exp(𝑖(𝑅𝑥𝑃𝑥 +𝑅𝑦𝑃𝑦))�̂�(𝑌 )|Ψ(𝑡 = 0)⟩. (8)

Till now, the relativistic operators of energy and
momentum were considered as �̂� and P̂, respectively.
However, they are related to the initial reference
frame, where, according to the considered problem,
the non-relativistic approximation can be applied. In
this approximation, those operators can be substi-
tuted by the non-relativistic internal Hamiltonian for
the system of quarks composing the hadron, and the
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non-relativistic operator of momentum of this sys-
tem. In this non-relativistic approximation, the quan-
tity |Ψ(𝑡 = 0)⟩ can be substituted by the coordinate
part of the probability amplitude for the energy eigen-
state of a two-particle (quark and antiquark) sys-
tem. In addition, in the limiting case of low rapidities
𝑌 , we see that the coordinates of the center of mass
must be selected as arbitrary coordinates of vector R:

R = R (r1, r2) =
𝑚1r1 +𝑚2r2
𝑚1 +𝑚2

. (9)

As will be shown below, if one takes, for |Ψ(𝑡 = 0)⟩,
the energy eigenstate of a two-particle bound sys-
tem that corresponds to the smallest eigenvalue, this
state remains invariant after the action of the opera-
tor �̂� (𝑌 ):

�̂�(𝑌 )|Ψ(𝑡 = 0)⟩ = |Ψ(𝑡 = 0)⟩. (10)

In addition, bearing in mind that �̂� is the Hamilto-
nian of the system of bound particles in their center-
of-mass frame, and |Ψ(𝑡 = 0)⟩ is its eigenstate corre-
sponding to its smallest eigenvalue, we have

�̂�|Ψ(𝑡 = 0)⟩ = 𝑚𝜇|Ψ(𝑡 = 0)⟩. (11)

From Eq. (8), taking all that and the reasons given
above into account, we obtain a “correct” dependence
on the time and the center-of-mass coordinates in the
new reference frame:

|Ψ′(𝑡)⟩ = exp
(︁
− 𝑖
(︁√︁

𝑚2
𝜇 +P2𝑡−

− (R(r1, r2) ·P
)︁)︁

|Ψ(𝑡 = 0)⟩, (12)

where P is the momentum of a bound particle in
the considered reference frame, and R (r1, r2) is ex-
pressed by formula (9).

We would like to attract attention to that, when
changing from the center-of-mass frame to another
inertial one, this “correct” dependence appeared not
due to a transformation of the coordinates and the
time, as this occurs for an ordinary plane wave, but
exclusively due to the form transformation of depen-
dence (7) on the same variables, as was discussed
above after formula (1). Changing from the center-of-
mass frame to various other inertial reference frames,
dependence (12) will be obtained in each of them,
and, as was discussed above, r1 and r2 will be the
coordinates of particles that are measured simulta-
neously in the corresponding reference frame. Hence,
we obtain the same dependence of the state on the

variables in different inertial reference frames, as the
relativity principle demands.

Thus, the discussed simplification, which is reached
by applying Eqs. (4)–(8), consists in that we have
no need to describe the transformation of the whole
probability amplitude for the energy eigenstate, when
changing from the quark-antiquark center-of-mass
reference frame to another one. We may confine our-
selves to the transformation of only the coordinate
part of this probability amplitude. Hence, the fur-
ther consideration concerns two issues: (i) How can
a non-relativistic approximation for the generator
�̂�03 be constructed? and (ii) How can the opera-
tor exp(𝑖�̂�03𝑌 ) be applied to the coordinate part of
hadron’s internal state in hadron’s rest frame?

At the end of Introduction, we would like to dis-
tinctly emphasize those approximations that are used
in this work. Note that we do not deal with the rel-
ativistic theory of bound states. We consider a prob-
lem, in which the internal state of a bound particle
is given in the reference frame of particle’s center-
of-mass, and it is non-relativistic. We should deter-
mine this state in a reference frame that moves at
a relativistic velocity with respect to the center-of-
mass reference frame. We hope for that, in the frame-
work of this approximation, it will be possible to de-
scribe the main properties of relativistic elastic and
inelastic hadron scatterings [5, 6]. In the rest frame
of the hadron, its internal state is described by a
two-particle probability amplitude (this is a solu-
tion of the Schrödinger equation), and hadron’s mass
is the smallest eigenvalue of the corresponding non-
relativistic Hamiltonian [5,6]. The non-relativistic ap-
proximation is also used for the component �̂�0,3 of
the angular momentum tensor in the rest frame of a
bound particle.

2. Approximation of Lorentz Transformation
Generators by Differential Operators

The component �̂�0,3 of the angular momentum ten-
sor in terms of differential operators looks like

�̂�0,3 = 𝑖

(︂
𝑡
𝜕

𝜕𝑧
+ 𝑧

𝜕

𝜕𝑡

)︂
. (13)

Note that the expression of the generators in terms
of differential operators can be obtained by consid-
ering a certain function of the coordinates and the
time and by making the relevant substitution of in-
dependent variables in this function. However, as was
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marked in Introduction, the change of independent
variables is impossible in our case. Therefore, rela-
tion (13) can be understood only as a limit for the
“correct” relativistic operator �̂�0,3, when performing
the non-relativistic approximation. Then, the follow-
ing question arises: To what limit does this operator
tend in the case of a many-particle system? Taking
into account that the spatial components of the angu-
lar momentum are expressed as sums of correspond-
ing one-particle operators, we may assume that the
components, for which one of the subscripts equals
zero, are additive as well. Then, for a two-particle
system, we have

�̂�0,3 = 𝑖

(︂
𝑡

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧2

)︂
+ (𝑧1 + 𝑧2)

𝜕

𝜕𝑡

)︂
. (14)

As was marked above, when making the non-
relativistic approximation, the quantity |Ψ(𝑡 = 0)⟩ in
Eq. (8) can be replaced in our case by the coordinate
part 𝜓 (r1, r2) of the energy eigenstate. This function
does not depend on the time, and it is the eigenfunc-
tion of the operator of total system momentum corre-
sponding to the zero eigenvalue. Taking into account
that operator (14) can be written in the form

�̂�0,3 = −𝑡𝑃𝑧 + (𝑧1 + 𝑧2)𝑖
𝜕

𝜕𝑡
, (15)

we arrive at a conclusion that the function 𝜓 (r1, r2)
is also an eigenfunction of the operator �̂�0,3 and cor-
responds to its zero eigenvalue.

This fact can also be explained by the following rea-
sons. Since the quark-antiquark center-of-mass refer-
ence frame is the initial one, we have

𝜓(r1, r2) = 𝜓(r2 − r1). (16)

If the variables r1 and r2 in the expression

𝑖

(︂
𝑡

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧2

)︂
+ (𝑧1 + 𝑧2)

𝜕

𝜕𝑡

)︂
𝜓(r2 − r1) (17)

are changed to new ones,

r+ = r1 + r2, r− = r1 − r2, (18)

then the operator in Eq. (17) will depend only on 𝑧+,
and the function, on which it acts, depends only on
𝑧−. Therefore, from the reasons given above, a con-
clusion can be drawn that

exp(𝑖�̂�0,3𝑌 )𝜓(r2 − r1) = 𝜓(r2 − r1), (19)

i.e. meson’s internal state does not vary when chang-
ing to a new reference frame.

In all previous speculations, the corresponding
component of the orbital angular momentum tensor
was considered as the generator of �̂�0,3. Note that,
in the case of free bispinor field, one can see from
the explicit expression for the spin contribution to
the angular momentum tensor [18] that the contribu-
tions of those tensor components, for which at least
one of their subscripts equals zero, vanish. The op-
erator of interaction between the bispinor and gauge
fields does not contain derivatives of the bispinor field
components and, therefore, does not contribute to
the tensor of spin angular momentum. Therefore, the
spin contribution to the “correct” relativistic opera-
tor �̂�0,3 equals zero. This means that only the or-
bital contribution to �̂�0,3 can be considered in the
non-relativistic limit.

From whence, we may draw conclusion that all the
reasoning above can be applied not only to mesons,
but also to baryons, because the presence of their
nonzero spin changes nothing. Assuming the additiv-
ity of all components of the angular momentum, we
obtain that, for a baryon, instead of Eq. (14), we have

�̂�0,3 = 𝑖

(︂
𝑡

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧2
+

𝜕

𝜕𝑧3

)︂
+

+(𝑧1 + 𝑧2 + 𝑧3)
𝜕

𝜕𝑡

)︂
. (20)

This operator is also expressed in terms of the opera-
tor of the 𝑧-component of the total momentum of the
system. Therefore, the action of this operator on the
eigenfunction of the total momentum operator corre-
sponding to the zero eigenvalue also gives zero.

The speculations in this section possess two essen-
tial shortcomings. First, the “correct” relativistic op-
erator �̂�0,3 is not realized in terms of differential op-
erators, but is given in the second-quantization repre-
sentation. That is why it is reasonable to seek its non-
relativistic limit in this representation. In addition,
we substantially used assumptions (14) and (20). In
the second-quantization representation, since the op-
erator expressions do not depend on whether the op-
erators are defined in the one- or many-particle space,
those assumptions turn out unnecessary. Therefore,
the considerations of this section can be regarded
only as auxiliary. However, in the next section, we
will demonstrate that the consideration of the prob-
lem in the second-quantization representation brings
about the same result.
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3. Approximation
of Lorentz Transformation Generators
in the Second-Quantization Representation

Let the notation 𝑞+(𝑓, 𝜈, 𝑐, r) designate the non-
relativistic quark creation operator in the coordinate
variant of the second-quantization representation.
The indices 𝑓 , 𝜈, and 𝑐 describe the flavor, spin, and
color, respectively, of a quark created in the state that
is characteristic of the radius-vector operator and cor-
responds to the eigenvalue r. The creation operator
for an antiquark in the same state will be designated
as ^̄𝑞

+
(𝑓, 𝜈, 𝑐, r). The corresponding annihilation op-

erators are 𝑞−(𝑓, 𝜈, 𝑐, r) and ^̄𝑞
−
(𝑓, 𝜈, 𝑐, r). Then the

coordinate part of meson’s internal state (the meson
is regarded as a quark-antiquark system) can be pre-
sented in the form

|𝜇⟩ =
∫︁
𝑑r2𝑑r1𝜓(|r2 − r1|)𝑠(𝜈1, 𝜈2)𝑐(𝑐1, 𝑐2)𝑎(𝑓1, 𝑓2)×

× 𝑞+(𝑓1, 𝜈1, 𝑐1, r1)^̄𝑞
+
(𝑓2, 𝜈2, 𝑐2, r2)|0⟩. (21)

In this formula, 𝑠 (𝜈1, 𝜈2), 𝑘 (𝑐1, 𝑐2), and 𝑎 (𝑓1, 𝑓2)
stand for the spin, color, and flavor, respectively,
parts of the probability amplitude, whereas the
function 𝜓 (|r2 − r1|) describes the coordinate de-
pendence of a probability amplitude in the quark-
antiquark center-of-mass reference frame. Since we
consider the coordinate part of the energy eigenstate,
an eigenfunction of the non-relativistic Hamiltonian
for the quark-antiquark system has to be taken as
𝜓 (|r2 − r1|). As usual, the summation over the re-
peated indices is implied. We also use the standard
notation |0⟩ for the vacuum state.

Taking into account that the dependence of all
quantities on the internal indices is insignificant for
the issues considered in this section, let us use the
single-letter notation 𝜉 for the set of indices {𝜈, 𝑐, 𝑓}
and the notation
𝐹 (𝜉1, 𝜉2) ≡ 𝑠(𝜈1, 𝜈2)𝑘(𝑐1, 𝑐2)𝑎(𝑓1, 𝑓2) (22)

for the dependence of the probability amplitude on
the internal indices. Then, instead of Eq. (21), we
may write
|𝜇⟩ = 𝐹 (𝜉1, 𝜉2)

∫︁
𝑑r2𝑑r1𝜓(|r2 − r1|)×

× 𝑞+(𝜉1, r1)^̄𝑞
+
(𝜉2, r2)|0⟩. (23)

It is well-known that, in field theory, the operator
�̂�0,3 has the form

�̂�0,3 =

∫︁
𝑑r(𝑥3𝑇0,0(r)− 𝑥0𝑇3,0(r)), (24)

where 𝑇0,0 (r) and 𝑇3,0 (r) are the operators of corre-
sponding components of the energy-momentum ten-
sor, 𝑥0 ≡ 𝑡 is the time-like component of the coor-
dinate four-vector, and 𝑥3 ≡ (−𝑧) is its covariant
component along the axis 𝑂𝑍. Relations (24) can ob-
viously be rewritten in the form

�̂�0,3 = −𝑡𝑃𝑧 +

∫︁
𝑑r(𝑥3𝑇0,0(r)), (25)

where 𝑃𝑧 is the operator of the 𝑧-component of the
total momentum.

Note that relations (24) and (25) are exact and de-
mand no assumptions and approximations. The de-
pendence on 𝑡 in Eq. (25) coincides with dependence
(15). At the same time, the latter is a consequence
of assumptions (14) and (20). Hence, we may draw
conclusion that Eq. (25) proves the correctness of our
assumptions.

State (23) is an eigenstate for the total momen-
tum of the system and corresponds to its zero eigen-
value. Therefore, the action of the first term in
Eq. (25) on this state is trivial and gives zero. So let
us consider the second term in Eq. (25). We introduce
the following notation for it:

�̂�0,3(𝑇0,0) =

∫︁
𝑥3𝑇0,0(r)𝑑r. (26)

In order to act by this operator on state (23) of
the two-particle system, we have to construct a
non-relativistic approximation for the energy den-
sity 𝑇0,0 (r). To solve this problem, the most suit-
able is the second-quantization representation, be-
cause the Hamiltonian is represented here as an inte-
gral of a certain operator-valued function, which can
be adopted as the non-relativistic limit of the energy
density.

In the second-quantization representation, the non-
relativistic Hamiltonian of a quark-antiquark system
can be written in the form

�̂� = �̂�(0) + �̂�(𝑉 ),

�̂�(0) =

∫︁
𝑑r

(︂
^̄𝑞
+
(𝜉, r)

(︂
− 1

2𝑚
Δ

)︂
𝑞− (𝜉, r)

)︂
+

+

∫︁
𝑑r

(︂
𝑞+ (𝜉, r)

(︂
− 1

2𝑚
Δ

)︂
^̄𝑞
−
(𝜉, r)

)︂
,

�̂�(𝑉 ) =
1

2

∫︁
𝑑r1𝑑r2𝑉 (r2 − r1)×

×^̄𝑞
+
(𝜉1, r1)𝑞

+(𝜉2, r2)^̄𝑞
−
(𝜉2, r2)𝑞

−(𝜉1, r1). (27)

Here, 𝑉 (r2 − r1) is the potential energy of interac-
tion between the quark and the antiquark, and 𝑚 is
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the quark or antiquark mass. The latter parameter
is approximately considered to be independent of the
flavor, because the bound state exists owing to the
strong interaction, whereas other types of interaction
are neglected.

It is well-known that if we want to express the two-
particle Hamiltonian in terms of differential opera-
tors, we can use the Jacobi coordinates,

R =
1

2
(r1 + r2), r = r2 − r1, (28)

and present it as a sum of two commutative opera-
tors: the Hamiltonian of the center-of-mass, which
depends only on R; and the internal Hamiltonian,
which depends only on r. We want to obtain a similar
form in the case where the Hamiltonian is written in
terms of creation and annihilation operators. For this
purpose, it is convenient to rewrite the one-particle
part of the Hamiltonian �̂�(0) in the form of a two-
particle operator. Let us take into account that, in
the non-relativistic approximation, all operators can
be considered in a subspace of the Fock space, where
the number of particles and their content are fixed. In
our case, we consider the subspace of states that con-
tains one quark and one antiquark. The basis states
in this subspace can be written in the form

|𝜉1, 𝜉2, r1, r2⟩ = ^̄𝑞
+
(𝜉1, r1)𝑞

+(𝜉2, r2)|0⟩. (29)

Acting by the operator

�̂� =

∫︁
𝑑r^̄𝑞

+
(𝜉, r)𝑞−(𝜉, r) (30)

on any linear combination of states (29), one can get
convinced that this operator plays the role of the iden-
tity operator in this subspace. The operator

�̂�′ =

∫︁
𝑑r𝑞+(𝜉, r)^̄𝑞

−
(𝜉, r). (31)

has the same property in this subspace. If the first
term in the one-particle part �̂�(0) of Hamiltonian
(27) is multiplied by the identity operator (31) and
the second term by operator (30), we obtain an ex-
pression for the one-particle part in the apparently
two-particle form,

�̂�(0) =

(︂
− 1

2𝑚

)︂∫︁
𝑑r1𝑑r2 ×

×
(︁
𝑞
+
(𝜉1, r1) 𝑞

+ (𝜉2, r2)Δ1 ^̄𝑞
−
(𝜉2, r2) 𝑞

− (𝜉1, r1)+

+ ^̄𝑞
+
(𝜉1, r1) 𝑞

+ (𝜉2, r2)Δ2 ^̄𝑞
−
(𝜉2, r2) 𝑞

− (𝜉1, r1)
)︁
. (32)

Now, let us substitute the one-particle part in Hamil-
tonian (27) by expression (32) and transform the re-
sult to the Jacobi variables (28). Let us also introduce
the notations
r1 (R, r) = R− 1

2
r, r2 (R, r) = R+

1

2
r,

^̄𝑞
+
(𝜉1, r1 (R, r)) = ^̄𝑞

+
(1),

𝑞+ (𝜉2, r2 (R, r)) = 𝑞+ (2),

^̄𝑞
−
(𝜉2, r2 (R, r)) = ^̄𝑞

−
(2),

𝑞− (𝜉1, r1 (R, r)) = 𝑞− (1).

�̂� = �̂�(R) + �̂�(r,𝑉 ),

�̂�(R) =

(︂
− 1

4𝑚

)︂∫︁
𝑑R𝑑r×

× ^̄𝑞
+
(1) 𝑞+ (2)ΔR ^̄𝑞

−
(2) 𝑞− (1),

�̂�(r,𝑉 ) =

∫︁
𝑑R𝑑r×

× ^̄𝑞
+
(1) 𝑞+ (2)

(︂
− 1

𝑚
Δr + 𝑉 (r)

)︂
^̄𝑞
−
(2) 𝑞− (1).

(33)

The operator �̂�(R) will be called the center-of-mass
Hamiltonian, and the operator �̂�(r,𝑉 ) the internal
Hamiltonian of the system. Then the Hamiltonian �̂�
can be written in the form

�̂� =

∫︁
𝑇00(R)𝑑R, (34)

where the operator of energy density 𝑇00 (R) looks
like

𝑇00(R) = 𝑇
(R)
00 (R) + 𝑇

(r)
00 (R) + 𝑇

(𝑉 )
00 (R),

𝑇
(R)
00 (R) =

(︂
− 1

4𝑚

)︂∫︁
𝑑r×

× ^̄𝑞
+
(1) 𝑞+ (2)ΔR ^̄𝑞

−
(2) 𝑞− (1),

𝑇
(r)
00 (R) =

(︂
− 1

𝑚

)︂∫︁
𝑑r×

× ^̄𝑞
+
(1) 𝑞+ (2)Δr ^̄𝑞

−
(2) 𝑞− (1),

𝑇
(𝑉 )
00 (R) =

∫︁
𝑑r×

× ^̄𝑞
+
(1) 𝑞+ (2)𝑉 (r) ^̄𝑞

−
(2) 𝑞− (1).

(35)

Formulas (34)–(35) define the non-relativistic ap-
proximation of the operator 𝑇00(r). It can be used to
construct a non-relativistic approximation for gener-
ator (26),

�̂�0,3(𝑇0,0) = �̂�
(R)
0,3 + �̂�

(r)
0,3 + �̂�

(𝑉 )
0,3 ,

�̂�
(𝑎)
0,3 =

∫︁
𝑑R(𝑅3𝑇

(𝑎)
0,0 (R)),

(36)

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 12 1041



N.O. Chudak, K.K. Merkotan, D.A. Ptashynskyy et al.

where the index 𝑎 has three possible values: 𝑎 = R,
r, and 𝑉 .

Knowing the non-relativistic approximation for
generator (24), we may apply the associated opera-
tor (1) to the non-relativistic approximation of state
(23) and obtain the probability amplitude for this
state in the new reference frame. In order to simplify
the action of the operator exponential function (1) on
Eq. (23), let us take into account that state (23) is an
eigenstate of the internal Hamiltonian �̂�(r,𝑉 ). We are
interested in the ground state of the system of bound
quarks. In the corresponding center-of-mass reference
frame, it corresponds to the eigenvalue equal to
hadron’s mass. However, this eigenvalue is not degen-
erate for the ground state. Therefore, if we prove that
generator (24) commutes with the internal Hamilto-
nian, this fact will mean that state (23) is also an
eigenstate for both generator (24) and operator (1).

Hence, we have to prove that the operators
�̂�0,3(𝑇0,0) and �̂�(r,𝑉 ) commute with each other. For
this purpose, it is convenient to change to the mo-
mentum representation and to differentiate the oper-
ator functions of coordinates that enter the Laplace
operators in the expression for Hamiltonian (33). In
order to change to the momentum representation, let
us write operators (33) and the potential energy as
follows:
^̄𝑞
+
(1) = (2𝜋)

−3/2
∫︁
𝑑p1 ^̄𝑞

+
(𝜉1,p1) exp(𝑖(p1 · r1)),

^̄𝑞
+
(2) = (2𝜋)

−3/2
∫︁
𝑑p2 ^̄𝑞

+
(𝜉2,p2) exp(𝑖(p2 · r2)),

^̄𝑞
−
(2) = (2𝜋)

−3/2
∫︁
𝑑p3 ^̄𝑞

+
(𝜉2,p3) exp(𝑖(p3 · r2)),

^̄𝑞
−
(1) = (2𝜋)

−3/2
∫︁
𝑑p4 ^̄𝑞

+
(𝜉1,p4) exp(𝑖(p4 · r1)),

𝑉 (r) = (2𝜋)
−3/2

∫︁
𝑑k𝑉 (k) exp(𝑖(k · r)).

(37)

Here, ^̄𝑞+(𝜉1,p1), 𝑞+(𝜉2,p2), ^̄𝑞
−
(𝜉2,p3), and 𝑞−(𝜉1,p4)

are the operators of quark creation and annihila-
tion in momentum eigenstates. The notations r1 and
r2 stand for the functions r1(R, r) and r2(R, r),
which are determined by formula (33), but their ar-
guments are omitted to make the expressions more
compact. Substituting them into Eq. (35) and carry-
ing out the integration (the calculation details can be
found in work [20]), we obtain the following expres-
sion for the internal Hamiltonian �̂�(r):

�̂�(r,𝑉 ) = �̂�(r) + �̂�(𝑉 ). (38)

where

�̂�(r) =

∫︁
𝑇

(r)
00 (R)𝑑R =

∫︁
𝑑P𝑑p

(︂
p2

𝑚

)︂
×

× ^̄𝑞
+
(︂
𝜉1,p1 =

1

2
P− p

)︂
𝑞+
(︂
𝜉2,p2 =

1

2
P+ p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
P+ p

)︂
𝑞−
(︂
𝜉2,p4 =

1

2
P− p

)︂
,

�̂�(𝑉 ) =

∫︁
𝑇

(𝑉 )
00 (R)𝑑R =

1

(2𝜋)
3/2

∫︁
𝑑P𝑑p𝑑k×

× 𝑉 (k)^̄𝑞
+
(︂
𝜉1,p1 =

1

2
P− p

)︂
×

× 𝑞+
(︂
𝜉2,p2 =

1

2
P+ p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
P+ p+ k

)︂
×

× 𝑞−
(︂
𝜉2,p4 =

1

2
P− p− k

)︂
.

(39)

Now, let us consider the expression for generator
(36) in the momentum representation. For the term
�̂�

(R)
0,3 , we have (here, the notations p1 + p2 = P12

and p3+p4 = P34 for new integration variables were
introduced):

�̂�
(R)
0,3 =

1

(2𝜋)
3

∫︁
𝑑P12𝑑P34𝑑p

(︃
(P34)

2

4𝑚

)︃
×

× 𝑞+
(︂
𝜉1,p1 =

1

2
P12 − p

)︂
×

× 𝑞+
(︂
𝜉2,p2 =

1

2
P12 + p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
P34 + p

)︂
×

× 𝑞−
(︂
𝜉2,p4 =

1

2
P34 − p

)︂
×

×
∫︁
𝑅3 exp(𝑖(P12 −P34)R)𝑑R. (40)

The integration variable will be designated as P, and,
instead of P34, we introduce a new integration vari-
able 𝜀, by using the formula

P34 = P− 𝜀. (41)

After required transformations, we obtain

�̂�
(R)
0,3 = −𝑖

∫︁
𝑑P𝑑𝜀𝑑p

(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂
×
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×

(︃
(P− 𝜀)

2

4𝑚

)︃
𝑞+
(︂
𝜉1,p1 =

1

2
P− p

)︂
×

× 𝑞+
(︂
𝜉2,p2 =

1

2
P+ p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
(P− 𝜀) + p

)︂
×

× 𝑞−
(︂
𝜉2,p4 =

1

2
(P− 𝜀)− p

)︂
. (42)

Here, the derivative of the Dirac 𝛿-function is un-
derstood in the sense usual for generalized functions,
when integrating by parts [21]. Analogously,

�̂�
(r)
0,3 = −𝑖

∫︁
𝑑P𝑑𝜀𝑑p

(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂
×

×
(︂
p2

𝑚

)︂
𝑞+
(︂
𝜉1,p1 =

1

2
P− p

)︂
×

× 𝑞+
(︂
𝜉2,p2 =

1

2
P+ p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
(P− 𝜀) + p

)︂
×

× 𝑞−
(︂
𝜉2,p4 =

1

2
(P− 𝜀)− p

)︂
,

�̂�
(𝑉 )
0,3 =

−𝑖
(2𝜋)

3/2

∫︁
𝑑P𝑑𝜀𝑑p𝑑k

𝜕𝛿 (2𝜀)

𝜕𝜀3
×

× 𝑉 (k) ^̄𝑞
+
(︂
𝜉1,p1 =

1

2
P− p

)︂
×

× 𝑞+
(︂
𝜉2,p2 =

1

2
P+ p

)︂
×

× ^̄𝑞
−
(︂
𝜉2,p3 =

1

2
(P− 𝜀) + p+ k

)︂
×

× 𝑞−
(︂
𝜉2,p4 =

1

2
(P− 𝜀)− p− k

)︂
.

(43)

Knowing the expressions for the generator �̂�0,3

and the internal Hamiltonian, we can calculate their
commutator. Since each of those operators consists of
several terms, let us consider commutators between
those terms. While calculating the commutators, it
is convenient firstly to convert the products of opera-
tors arranged in that or another order into the normal
form with the help of Wick’s theorem.

Above, we have already used the fact that all oper-
ators are considered in a subspace of the Fock space,
whose states include one quark and one antiquark.
Therefore, the operators containing, in the normal

form, two or more quark/antiquark creation or anni-
hilation operators will have zero matrix elements for
all basis elements of this subspace, so that such oper-
ators can be dropped. Taking into account that each
of the operators concerned contains one quark and
one antiquark operators, their product will include
two quark and two antiquark operators, thus contain-
ing “redundant” operators. Applying Wick’s theorem
to this product, we obtain that only those terms will
have nonzero matrix elements in the space concerned,
in which the “redundant” operators are paired.

As an example, let us analyze the product
�̂�(r)�̂�

(R)
0,3 . After converting it to the normal form,

dropping the terms with zero matrix elements, and
considering the 𝛿-functions that arise as a result of
the pairing, this product can be written in the fol-
lowing form (more detailed calculations can be found
in work [20]):

�̂�(r)�̂�
(R)
0,3 = −𝑖

∫︁
𝑑p1𝑑p2𝑑𝜀

(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂
×

×

(︃
(p2 − p1)

2

4𝑚

)︃(︃
(p1 + p2 − 𝜀)

2

4𝑚

)︃
×

× ^̄𝑞
+
(𝜉1,p1)𝑞

+(𝜉2,p2)×

× ^̄𝑞
−
(︂
𝜉2,p2 −

1

2
𝜀

)︂
𝑞−
(︂
𝜉1,p1 −

1

2
𝜀

)︂
. (44)

For the product of the same operators, but in the
inverse order, after similar transformations, we obtain

�̂�
(R)
0,3 �̂�

(r) = −𝑖
∫︁
𝑑p1𝑑p2𝑑p3𝑑p4𝑑𝜀×

×

(︃
(p3 − p4)

2

4𝑚

)︃(︃
(p1 + p2 − 𝜀)

2

4𝑚

)︃(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂
×

× 𝛿

(︂(︂
p2 −

1

2
𝜀

)︂
− p3

)︂
𝛿

(︂(︂
p1 −

1

2
𝜀

)︂
− p4

)︂
×

× 𝑞+ (𝜉1,p1) 𝑞
+ (𝜉2,p2) ^̄𝑞

−
(𝜉2,p3) 𝑞

− (𝜉1,p4). (45)

Carrying out the integration over the components p3

and p4, we obtain a result that is identical to expres-
sion (44). Analogously, it can be demonstrated [20]
that the operator �̂� (R)

0,3 commutes with other terms
in the internal Hamiltonian. As a result, it commutes
with the entire internal Hamiltonian of the bound
quark system.

Now, let us calculate the commutators of the op-
erator �̂� (r)

0,3 with the terms in the internal Hamil-
tonian. With the help of transformations similar to
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those considered above, the product �̂�(r)�̂�
(r)
0,3 is ob-

tained in the form

�̂�(r)�̂�
(r)
0,3 = −𝑖

∫︁
𝑑p1𝑑p2𝑑p3𝑑p4𝑑𝜀×

×
(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂(︃
(p2 − p1)

2

4𝑚

)︃(︃
(p2 − p1)

2

4𝑚

)︃
×

× ^̄𝑞
+
(𝜉1,p1) 𝑞

+ (𝜉2,p2) ^̄𝑞
−
(︂
𝜉2,p3 = p2 −

1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉1,p4 = p1 −

1

2
𝜀

)︂
. (46)

The same result is obtained, if the product of the
same operators, but taken in the inverse order, is
converted to the normal form. Hence, �̂� (r)

0,3 and �̂�(r)

commute with each other.
The calculation of the product �̂�(𝑉 )�̂�

(r)
0,3 brings

about the result

�̂�(𝑉 )�̂�
(r)
0,3 =

−𝑖
(2𝜋)

3/2

∫︁
𝑑p1𝑑p2𝑑𝜀𝑑k×

×
(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂
𝑉 (k)

(︃
(p2 − p1 + 2k)

2

4𝑚

)︃
×

× ^̄𝑞
+
(𝜉1,p1) 𝑞

+(𝜉2,p2) ^̄𝑞
−
(︂
𝜉2,p3 = p2 + k− 1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉1,p4 = p1 − k− 1

2
𝜀

)︂
. (47)

However, the calculation of the product �̂� (r)
0,3�̂�

(𝑉 )

gives a result that does not coincide with formula
(47):

�̂�
(r)
0,3�̂�

(𝑉 ) =
−𝑖

(2𝜋)
3/2

∫︁
𝑑p1𝑑p2𝑑𝜀𝑑k×

×𝑉 (k)

(︂
𝜕𝛿 (2𝜀)

𝜕𝜀3

)︂(︃
(p2 − p1)

2

4𝑚

)︃
×

× 𝑞+ (𝜉1,p1) 𝑞
+ (𝜉2,p2)×

× ^̄𝑞
−
(︂
𝜉2,p3 = p2 + k− 1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉2,p4 = p1 − k− 1

2
𝜀

)︂
. (48)

Hence, the operators �̂� (r)
0,3 and �̂�(𝑉 ) do not commute

with each other. At the same time,

�̂�
(𝑉 )
0,3 �̂�

(r) =
−𝑖

(2𝜋)
3/2

∫︁
𝑑p1𝑑p2𝑑p3𝑑p4𝑑𝜀𝑑k×

× 𝜕𝛿 (2𝜀)

𝜕𝜀3
𝑉 (k)

(︃
(p2 − p1 + 2k)

2

4𝑚

)︃
×

× ^̄𝑞
+
(𝜉1,p1) 𝑞

+ (𝜉2,p2)×

× ^̄𝑞
−
(︂
𝜉2,p3 = p2 + k− 1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉1,p4 = p1 − k− 1

2
𝜀

)︂
(49)

and

�̂�(r)�̂�
(𝑉 )
0,3 =

−𝑖
(2𝜋)

3/2

∫︁
𝑑p1𝑑p2𝑑p3𝑑p4𝑑𝜀𝑑k×

× 𝜕𝛿 (2𝜀)

𝜕𝜀3
𝑉 (k)

(︃
(p2 − p1)

2

𝑚

)︃
×

× ^̄𝑞
+
(𝜉1,p1) 𝑞

+ (𝜉2,p2)×

× ^̄𝑞
−
(︂
𝜉2,p3 = p2 + k− 1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉1,p4 = p1 − k− 1

2
𝜀

)︂
. (50)

Taking into account that the expressions for
�̂�(𝑉 )�̂�

(r)
0,3 and �̂� (𝑉 )

0,3 �̂�
(r) [Eqs. (47) and (49), respecti-

vely] enter the general expression for the commutator
[�̂�(r,𝑉 ), �̂�0,3] with opposite signs (the same can be
said about Eqs. (48) and (50)), we arrive at a conclu-
sion that

[�̂�(r), �̂�
(𝑉 )
0,3 ] + [�̂�(𝑉 ), �̂�

(r)
0,3 ] = 0. (51)

Finally, the calculation of the products �̂� (𝑉 )
0,3 �̂�

(𝑉 )

and �̂�(𝑉 )�̂�
(𝑉 )
0,3 brings about the same result,

�̂�
(𝑉 )
0,3 �̂�

(𝑉 ) = �̂�(𝑉 )�̂�
(𝑉 )
0,3 =

=
−𝑖

(2𝜋)
3

∫︁
𝑑p1𝑑p2𝑑𝜀𝑑p

′𝑑k′ 𝜕𝛿(2𝜀)

𝜕𝜀3
𝑉 (k)𝑉 (k′)×

× ^̄𝑞
+
(𝜉1,p1)𝑞

+(𝜉2,p2)×

× ^̄𝑞
−
(︂
𝜉2,p3 = p2 + k′ + k− 1

2
𝜀

)︂
×

× 𝑞−
(︂
𝜉1,p4 = p1 − k′ − k− 1

2
𝜀

)︂
. (52)

Hence, if we divide the commutator [�̂�(r,𝑉 ), �̂�0,3]
into the terms that correspond to the terms of the
internal Hamiltonian and the generator, the sum of
all those terms will be equal to zero, i.e.

[�̂�0,3, �̂�
(r,𝑉 )] = 0. (53)
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Thus, as was marked above, since state (23) is
an eigenstate of the internal Hamiltonian and cor-
responds to a nondegenerate eigenvalue, the conse-
quence of relation (53) consists in that this state has
to be an eigenstate of the boost generator as well:

�̂�0,3 |𝜇⟩ = 𝑚0,3 |𝜇⟩, (54)

where 𝑚0,3 is the eigenvalue corresponding to �̂�0,3-
generator’s eigenstate |𝜇⟩. In order to determine this
parameter, let us take advantage of the symmetry
properties of the eigenstate |𝜇⟩. In particular, this
state must transform into itself at any inversion of
coordinate axes. Furthermore, if the interaction po-
tential between the quark and the antiquark is as-
sumed to be spherically symmetric, the ground state
of this system has also to be spherically symmetric,
i.e. to transform into itself at any rotation. Using the
notation �̂� (𝐼,𝑅) for the unitary operator of inversion
or rotation in the considered subspace of the Fock
space, we may write

�̂� (𝐼,𝑅) |𝜇⟩ = |𝜇⟩. (55)

Then Eq. (54) can be rewritten in the form

�̂�0,3�̂�
(𝐼,𝑅) |𝜇⟩ = 𝑚0,3�̂�

(𝐼,𝑅) |𝜇⟩, (56)

or

(�̂� (𝐼,𝑅))
−1
�̂�0,3�̂�

(𝐼,𝑅) |𝜇⟩ = 𝑚0,3 |𝜇⟩. (57)

So, the operator (�̂� (𝐼,𝑅))
−1
�̂�0,3�̂�

(𝐼,𝑅) is related to
�̂�0,3 by means of the tensor transformation rule. This
fact means that, by selecting an inversion or a rota-
tion that changes the 𝑂𝑍-axis direction to the oppo-
site one, we obtain

(�̂� (𝐼,𝑅))
−1
�̂�0,3�̂�

(𝐼,𝑅) = −�̂�0,3. (58)

On the other hand, substituting Eq. (58) into Eq. (57)
and taking Eq. (54) into account, we obtain

𝑚0,3 = 0. (59)

Hence, if |𝜇′⟩ stands for the state of a system of two
bound particles in the reference frame that is obtained
from the center-of-mass reference frame for those par-
ticles by means of a boost with rapidity 𝑌 along the
axis 𝑂𝑍, we have

|𝜇′⟩ = exp(𝑖�̂�0,3𝑌 ) |𝜇⟩. (60)

However, with regard for Eqs. (54) and (59), one can
see that, of all terms in the series representing the

operator exponential function exp(𝑖�̂�0,3𝑌 ), only the
term with the identity operator provides a non-zero
result after its action on the state |𝜇⟩. So, we obtain
|𝜇′⟩ = |𝜇⟩. (61)

This result coincides with result (19) obtained
above in terms of differential operators. Hence, a con-
clusion can be drawn that the internal state of a non-
relativistic system consisting of bound particles does
not vary in the case of a boost-like change to the
reference frame, in which this bound system has a
relativistic energy-momentum. Note that this conclu-
sion has already been made in the literature [22], but
without any substantiation.

4. Group-Theory Analysis
of the State-Transformation Problem

In the previous sections, we have examined two dif-
ferent representations of the boost generator �̂�0,3

and obtained similar results. Therefore, a question
arises: How much can those results be general-
ized? The generalization can be reached, if we analyze
the problem in the framework of the general group
theory.

Let us consider the generators of the Poincaré
group. There are four generators of space-time trans-
lations 𝑃𝑎 (𝑎 = 0, 1, 2, 3) and six Lorentz generators
�̂�𝑎,𝑏 = −�̂�𝑏,𝑎. The commutation relations between
those generators depend only on the group multipli-
cation rule, so that those features of a state trans-
formation in quantum-mechanical systems of inter-
acting particles that were discussed above do not
affect them. Furthermore, those commutation rela-
tions are independent of the generator representa-
tion. Therefore, they can be considered, knowing
nothing about the explicit generator forms. The op-
erator 𝑔𝑎,𝑏𝑃𝑎𝑃𝑏 is known [23] to commute with ev-
ery generator of the Poincaré group and, in particu-
lar, with the generator �̂�0,3, which is of interest for
us. We should take into account that, in accordance
with the field quantization postulate [18], the gener-
ator 𝑃0 must coincide with the total Hamiltonian of
the system, and the operators 𝑃𝑏 (𝑏 = 1, 2, 3) with
the operators of momentum components. Then one
can see that the operator 𝑔𝑎,𝑏𝑃𝑎𝑃𝑏 is identical to the
squared internal Hamiltonian of the system, since all
of its eigenvalues are equal to the squared eigenvalues
of the internal energy for the particle system under
considation.
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Hence, the boost generator commutes with the
square of the internal Hamiltonian, irrespective of
both the representation of those operators and a ca-
pability to apply the non-relativistic approximation
in the center-of-mass reference frame of the particles
concerned. If this approximation is applicable—it is
so in the case that we are interested in—the eigen-
state associated with the smallest eigenvalue of the
squared internal Hamiltonian corresponds to a non-
degenerate eigenvalue. Then, owing to the commuta-
tivity of the operators 𝑔𝑎,𝑏𝑃𝑎𝑃𝑏 and �̂�0,3, we obtain
that this state is an eigenstate for �̂�0,3 as well. From
whence, it follows that this state is not transformed
at the boost. Hence, it becomes evident that the non-
degenerate character of the ground state of a bound
system plays the most important role.

Therefore, from the commutation relations between
the generators of the Poincaré group, it follows that,
if the internal state of a system of interacting parti-
cles (i.e. the eigenstate of the squared internal Hamil-
tonian of the system) is not degenerate, it will not
change at the boost transformation.

5. Discussion of the Results
Obtained and Conclusions

The ground state of a system with central interaction
is known to be spherically symmetric. According to
the results obtained above, it will not transform, if
we switch to another reference frame. In other words,
it will remain spherically symmetric and will not un-
dergo the Lorentz contraction. As was marked above,
a conclusion similar to ours has been made rather long
ago in the literature [22]. But the cited work was de-
voted to other issues, and the substantiation of this
statement was not the aim of its author.

We understand that our conclusion about the ab-
sence of contraction contradicts the standard app-
roach. In the majority of works (see, e.g., works [24–
26]), their authors use a scenario that hadron’s shape
varies when changing from one inertial reference
frame to another one. The same approach is also used
in geometrical models (see, e.g., work [27]), which are
based on the assumption that a hadron can be ima-
gined as a “black disk” after the Lorentz contraction.

Concerning this contradiction, we would like to
make the following remarks. First, our result does not
contradict the relativity theory. To illustrate this, in
work [28], we considered a problem of the dependence
of the distance between two classical (not quantum-

mechanical) relativistic particles that move, being
driven by the laws defined in their center-of-mass ref-
erence frame. The time dependence of the distance
between the same particles, but in another inertial
reference frame, can obviously be calculated with the
help of only Lorentz transformations. In work [28], it
was shown that we may assign such a law of particle
motion that the observers in different inertial refer-
ence frames will measure the same time dependence
of the distance in the corresponding “own” reference
frames. So, the contraction does not occur in this
problem, being also a consequence of only Lorentz
transformations, as well as the contraction of rod’s
length.

Second, the internal state of the rod was never ex-
amined in the problem about its motion. Of course,
this state has nothing in common with the states con-
sidered in this work. Therefore, the results of this
work are not related to the transformation of rod’s
state. The problem about such states and their trans-
formation goes far beyond the scope of issues that
were covered in this work.

Third, one more argument in favor of our con-
clusion, in addition to the detailed arguments given
above, can be put forward “on the basis of gen-
eral considerations”. If we consider a meson with the
zero spin, its internal angular momentum must equal
zero. As a result, this state must be spherically sym-
metric. Furthermore, the internal angular momentum
of the meson must remain equal to zero in any ref-
erence frame. However, if meson’s state had been no
more spherically symmetric due to the Lorentz con-
traction, the internal angular momentum would have
ceased to equal zero. In other words, the meson would
have possessed a nonzero spin in the new reference
frame.

The result obtained in this work is important for
the further consideration. In particular, it allows the
method of many-particle fields applied to the descrip-
tion of hadrons in scattering processes [5, 6] to be
developed further. This method makes it possible to
consider the scattering processes of hadrons as many-
quark systems and to describe the confinement of
quarks and gluons.
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ВНУТРIШНI СТАНИ АДРОНIВ
У РЕЛЯТИВIСТСЬКИХ СИСТЕМАХ ВIДЛIКУ

Р е з ю м е

Розглянуто задачу про перетворення внутрiшнього стану
частинки, яка є зв’язаним станом декiлькох частинок, з си-
стеми спокою складеної частинки в систему вiдлiку вiдно-
сно якої вона є релятивiстською. При цьому вважається,
що в системi спокою складеної частинки її внутрiшнiй стан
можна розглядати в нерелятивiстському наближеннi. По-
казано, що цей внутрiшнiй стан не змiнюється при перехо-
дi з однiєї системи вiдлiку до iншої. Тобто сферично симе-
трична частинка в системi спокою залишається такою i в
будь-якiй iншiй системi вiдлiку i не пiддається лоренцево-
му скороченню в напрямку руху довiльної системи вiдлiку
вiдносно системи спокою. Обговорено можливе застосуван-
ня результатiв роботи для опису процесiв розсiяння адронiв
як зв’язаних станiв кваркiв.
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