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We consider the classical Morse oscillator driven by an amplitude modulated signal with two
widely different frequencies 𝜔 and Ω, where Ω ≫ 𝜔. The dynamics of such oscillator is numer-
ically studied for a specific set of parameters. We show the occurrence of coexistence of several
period-𝑇 orbits, bifurcations of them, and hysteresis and vibrational resonance phenomena. We
characterize the periodic and chaotic orbits, hysteresis, and vibrational resonance with the use
of the bifurcation diagram and response amplitude.
K e yw o r d s: classical Morse oscillator, coexistence of multiple attractors, hysteresis, vibra-
tional resonance, amplitude modulated signal.

1. Introduction

In this paper, we consider the damped classical Morse
oscillator. Under the excitation by an AM signal, it
is described by the equation

�̈�+ 𝑑�̇�+
𝑑𝑉 (𝑥)

𝑑𝑥
= (𝑓 + 2𝑔 cosΩ𝑡) sin𝜔𝑡, (1)

where

𝑉 (𝑥) =
1

2𝛼
𝛽 𝑒−𝛼𝑥(𝑒−𝛼𝑥 − 2) (2)

is the Morse potential [1, 2]. Here, 𝛽 is the dissocia-
tion energy, 𝛼 is the range parameter, 𝑑 is the damp-
ing coefficient, 𝑓 is the unmodulated carrier ampli-
tude, 2𝑔 is the degree of modulation, Ω and 𝜔 are
the two frequencies of the force with Ω ≫ 𝜔. Figure 1
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depicts the form of the Morse potential for three dif-
ferent values of 𝛽, namely 𝛽 = 2.0, 1.0, 0.5, and for
𝛼 = 1. The potential 𝑉 (𝑥) has one local minimum at
𝑥 = 0 and 𝑉 (𝑥) → ∞ as 𝑥 → −∞, while it becomes
zero as 𝑥 → ∞. The Morse potential is widely used
to provide an approximate potential energy function
for diatomic molecules and to describe the potential
energy surface along a bond stretching direction in
polyatomic molecules [1, 2].

The Morse oscillator is the most prominent ex-
ample of an anharmonic oscillator that has found
wide applications. The driven Morse oscillator with-
out damping (𝑑 = 0) is characterized by an equation
frequently used in theoretical chemistry to describe
the photodissociation of molecules [3, 4]. The damped
and driven Morse oscillator (Eq. (1)) can serve as a
rough model for the interatomic potential and fitting
the vibrational spectra of diatomic molecules. It is
also used to describe the infrared multiphoton exci-
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Fig. 1. Morse potential curve for three values of 𝛽 with 𝛼 = 1

tation, laser isotopic separation, anomalous gains ob-
served in the stimulated Raman emission, and the dis-
sociation of van der Waals complexes [3–8]. In recent
years, many studies were focused within the classi-
cal, semiclassical, and quantum mechanical methods
on the Morse oscillator dynamics. In particular, Abi-
rami et al. [9] investigated recently the occurrence of a
vibrational resonance in both classical and quantum-
mechanical Morse oscillators driven by a biharmonic
force. Behnia et al. [10] studied the control over chaos
via a slave-master feedback in the classical Morse os-
cillator. The bifurcations of periodic orbits and its ex-
istence are studied both analytically and numerically
by Jing et al. [11].

A large class of nonlinear dynamical systems is
characterized by the coexistence of multiple attrac-
tors in some regions of the parameter space. They
lead to the unpredictable behavior of trajectories
when a set of parameters is slowly varied through
the bifurcation point and are also considered as a
source of unpredictability in nonlinear dynamical sys-
tems [12–14]. The coexistence of several attractors
gives rise to the possibility of hysteresis, that is, the
possibility of jumping through the coexisting attrac-
tors in a way that is not reversible, when we fix
a parameter back to its original value. It is present
in the mechanical system, electromagnetism, chemi-
cal kinetics, astrochemical cloud models, and nonlin-
ear optics. In particular, the coexistence of attractors
and hysteresis have been observed in the generalized
Ueda oscillator [15], two coupled overdamped anhar-
monic oscillators [16], modified Chua’s circuit model
[17], and the experimental study of Colpitt’s oscilla-
tor [18].

A weakly nonlinear oscillator exhibiting a periodic
response to an external periodic force of frequency

𝜔 = 𝑘𝜔0 (where 𝜔0 is the natural frequency of the
oscillator in the absence of an applied force) is said
to be in the resonance of order 𝑘 with the external
force, when 𝜔 ≈ 𝑘𝜔0. Then the system is close to a
resonance of order 𝑘. The cases 𝜔 = 𝜔0 and 𝜔 = 𝑘𝜔0,
𝑘 > 1, are referred as the primary and secondary
resonances, respectively. An integer value of 𝑘 cor-
responds to the subharmonic resonance. If 𝑘 = 1/𝑛,
where 𝑛 is an integer, then it refers to the super-
harmonic resonance. Recently, Lukomsky et al. [19]
proposed a consecutive scheme for studying the har-
monic and subharmonic driven oscillations described
by second-order differential equations with arbitrary
polynomial nonlinearity.

The study of nonlinear systems subjected to an ex-
ternal periodic force and noise led to several fascinat-
ing phenomena. Stochastic resonance [20] is one of
such phenomena in which an enhancement of the sig-
nal amplitude is observed at an optimum noise inten-
sity. It has been shown both theoretically and experi-
mentally that the amplification of a resonance can be
achieved when noise is replaced by a high-frequency
periodic force, and the associated effect is called the
vibrational resonance(VR) [9, 16, 17]. The analysis of
vibrational resonances has attracted a considerable
interest in recent years because of its wide variety
of applications. The phenomenon of VR was initially
presented in ref. [21] and later reported in monostable
[22], multistable [23], excitable [24], and spatially pe-
riodic potentials [25], maps [26], electronic circuits
[17], and time-delayed systems [27]. Recent studies
show that VR can also occur at the high-order fre-
quencies. Specifically, if the low frequency of one ex-
citation is 𝜔, the vibrational resonance induced by
the high-frequency excitation may occur at frequen-
cies which are multiple of the frequency 𝜔. In a very
recent paper, Yang et al. [28] investigated the vibra-
tional subharmonic and superharmonic resonances in
an overdamped bistable system driven by two har-
monic excitations. In our present work, we will nu-
merically analyze the occurrence of VR due to a high-
frequency periodic force with Ω ≫ 𝜔, the coexistence
of multiple attractors, and hysteresis in a classical
Morse oscillator driven by an amplitude modulated
(AM) signal.

The structure of this paper is as follows. In Sec-
tion 2, we present the damped and driven classical
Morse oscillator model and its parameters. We nu-
merically analyze the dynamical behavior of the sys-
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tem driven by an AM signal in Section 3. We show
the occurrence of coexistence of multiple attractors
and the bifurcations. We also illustrate the presence
of the phenomena of hysteresis and vibrational reso-
nance. The conclusions are drawn in Section 4.

2. Damped and Driven Classical
Morse Oscillator and Parameters Values

The differential equation which describes the classical
Morse oscillator system driven by an AM signal is as
follows:

�̈�+𝑑�̇�+𝛽 𝑒−𝛼𝑥(1−𝑒−𝛼𝑥) = (𝑓+2𝑔 cosΩ𝑡) sin𝜔𝑡. (3)

The dynamics of a nonlinear system is generally
sensitive to the parameters of the system. Since the
exact analytic solution of the nonlinear system is not
known, we wish to carry out the numerical simula-
tion for certain choices of the parameters. For sim-
plicity, the values of Ω is chosen as the integral multi-
ples of 𝜔. Different values of Ω will give the different
dynamics. For our numerical study, we fix the val-
ues of the parameters at 𝛼 = 1, 𝑑 = 0.5, 𝛽 = 2.0,
1.5, 0.5, 𝜔 = 1 and Ω = 10. The initial values
in the numerical calculations are fixed at 𝑥(0) =
= 0.1 and �̇�(0) = 0. Equation (3) is solved by the
fourth-order Runge–Kutta method with time step
size Δ𝑡 = (2𝜋/𝜔)/200. Numerical solutions corre-
sponding to 500 first drive cycles are left as tran-
sient. We analyzed the behavior of system Eq. (3) by
varying the amplitude 𝑓 of the low-frequency signal
and the amplitude 𝑔 and the frequency Ω of the high-
frequency signal. The numerical results are demon-
strated through a bifurcation diagram and the calcu-
lation of a response amplitude 𝑄. Recently, Ravichan-
dran et al. [29] studied the effect of an AM signal
on horseshoe chaos and routes to asymptotic chaos
in the Duffing oscillator. Yang et al. [30] investigated
the control over VR in a delayed multistable system
driven by an AM signal, and Gandhimathi et al. [31]
investigated the vibrational and stochastic resonances
in two coupled overdamped anharmonic oscillators
driven by an AM signal.

3. Dynamical Behaviors of the System

In this section, we numerically analyze the dynamical
behaviors such as the coexistence of multiple attrac-
tors and the phenomena of hysteresis and vibrational
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Fig. 2. Bifurcation diagrams for the system described by
Eq. (3) and driven by an AM signal when (a) 𝑔 = 0 and (b)
𝑓 = 0. The other parameters are 𝑑 = 0.5, 𝛼 = 1.0, 𝛽 = 2.0,
𝜔 = 1.0 and Ω = 10

resonance in the classical Morse oscillator system de-
scribed by Eq. (3) by varying the amplitudes and fre-
quencies of the AM signal.

3.1. Coexistence of multiple attractors

For a range of 𝑓 and 𝑔, the system described
by Eq. (3) has the coexistence of several attrac-
tors. When the control parameter 𝑓 or 𝑔 is varied, the
system undergoes period-doubling bifurcations lead-
ing to chaotic motions at some critical values. The
bifurcation diagram for the parameter 𝑓 ∈ [0, 1.0]
with 𝑔 = 0 (i.e., the system is driven by the sinu-
soidal force 𝑓 sin𝜔𝑡) is shown in Fig. 2, a. In this
bifurcation diagram, the ordinate represents the val-
ues of 𝑥(𝑡) collected at time 𝑡 equal to every integral
multiple of 2𝜋/𝜔 (Poincar𝑒 points) after leaving the
sufficient transient evolution. In other bifurcation di-
agrams with 𝑔 ̸= 0 (Fig. 2, b, Fig. 4, and Fig. 5),
the period of the force is set to 𝑇 = 2𝜋/(Ω + 𝜔). At
the critical value of a control parameter 𝑓 , the sta-
bility of equilibrium points is exchanged or trans-
formed. This type of bifurcation is called the trans-
critical bifurcation. At 𝑓 = 𝑓𝑐 = 0.44656, a transcrit-
ical bifurcation occurs, at which maximal Lyapunov
exponent (𝜆𝑚) ≈ 0. When 𝑓 is further increased from
𝑓 = 0.44656, a period-2𝑇 limit cycle is developed
at 𝑓 = 0.65291. The period-2𝑇 orbit becomes unsta-
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Fig. 3. Period-doubling bifurcation of the Morse oscillator
(Eq. 3) driven by an AM signal, when 𝑔 = 0. The other pa-
rameters are 𝑑 = 0.5, 𝛼 = 1.0, 𝛽 = 2.0, 𝜔 = 1.0, and Ω = 10

ble at 𝑓 = 0.73586 and gives birth to a limit cycle
with period-22𝑇 . The bifurcations to a period-23𝑇 ,
period-24𝑇 , period-25𝑇 , period-26𝑇, and period-27𝑇
orbits are also observed at 𝑓 = 0.75873, 𝑓 = 0.76452,
𝑓 = 0.76588, 𝑓 = 0.76617, and 𝑓 = 0.76623. This se-
quence of period-doubling bifurcations accumulates
at 𝑓 = 0.77637. For 0.77637 < 𝑓 < 1.0, a chaotic
motion is found. This shows that the periodic motion
and chaotic motion coexist for the range 𝑓 ∈ [0, 1].
Figure 3 shows the phase trajectory of periods 𝑇 ,
2𝑇 , 4𝑇, and 8𝑇 limit cycles from Eq. (3). The ap-
proach to chaos via the period-doubling is in agree-
ment with the Feigenbaum constant (𝛿) scenario [32,
33] which draws on the behavior of nonconserva-
tive systems, where the consecutive control intervals
tend to a fixed ratio 𝛿 = 4.66992... as an accumu-
lation point is reached. From Fig. 2, a, we find the
ratios 𝛿1 = 3.62702, 𝛿2 = 3.94991, 𝛿3 = 4.25735,
𝛿4 = 4.65432, and 𝛿5 = 4.66431 that are in fair
agreement with the Feigenbaum constant (𝛿), when
𝑛 → ∞.

Now, we consider the effect of an AM signal in the
Morse oscillator system, by fixing the value of 𝑓 = 0
and thereby varying 𝑔. The obtained bifurcation dia-
gram is shown in Fig. 2, b. We can clearly see the oc-
currence of the finite period-doubling, reverse period-
doubling, and chaos in Fig. 2, b. At 𝑔 = 𝑔𝑐 = 49.2593,

a transcritical bifurcation occurs. When 𝑔 is increased
from 𝑔𝑐 = 49.2593, this orbit becomes unstable and
gives birth to the period-2𝑇 orbit. The newly born
period-2𝑇 orbit is stable up to 𝑔 = 65.3968. The bi-
furcations to the period-22𝑇 , period-23𝑇 , period-24𝑇 ,
period-25𝑇 , period-26𝑇, and period-27𝑇 orbits are
observed at 𝑔 = 69.1001, 𝑔 = 71.7460, 𝑔 = 72.7732,
𝑔 = 73.0867, 𝑔 = 73.1587, and 𝑔 = 73.1747. Using
the above period-doubling values of 𝑔, we obtain
Feigenbaum’s ratios 𝛿1 = 1.39964, 𝛿2 = 2.57596,
𝛿3 = 3.27546, 𝛿4 = 4.34436, 𝛿5 = 4.55731, and
𝛿6 = 4.66233. The calculated 𝛿 values can be shown
to approach a constant value 𝛿 ≈ 4.66992..., when
𝑛 → ∞. As 𝑔 increases further, a chaotic orbit and
the reverse period-doubling bifurcation are found to
occur. The physical reason leading to the reverse
period-doubling bifurcation is the softness and re-
versibility of the bifurcation. The critical values of
the reverse period-2𝑇 , 22𝑇 , 23𝑇 , 24𝑇 , 25𝑇 , 26𝑇, and
27𝑇 orbits occur at 𝑔 = 110.86207, 𝑔 = 103.12387,
𝑔 = 101.36797, 𝑔 = 100.98365, 𝑔 = 100.90127,
𝑔 = 100.88353, and 𝑔 = 100.87872, respectively. At
𝑔 = 110.86207, the reverse period doubling bifurca-
tion suddenly disappears, and a long time motion
settles to a periodic behavior. From the above crit-
ical values of reverse periodic orbits, we find Feigen-
baum’s ratios such as 𝛿1 = 4.40572, 𝛿2 = 4.56885,
𝛿3 = 4.62601, 𝛿4 = 4.64375, 𝛿5 = 4.65427, and
𝛿6 = 4.66177. In the limit 𝑛 → ∞, the value of 𝛿 ap-
proaches a constant value 4.66992... . Here again, the
coexistence of several attractors, the period-doubling
bifurcation leading to chaotic motion, and reverse pe-
riod doubling bifurcation are also found in the interval
0 < 𝑔 < 120.

Next, we show the effect of the control param-
eter 𝑔, by fixing the values of 𝑓 in a periodic re-
gion. For 𝑓 = 0.1 and 𝑔 = 0, the motion of the
system is periodic with period-𝑇 orbit. Figure 4, a
is the bifurcation diagram obtained by varying 𝑔 in
the range 42 to 54. In Fig. 4, a, a transcritical bifur-
cation occurs at 𝑔 = 43.4555. This bifurcation per-
sists up to 𝑔 = 48.6075. Then a period-2𝑇 solution
is developed. This is followed by the bifurcations to
22𝑇 , 23𝑇 , 24𝑇 , 25𝑇 , 26𝑇, and 27𝑇 solutions and so
on. The critical values of the period-22𝑇 , 23𝑇 , 24𝑇 ,
25𝑇 , 26𝑇, and 27𝑇 orbits occur at 𝑔 = 50.4256,
𝑔 = 51.0809, 𝑔 = 51.2648, 𝑔 = 51.3105, 𝑔 = 51.3208,
and 𝑔 = 51.3231. The onset of chaos takes place at
𝑔 = 𝑔𝑐 = 51.3254. Using the values of 𝑔 given above,
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we obtain Feigenbaum’s ratios 𝛿1 = 2.77445, 𝛿2 =
3.56335, 𝛿3 = 4.43621, 𝛿4 = = 4.45578, 𝛿5 = 4.46204,
and 𝛿6 = 4.46613. These ratios approach a constant
value 𝛿 = 4.66992..., when 𝑛 → ∞. When the con-
trol parameter 𝑔 is further increased from 𝑔𝑐, we
could find that the chaotic motion and periodic win-
dows persisted up to 𝑔 = 54.175. At 𝑔 = 54.175, the
chaotic motion disappears. Again the period-𝑇 orbit
is developed in the interval 64.175 < 𝑔 < 99.875
(Fig. 6, a). As 𝑔 increases further from 99.875, the
chaotic motion and reverse period-doubling bifur-
cation occur. At 𝑔 = 175.175, the reverse period-
doubling bifurcation disappears, and the long time
motion settles to a periodic orbit (Fig. 6, a). The bi-
furcation of an equilibrium point into two equilibrium
points at the critical value of a control parameter
with one being of saddle type and the other being
stable node is observed. This type of bifurcation is
called the saddle-node bifurcation. In Fig. 4, we can
see period-doubling windows in the bifurcation dia-
grams. These types of periodic orbits are developed
due to the saddle-node bifurcation. In Figs. 4, a and
6, a, we observe the coexistence of multiple attractors,
suppression, and enhancement of chaos in the inter-
val 0 < 𝑔 < 200 for 𝑓 = 0.1. The bifurcation diagram
corresponding to 𝑔 = 75 (chaotic motion when 𝑓 = 0
and periodic motion when 𝑓 = 0.1) and 𝑓 ∈ [0, 1]
is shown in Fig. 4, b. When the control parameter 𝑓
is smoothly varied, the system described by Eq. (3)
starts with the chaotic motion followed by the re-
verse period-doubling bifurcation. As 𝑓 increases fur-
ther, the chaotic motion and periodic window region
occur in the interval 0 < 𝑓 < 1.0. Here again, we
observe the suppression and enhancement of chaos
and the existence of several attractors in the interval
0 < 𝑓 < 1.0 for 𝑔 = 75.

3.2. Hysteresis

First, we consider the effect of the high-frequency
component of the force alone. In other words, 𝑓 = 0
(but 𝜔 ̸= 0), and we fix 𝜔 = 1.0,Ω = 10.0, 𝛽 = 2.0
and 𝑑 = 0.5. Hysteresis is observed in the presence of
the high-frequency component force. The bifurcation
diagram plotted by varying 𝑔 in the forward direc-
tion, as well as in the reverse direction, is shown in
Fig. 5. Figures 5, a and 5, b are obtained by vary-
ing the amplitude 𝑔 from zero in the forward direc-
tion and from the value 200 in the reverse direc-

42 45 48 51 54
0.0

0.5

1.0

0.0 0.5 1.0

0

3

6
g = 75(b)

x

f

f = 0.1(a)

x

g

Fig. 4. Bifurcation diagrams for the system driven by an AM
signal, when (a) 𝑓 = 0.1 and (b) 𝑔 = 75. The other parameters
are 𝑑 = 0.5, 𝛼 = 1.0, 𝛽 = 2.0, 𝜔 = 1.0, and Ω = 10
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Fig. 5. Bifurcation diagrams for the system driven by an AM
signal, when 𝑔 is varied in the (a) forward direction and (b)
reverse direction. The other parameters are 𝑓 = 0.0, 𝑑 = 0.5,
𝛼 = 1.0, 𝛽 = 2.0, 𝜔 = 1.0, and Ω = 10

tion. Different paths are followed in Figs. 5, a and
5, b. Hence, the system exhibits the hysteresis, when
the control parameter 𝑔 is varied smoothly from a
small value to a larger one and then back to the
smaller value. Next, we consider the effect of the low-
frequency component of an AM signal alone, i.e.,
𝑔 = 0, and the system is driven by 𝑓 sin𝜔𝑡. The hys-
teresis phenomenon is not observed in the presence of
the low-frequency component of the force.
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Finally, we consider the effect of both low- and
high-frequency components of an AM signal, i.e.,
𝑓 ̸= 0 and 𝑔 ̸= 0. We fix the parameters as 𝑓 = 0.1,
𝜔 = 1.0, Ω = 10.0, 𝛽 = 2.0, and 𝑑 = 0.5. Hysteresis is
realized, when 𝑔 is varied in the forward and reverse
directions in the interval 𝑔 ∈ [0, 200], which is shown
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namely, 𝛽 = 2.0, 1.5, 0.5. The other parameters are 𝑔 = 100,
𝑑 = 0.5, 𝛼 = 1.0, 𝜔 = 1.0, and Ω = 10
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Fig. 9. Response amplitude 𝑄 versus Ω for three values of 𝛽,
namely, 𝛽 = 2.0, 1.5, 0.5. The other parameters are 𝑓 = 0.1,
𝑔 = 100, 𝑑 = 0.5, 𝛼 = 1.0, and 𝜔 = 1.0

in Fig. 6. Here, we again observe the suppression and
enhancement of chaos. As shown above, the presence
of coexistence of regular and chaotic attractors and
the hysteresis phenomenon allows us to change the
behavior of the system from chaos to a regular mode
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by increasing the value of 𝑔 from the small value to
a larger value and then decreasing it from the large
value to a small value. The occurrence of hysteresis
can be treated as a method of migration control.

3.3. Vibrational Resonance

In addition to the coexistence of multiple attractors
and hysteresis, the system described by Eq. (3) also
exhibits the phenomenon of VR, when 𝑔 is varied. To
quantify the occurrence of VR, we use the response
amplitude 𝑄 of the system at the signal frequency
𝜔. Equation (3) can be numerically integrated with
the use of the fourth-order Runge–Kutta method with
the time step 𝑇 = (2𝜋/𝜔)/1000. The first 103 drive
cycles are left as transient and the values of 𝑥(𝑡) cor-
responding to the next 500 drive cycles are used to
compute the response amplitude (𝑄). From the nu-
merical solution of 𝑥(𝑡), the response amplitude is
computed through 𝑄 =

√︀
𝑄2

S +𝑄2
C/𝑓 , where

𝑄S =
2

𝑛𝑇

𝑛𝑇∫︁
0

𝑥(𝑡) sin𝜔𝑡d𝑡, (4a)

𝑄C =
2

𝑛𝑇

𝑛𝑇∫︁
0

𝑥(𝑡) cos𝜔𝑡d𝑡, (4b)

where 𝑇 = (2𝜋/𝜔) is the period of the response and
𝑛 is taken as 500.

Figure 7 shows the variation of numerically com-
puted 𝑄 against the control parameter 𝑔 for three
fixed values of 𝛽, namely, 𝛽 = 2.0, 1.5, 0.5. The values
of other parameters are 𝛼 = 1, 𝑑 = 0.5, 𝑓 = 0.1, 𝜔 = 1
and Ω = 10. The 𝑄 value increases with 𝑔, reaches
a maximum, and then decreases, as 𝑔 further in-
creases. The underlying phenomenon is VR, since the
occurrence is due to the high-frequency component
of the force. In Fig. 7, the number of resonances de-
creases with decrease in 𝛽. Five resonances occur for
𝛽 = 2.0, which is clearly shown in Fig. 7, a. The first
resonance occurs at 𝑔 = 51.322 with 𝑄max = 8.3216,
second resonance at 𝑔 = 105.555 , 𝑄max = 7.6, third
resonance at 𝑔 = 122.751, 𝑄max = 5.2195, fourth res-
onance at 𝑔 = 134.656, 𝑄max = 4.07619, and fifth res-
onance at 𝑔 = 153.1741 with 𝑄max = 4.2666. When
𝑔 > 175, no resonance occurs. In Fig. 7, b, for 𝛽 =
= 1.5, only two resonances occur. The first one oc-
curs at 𝑔 = 66.13756 with 𝑄max = 6.28148, second at
𝑔 = 99.2061 with 𝑄max = 5.2449, and no resonance

occurs, when 𝑔 > 125. For 𝛽 = 0.5, only one reso-
nance occurs at 𝑔 = 46.82539 with 𝑄max = 1.476825,
which is presented in Fig. 7, c, and no resonance oc-
curs, when 𝑔 > 62.5.

We analyze the influence of the parameters 𝑓 and Ω
on the resonance. The results are presented in Figs. 8
and 9. 𝑄 versus 𝑓 is plotted in Fig. 8 for different val-
ues of 𝛽, namely, 𝛽 = 2.0, 1.5, 0.5 and with 𝑔 = 100,
𝜔 = 1 and Ω = 10. Multiple resonances occur for
𝛽 = 2.0 and 1.5 (Figs. 8, a and b), and no resonance
occurs for 𝛽 = 0.5 (Fig. 8, c). In Fig. 8, c, 𝑄 is found
to decrease with increase in 𝑓 . The dependence of 𝑄
on the frequency Ω of the driving force is presented in
Fig. 9 for different values of 𝛽, namely 𝛽 = 2.0, 1.5,
0.5 and with 𝜔 = 1, 𝑓 = 0.1 and 𝑔 = 100. In all the
cases, only two resonances occur with almost equal
𝑄max value.

4. Conclusion

We have numerically studied the dynamics of the clas-
sical Morse oscillator driven by an AM signal for a
specific set of values of the parameters. The coexis-
tence of several attractors, bifurcations of them, and
the phenomena of hysteresis and vibrational reso-
nance are found. Various types of bifurcations such
as transcritical, reverse period-doubling, etc. are en-
countered in the system (Eq. 3). Small windows of
chaotic behavior separated by regions of periodic
mode are found. The occurrence of VR depends on
the control parameters 𝛽, 𝑓 , 𝑔, and Ω. From our nu-
merical analysis, we observe multiple resonant peaks
for different values of the control parameters such as
𝑓 , 𝑔, and Ω. The amplitude modulated force consid-
ered in the present work has four parameters such as
𝜔,Ω, 𝑓, and 𝑔. As shown in Figs. 2, 4, and 6, the pres-
ence of additional parameters can be used to suppress
or enhance chaos.

It is of interest to investigate certain nonlinear
phenomena such as the hysteresis, chaos, vibrational
resonance, ghost vibrational resonance, etc. in the
system driven by narrow- and wide-band frequency-
modulated signals. The account for noise induced in
the system may lead to some interesting results. The
work along this direction is in progress.

We thank two anonymous referees, whose construc-
tive criticisms have led to qualitative improvements in
the manuscript.
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С.Гурупаран, В. Равiчандран, В.Чiнатамбi, С. Раджасекар
СПIВIСНУВАННЯ КРАТНИХ АТТРАКТОРIВ,
ГIСТЕРЕЗИСУ ТА КОЛИВАЛЬНОГО РЕЗОНАНСУ
В КЛАСИЧНОМУ ОСЦИЛЯТОРI МОРСА,
ЩО ЗБУДЖУЄТЬСЯ СИГНАЛОМ,
З МОДУЛЬОВАНОЮ АМПЛIТУДОЮ
Р е з ю м е
Розглянуто класичний осцилятор Морса, що збуджується
сигналом, з амплiтудною модуляцiєю на двох суттєво
рiзних частотах 𝜔 i Ω з Ω ≫ 𝜔. Чисельно розраховано
динамiку осцилятора для конкретного набору параметрiв.
Показано спiвiснування кiлькох 𝑇 -перiодичних орбiт, їх
бiфуркацiї, i явища гiстерезису i коливального резонансу.
Представлено характеристику перiодичних i хаотичних ор-
бiт, гiстерезису i коливального резонансу з використанням
дiаграми бiфуркацiй та амплiтуди вiдгуку.
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