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MODEL-INDEPENDENT
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The model-independent QED radiative corrections to the differential cross-section of elastic
scattering of a proton beam on electrons at rest have been calculated. The radiative corrections
caused by the emission of virtual and soft real photons in the electron vertex and the vacuum
polarization correction are taken into account. Numerical estimations of these corrections have
been done.
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1. The polarized and unpolarized scatterings of elec-
trons by protons has been widely studied, as it is
considered the simpler way to access information on
the proton structure. In the last time, the determina-
tion of the proton charge radius (PCR) with a help of
muons leads to the so-called proton radius puzzle. A
series of precise experiments with the purpose to de-
termine PCR gave the results, which are in a strong
disagreement with previous data. These results were
obtained in the experiments on muonic hydrogen by
the laser spectroscopy measurement of the 𝜇p (2S-
2P) transition frequency [1, 2]. The latest result on
PCR [2], 𝑟 = 0.84087(39) fm, obtained in this ex-
periment is one order of magnitude more precise, but
smaller by seven standard deviations compared to the
average value 𝑟 = 0.8775(51) fm, which is recom-
mended by the 2010-CODATA review [3]. This value
was obtained by the hydrogen atom spectroscopy and
electron-proton elastic scattering measurements. The
latest experiments with electrons at Jlab [4] and
MAMI [5] confirm this value. So, the results on PCR
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in the electron measurements do not agree with the
results of the laser spectroscopy of muonic hydrogen.

While the corrections to the laser spectroscopy ex-
periments seem well under control in the frame of
QED and may be estimated with a precision bet-
ter than 0.1%, the best precision, which has been
achieved in case of the electron-proton elastic scatter-
ing, is of the order of few percent. Different sources of
possible systematic errors in the muonic experiment
have been discussed. However, no definite explana-
tion of this difference has been given yet (see Ref. [6]
and references therein).

The proton radius puzzle led to the appearance of
a large number of papers trying to solve the prob-
lem. There are some approaches to do this. One of
these approaches is to analyze more carefully the pro-
cedure of the PCR extraction from the 𝑒𝑝 scatter-
ing data. Thus, it has been suggested in Ref. [7] that
PCR is actually measured in different frames (in the
electron scattering and muonic hydrogen atoms) and
that the Lorentz transformation of the form factors
accounts properly for the discrepancy. The authors of
Ref. [8] stated that the radius extraction with Taylor
series expansions cannot be trusted to be reliable. A
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fit function based on a conformal mapping was used
in Ref. [9, 10]. The extracted value of the proton ra-
dius agrees with the one obtained from muonic hydro-
gen. In Ref. [11], the authors argued that the proton
radius puzzle can be explained by truncating the elec-
tron scattering data to a low momentum transfer. But
the authors of Ref. [12] showed that the procedure is
inconsistent and violates the Fourier theorem.

To determine PCR, the authors of Ref. [13] rean-
alyzed the highest-accuracy electron-proton scatter-
ing data obtained by MAMI Collaboration [5] for the
interval of the 𝑄2 values: 0.0038 ≤ 𝑄2 ≤ 1 GeV2.
They found that these data are consistent with a
much larger range of the PCR values than obtained
by others. The obtained range for the PCR val-
ues (0.84–0.89 fm) is consistent with both methods
(electron and muon ones) of the PCR determina-
tions, and it was not strongly affected by the two-
photon exchange effects. Lorenz et al. [14] have ex-
plicitly calculated two-photon exchange corrections
to the electron-proton scattering including nucleon
and Δ intermediate states, by using a phenomeno-
logical information on the vertices. They found that
the dominating uncertainty is based on the choice
of the nucleon form factors in the Born amplitude
that enters the cross-section correction. The authors
apply their two-photon exchange calculation to the
MAMI cross-sections on the electron-proton scatter-
ing, where the kinematical conditions lead to the
much smaller Δ contribution. Any curvature in the
real form factor below the given data obviously leads
to a bias due to the missing data. This might explain
why PCR in conventional fits tends to come out large
(for example, in the statistically sophisticated analy-
sis [15]).

A comprehensive analysis of the electron-proton
scattering data (high-statistics Mainz data set) has
been done [16] to determine the proton electric and
magnetic radii, by using model-independent con-
straints from the form factor analyticity. A wide-
ranging study of the impact of potential system-
atic errors has been performed. Their analysis gives
a value 𝑟𝐸 = 0.904(15) fm that is 4𝜎 larger than
the value obtained from the muon hydrogen spec-
troscopy. It was found that the charge radius puzzle
persists. The circumstances, under which published
muon hydrogen and electron-proton scattering data
could be reconciled, are discussed. The review of the
experimental and theoretical status of the nucleon

form factors and the outlook for the future investi-
gations is given in [17].

The another approach is the introduction of the be-
yond Standard Model physics. It was found [18] that
a new scalar force carrier in the MeV mass range is
not ruled out by the present data and accounts for the
proton radius puzzle. The authors of Ref. [19] consid-
ered a combination of new vector and scalar particles
which allowed them to explain the puzzle, while evad-
ing other constraints. The recent review summarizes
the current state of the problem and gives an overview
over upcoming experiments [20]. As stated there, in
the next five years, a large number of experiments
will shed some more light on this intriguing problem.

Formerly, a number of the experiments were done
to measure the pion radius from the elastic scatter-
ing of negative pions on electrons in a liquid-hydrogen
target. The first experiment was done at Serpukhov
[21] with a pion beam energy of 50 GeV. Later, a few
experiments were done at Fermilab with a pion beam
energy of 100 GeV [22] and 250 GeV [23]. At that
laboratory, the electromagnetic form factor of a neg-
ative kaon was measured by the direct scattering of
250-GeV kaons on the stationary electrons [24]. The
typical values of radiative corrections (RCs) in this
case are of the order of 7–10% [25].

Recently, we suggested that the proton elastic scat-
tering on atomic electrons allows a precise measure-
ment of PCR [26]. The main advantage of this pro-
posal is that the inverse kinematics allows one to ac-
cess, with a large cross-section, very small values of
transferred momenta, up to four orders of magnitude
smaller than the ones presently achieved. Some re-
cent works have been devoted to the scattering of a
proton projectile on an electron target (see [27] and
references therein). But, for the analysis of the results
of a possible experiment on the elastic 𝑝 -𝑒− scatter-
ing, it is necessary to take RCs into account.

In this paper, we will calculate the model-
independent QED RCs to the differential cross-
section of the elastic scattering of the proton beam
on electrons at rest. RCs, caused by the emission of
virtual and soft real photons in the electron vertex
and the vacuum polarization correction, are taken
into account. Numerical estimations of these correc-
tions have been done.

2. Let us consider the reaction

𝑝 (𝑝1) + 𝑒 (𝑘1) → 𝑝 (𝑝2) + 𝑒 (𝑘2), (1)
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where the particle momenta are indicated in brackets,
𝑞 = 𝑘1 − 𝑘2 = 𝑝2 − 𝑝1 is the four momentum of a
virtual photon.

2.1. A general characteristic of all reactions of elas-
tic and inelastic hadron scattering by atomic electrons
(which can be considered at rest) is the small value
of the transfer momentum squared, even for the rela-
tively large energies of colliding particles. Let us give
details of the order of magnitude and the dependence
of the kinematic variables, as they are very specific
for this reactions.

One can show that, for a given energy of the pro-
ton beam, the maximum value of the four momentum
transfer squared in the scattering on the electron at
rest is

(𝑄2)max =
4𝑚2p2

𝑀2 + 2𝑚𝐸 +𝑚2
, (2)

where 𝑚(𝑀) is the electron (proton) mass, 𝑄2 =
= −𝑞2, 𝐸(p) is the energy (momentum) of the pro-
ton beam. Being proportional to the electron mass
squared, the four momentum transfer squared is re-
stricted to very small values, where the proton can be
considered point-like.

The four momentum transfer squared is expressed
as a function of the energy of the scattered electron,
𝜖2, as 𝑞2 = (𝑘1 − 𝑘2)

2 = 2𝑚(𝑚− 𝜖2), and

𝜖2 = 𝑚
(𝐸 +𝑚)2 + p2 cos2 𝜃𝑒
(𝐸 +𝑚)2 − p2 cos2 𝜃𝑒

, (3)

where 𝜃𝑒 is the angle between the proton beam and
the scattered electron momenta.

From the energy and momentum conservation, one
finds the following relation between the angle and the
energy of the scattered electron:

cos 𝜃𝑒 =
(𝐸 +𝑚)(𝜖2 −𝑚)

|p|
√︀
(𝜖22 −𝑚2)

, (4)

which shows that cos 𝜃𝑒 ≥ 0 (the electron can never be
scattered backward). One can see from Eq. (3) that
the available kinematical region is reduced to small
values of 𝜖2:

𝜖2,max = 𝑚
2𝐸(𝐸 +𝑚) +𝑚2 −𝑀2

𝑀2 + 2𝑚𝐸 +𝑚2
, (5)

which is proportional to the electron mass. From the
momentum conservation, one can find the following

relation between the energy 𝐸2 and the angle 𝜃𝑝 of
the scattered proton:

𝐸±
2 =

=
(𝐸 +𝑚)(𝑀2 +𝑚𝐸)±𝑀p2 cos 𝜃𝑝

√︁
𝑚2

𝑀2 − sin2 𝜃𝑝

(𝐸 +𝑚)2 − p2 cos2 𝜃𝑝
,

(6)

which shows that two values of the proton energy can
be for one proton angle. The two solutions coincide,
when the angle between the initial and final hadrons
takes its maximum value, which is determined by the
ratio of the electron and scattered hadron masses,
sin 𝜃ℎ,max = 𝑚/𝑀 . One concludes that the hadrons
are scattered on atomic electrons at very small angles,
and that the larger the hadron mass, the smaller is
the available angular range for the scattered hadron.

2.2. In the one-photon exchange (Born) approxi-
mation, the matrix element ℳ(𝐵) of reaction (1) can
be written as

ℳ(𝐵) =
𝑒2

𝑞2
𝑗𝜇𝐽𝜇, (7)

where 𝑗𝜇(𝐽𝜇) is the leptonic (hadronic) electromag-
netic current:

𝑗𝜇 = �̄�(𝑘2)𝛾𝜇𝑢(𝑘1),

𝐽𝜇 = �̄�(𝑝2)
[︁
𝐹1(𝑞

2)𝛾𝜇 − 1

2𝑀
𝐹2(𝑞

2)𝜎𝜇𝜈𝑞𝜈

]︁
×

× 𝑢(𝑝1) = �̄�(𝑝2)
[︀
𝐺𝑀 (𝑞2)𝛾𝜇 − 𝐹2(𝑞

2)𝑃𝜇

]︀
𝑢(𝑝1),

(8)

where 𝐹1(𝑞
2) and 𝐹2(𝑞

2) are the Dirac and Pauli pro-
ton electromagnetic form factors, 𝐺𝑀 (𝑞2) = 𝐹1(𝑞

2)+
+𝐹2(𝑞

2) is the Sachs proton magnetic form factor,
and 𝑃𝜇 = (𝑝1 + 𝑝2)𝜇/(2𝑀).

The matrix element squared is written as

|ℳ(𝐵)|2 = 16𝜋2𝛼
2

𝑞4
𝐿𝜇𝜈𝑊𝜇𝜈 ,

𝐿𝜇𝜈 = 𝑗𝜇𝑗
*
𝜈 , 𝑊𝜇𝜈 = 𝐽𝜇𝐽

*
𝜈 ,

(9)

where 𝛼 = 1/137 is the electromagnetic fine structure
constant. The leptonic tensor for unpolarized initial
and final electrons (averaging over the initial electron
spin) has the form

𝐿𝜇𝜈 = 𝑞2𝑔𝜇𝜈 + 2(𝑘1𝜇𝑘2𝜈 + 𝑘1𝜈𝑘2𝜇). (10)
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The hadronic tensor 𝑊𝜇𝜈 for unpolarized initial
and final protons can be written in the standard form
in terms of two unpolarized structure functions:

𝑊𝜇𝜈 =
(︁
− 𝑔𝜇𝜈 +

𝑞𝜇𝑞𝜈
𝑞2

)︁
𝑊1

(︀
𝑞2
)︀
+ 𝑃𝜇𝑃𝜈𝑊2

(︀
𝑞2
)︀
. (11)

Averaging over the initial proton spin, the structure
functions 𝑊𝑖, 𝑖 = 1, 2, are expressed in terms of the
nucleon electromagnetic form factors:

𝑊1

(︀
𝑞2
)︀
= −𝑞2𝐺2

𝑀

(︀
𝑞2
)︀
,

𝑊2

(︀
𝑞2
)︀
= 4𝑀2𝐺

2
𝐸

(︀
𝑞2
)︀
+ 𝜏𝐺2

𝑀

(︀
𝑞2
)︀

1 + 𝜏
,

(12)

where 𝐺𝐸(𝑞
2) = 𝐹1(𝑞

2)− 𝜏𝐹2(𝑞
2) is the proton elec-

tric form factor, and 𝜏 = −𝑞2/4𝑀2.
The expression for the differential cross-section, as

a function of the recoil-electron energy 𝜖2, for the un-
polarized proton-electron scattering can be written as

𝑑𝜎(𝐵)

𝑑𝜀2
=

𝜋𝛼2

𝑚p2

𝒟
𝑞4

,

𝒟 = 𝑞2
(︀
𝑞2 + 2𝑚2

)︀
𝐺2

𝑀

(︀
𝑞2
)︀
+ 2

[︃
𝑞2𝑀2+

+
1

1 + 𝜏

(︂
2𝑚𝐸 +

𝑞2

2

)︂2]︃[︁
𝐺2

𝐸

(︀
𝑞2
)︀
+𝜏𝐺2

𝑀

(︀
𝑞2
)︀]︁
.

(13)

This expression is valid in the one-photon exchange
(Born) approximation in the reference system, where
the target electron is at rest.

The differential cross-section, as a function of the
variable 𝑞2, is

𝑑𝜎(𝐵)

𝑑𝑞2
=

𝜋𝛼2

2𝑚2p2

𝒟
𝑞4

. (14)

At last, the differential cross-section over the scat-
tered-electron solid angle has the following expres-
sion:

𝑑𝜎(𝐵)

𝑑Ω𝑒
=

𝛼2

8𝑚4|p|

(︂
1− 4𝑚2

𝑞2

)︂3/2
𝐷

𝐸 +𝑚
. (15)

3. Let us consider the model-independent QED
RCs which are caused by emission of the virtual and
real soft photons in the electron vertex and the vac-
uum polarization.

3.1. In this section we calculate the contribution to
RCs of the soft photon emission, when the photons
are emitted by the initial and final electrons

𝑝(𝑝1) + 𝑒(𝑘1) → 𝑝(𝑝2) + 𝑒(𝑘2) + 𝛾(𝑘). (16)

The matrix element in this case (photon is emitted
from the electron vertex) is given by

ℳ(𝛾) =
1

𝑞2
(4𝜋𝛼)3/2𝑗(𝛾)𝜇 𝐽𝜇, (17)

where the electron current corresponding to the pho-
ton emission is

𝑗(𝛾)𝜇 = �̄�(𝑘2)

[︃
1

𝑑1
𝛾𝜇(𝑘1 − 𝑘 +𝑚)𝛾𝜌+

+
1

𝑑2
𝛾𝜌(𝑘2 + 𝑘 +𝑚)𝛾𝜇

]︃
𝑢(𝑘1)𝐴

*
𝜌, (18)

where 𝐴*
𝜌 is the polarization vector of the emitted

photon, and 𝑑1 = −2𝑘 · 𝑘1, 𝑑2 = 2𝑘 · 𝑘2.
The differential cross-section of reaction (17) can

be written as

𝑑𝜎(𝛾) =
(2𝜋)−5

32𝑚|p|
|ℳ(𝛾)|2 ×

× 𝑑3k2

𝜖2

𝑑3p2

𝐸2

𝑑3k

𝜔
𝛿4(𝑘1 + 𝑝1 − 𝑘2 − 𝑝2 − 𝑘). (19)

It is necessary to integrate over the photon phase
space. Since the photons are assumed soft, the inte-
gration over the photon energy is restricted to |k| ≤
≤ Δ𝐸. The quantity Δ𝐸 is determined by particular
experimental conditions, and it is assumed that Δ𝐸 is
sufficiently small in order to neglect the momentum 𝑘
in the 𝛿 function and in the numerators of the matrix
element ℳ(𝛾). In order to avoid the infrared diver-
gence, which occurs in the soft photon cross-section,
we have assumed a small photon mass 𝜆.

In the soft photon approximation, the matrix ele-
ment (17) is

ℳ(soft) =
√
4𝜋𝛼

(︂
𝑘2 ·𝐴*

𝑘 · 𝑘2
− 𝑘1 ·𝐴*

𝑘 · 𝑘1

)︂
ℳ(𝐵). (20)

The differential cross-section integrated over the soft
photon phase space can be written as

𝑑𝜎(soft) = 𝛿𝑠𝑑𝜎
(𝐵), (21)
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where RC due to the soft photon emission is

𝛿𝑠 = − 𝛼

4𝜋2

Δ𝐸∫︁
𝜆

𝑑𝜔

{︂√︀
𝜔2 − 𝜆2 ×

×
∫︁

𝑑Ω𝑘

[︂
𝑚2

(𝑘 · 𝑘1)2
+

𝑚2

(𝑘 · 𝑘2)2
− 2

𝑘1 · 𝑘2
𝑘 · 𝑘1𝑘 · 𝑘2

]︂}︂
. (22)

Using the results of work [28], we can do the integra-
tion, and the expression for 𝛿𝑠 is as follows:

𝛿𝑠 =
𝛼

𝜋

{︂
1− 2 ln

2Δ𝐸

𝜆
+

𝜀2
𝑘2

[︂
ln

𝜀2 + 𝑘2
𝑚

×

×
(︂
1 + 2 ln

2Δ𝐸

𝜆
+ ln

𝜀2 + 𝑘2
𝑚

+ 2 ln
𝑚

2𝑘2

)︂
−

− 𝜋2

6
+ Sp

(︂
𝜀2 − 𝑘2
𝜀2 + 𝑘2

)︂]︂}︂
, (23)

where Sp(𝑥) is the Spence (dilogarithm) function de-
fined as

Sp(𝑥) = −
𝑥∫︁

0

ln (1− 𝑡)

𝑡
𝑑𝑡.

In the limiting case 𝑄2 = 2𝑚(𝜀2 − 𝑚) ≪ 𝑚2, the
soft photon factor reads

𝛿𝑠 =
𝛼

𝜋

𝑄2

𝑚2

[︂
19

9
− 8

3
ln 2 +

4

3
ln

𝑚2

𝑄2
+

2

3
ln

2Δ𝐸

𝜆

]︂
,

where as at 𝑄2 ≫ 𝑚2 we have

𝛿𝑠 =
𝛼

𝜋

[︂
1− 𝜋2

6
+ ln

𝑄2

𝑚2
− ln2

𝑄2

𝑚2
+ 2 ln

2Δ𝐸

𝜆
×

×
(︂
ln

𝑄2

𝑚2
− 1

)︂
+

𝑚2

𝑄2

(︂
2− 4 ln

𝑄2

𝑚2
+ 4 ln

2Δ𝐸

𝜆

)︂]︂
.

3.2. In this subsection, we calculate the contribu-
tion of the virtual photon emission in the electron
vertex to RCs (the electron vertex correction) and
the vacuum polarization term. The matrix element
corresponding to this process can be written as

ℳ(virt) =
1

𝑞2
4𝜋𝛼𝐽𝜇�̄�(𝑘2)Λ𝜇(𝑘1, 𝑘2)𝑢(𝑘1), (24)

where we introduce

Λ𝜇(𝑘1, 𝑘2) =

=
2𝑖𝛼

(2𝜋)3

∫︁
𝑑4𝑘

𝑘2 − 𝜆2

�̂�𝜇

(𝑘2 − 2𝑘 · 𝑘1)(𝑘2 − 2𝑘 · 𝑘2)
, (25)

and the matrix �̂�𝜇 is

�̂�𝜇 = 4𝑘1 · 𝑘2𝛾𝜇 − 2
(︁
𝑘1𝑘𝛾𝜇 + 𝛾𝜇𝑘𝑘2

)︁
− 2𝑘𝛾𝜇𝑘. (26)

The integration over the virtual-photon four-momen-
tum 𝑘 leads to the following expression for the func-
tion Λ𝜇(𝑘1, 𝑘2):

Λ𝜇(𝑘1, 𝑘2) =
𝛼

4𝜋

{︃[︃
ln

Λ2

𝑚2
+

1

2
+

1∫︁
0

𝑑𝑥

𝑃 2
𝑥

×

×

(︃
4𝑚2 − 3

2
𝑞2 +

(︀
𝑞2 − 2𝑚2

)︀(︂
ln

𝑃 2
𝑥

𝑚2
+ ln

𝑚2

𝜆2

)︂)︃]︃
𝛾𝜇 +

+𝑚

1∫︁
0

𝑑𝑥

𝑃 2
𝑥

𝜎𝜇𝜈𝑞𝜈

}︃
, (27)

where 𝑃 2
𝑥 = 𝑚2 − 𝑥(1 − 𝑥)𝑞2, and Λ is the param-

eter, which cuts the region of infinite momenta of
the virtual photon. Thus, we avoid the ultraviolet di-
vergence. The regularized vertex function can be ob-
tained by the subtraction of the contribution

Λ𝜇(𝑘1, 𝑘1) =
𝛼

4𝜋
𝛾𝜇

[︂
ln

Λ2

𝑚2
+

9

2
− 2 ln

𝑚2

𝜆2

]︂
from expression (27). As a result, we have

Λ𝑅
𝜇 (𝑘1, 𝑘2) = Λ𝜇(𝑘1, 𝑘2)− Λ𝜇(𝑘1, 𝑘1) =

=
𝛼

4𝜋
(𝐴𝛾𝜇 +𝐵𝜎𝜇𝜈𝑞𝜈), (28)

𝐴 = −4 + 2 ln
𝑚2

𝜆2
+

1∫︁
0

𝑑𝑥

𝑃 2
𝑥

{︂
4𝑚2 − 3

2
𝑞2 +

+
(︀
𝑞2 − 2𝑚2

)︀[︂
ln

𝑃 2
𝑥

𝑚2
+ln

𝑚2

𝜆2

]︂}︂
, 𝐵 = 𝑚

1∫︁
0

𝑑𝑥

𝑃 2
𝑥

. (29)

Because we calculate RC of the order of 𝛼 in compari-
son with the Born term, it is sufficient to calculate the
interference of the Born matrix element with ℳ(virt):

|ℳ|2 = |ℳ(𝐵)|2 + 2Re[ℳ(virt)ℳ(𝐵*)] =

= (1 + 𝛿1 + 𝛿2)|ℳ(𝐵)|2, (30)

where the term 𝛿1 is due to a modification of the
𝛾𝜇 term in the electron vertex, and the term 𝛿2 is
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caused by the appearance of the 𝜎𝜇𝜈𝑞𝜈 structure in
the electron vertex.

The integration over the variable 𝑥 in expression
(29) gives the following results for RCs caused by the
emission of a virtual photon in the electron vertex

𝛿1 =
𝛼

𝜋

{︂
− 2 + 2 ln

𝑚

𝜆

[︂
1− 𝜀2

𝑘2
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂]︂
+

+
𝑚+ 3𝜀2

2𝑘2
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
− 1

2

𝜀2
𝑘2

×

× ln

(︂
−𝑞2

𝑚2

)︂
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
+

+
𝜀2
𝑘2

[︂
− ln

(︂
𝑚+ 𝜀2

𝑘2

)︂
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
+

+Sp

(︂
𝜀2 + 𝑘2 +𝑚

2(𝑚+ 𝜀2)

)︂
− Sp

(︂
𝜀2 − 𝑘2 +𝑚

2(𝑚+ 𝜀2)

)︂]︂}︂
,

𝛿2 = 4
𝛼

𝜋

𝑚𝑀2𝑞2

𝑘2𝐷
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂(︀
𝐺2

𝐸 − 2𝜏𝐺2
𝑀

)︀
. (31)

The limiting cases for 𝛿1 reads

𝛿1 =
𝛼

𝜋

𝑄2

𝑚2

(︂
1

4
− 2

3
ln

𝑚

𝜆

)︂
,

𝛿1 =
𝛼

𝜋

[︂
− 2 +

𝜋2

6
+

3

2
ln

𝑄2

𝑚2
− 1

2
ln2

𝑄2

𝑚2
+

+2 ln
𝑚

𝜆

(︂
1− ln

𝑄2

𝑚2

)︂
+

𝑚2

𝑄2

(︂
1− 3 ln

𝑄2

𝑚2
− 4 ln

𝑚

𝜆

)︂]︂
,

at 𝑄2 ≪ 𝑚2 and 𝑄2 ≫ 𝑚2, respectively. RC due
to the vacuum polarization can be written as (the
electron loop has been taken into account)

𝛿(vac) =
2𝛼

3𝜋

{︃
− 5

3
+ 4

𝑚2

𝑄2
+

+

(︂
1− 2

𝑚2

𝑄2

)︂√︃
1 + 4

𝑚2

𝑄2
ln

√︁
1 + 4𝑚2

𝑄2 + 1√︁
1 + 4𝑚2

𝑄2 − 1

}︃
. (32)

For small and large values of the 𝑄2 variable, we have

𝛿(vac) =
2𝛼

15𝜋

𝑄2

𝑚2
, 𝑄2 ≪ 𝑚2;

𝛿(vac) =
2𝛼

3𝜋

[︂
−5

3
+ ln

𝑄2

𝑚2

]︂
, 𝑄2 ≫ 𝑚2.

Taking RCs given by Eqs. (23), (31), (32) into ac-
count, we obtain the following expression for the dif-
ferential cross-section including RC in the considered
approximation:

𝑑𝜎(RC) = (1 + 𝛿0 + 𝛿 + 𝛿(vac))𝑑𝜎(𝐵), (33)

where RCs 𝛿0 and 𝛿 are given by

𝛿0 =
2𝛼

𝜋
ln

Δ𝐸

𝑚

[︂
𝜀2
𝑘2

ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
− 1

]︂
,

𝛿 =
𝛼

𝜋

{︂
− 1− 2 ln 2 +

𝜀2
𝑘2

[︂
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
×

×
(︂
1 + ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
+ 2 ln

(︂
𝑚

𝑘2

)︂
+

𝑚+ 3𝜀2
2𝜀2

−

− ln

(︂
𝜀2 +𝑚

𝑘2

)︂
− 1

2
ln

(︂
𝑄2

𝑚2

)︂)︂
+

+4𝑚
𝑀2𝑞2

𝜀2𝐷
ln

(︂
𝜀2 + 𝑘2

𝑚

)︂(︀
𝐺2

𝐸 − 2𝜏𝐺2
𝑀

)︀
− 𝜋2

6
+

+Sp

(︂
𝜀2 − 𝑘2
𝜀2 + 𝑘2

)︂
+ Sp

(︂
𝜀2 + 𝑘2 +𝑚

2(𝜀2 +𝑚)

)︂
−

−Sp

(︂
𝜀2 − 𝑘2 +𝑚

2(𝜀2 +𝑚)

)︂]︂}︂
. (34)

We separate the contribution 𝛿0, since it can be
summed up in all orders of perturbation theory, by
using the exponential form of the electron structure
functions [29]. To do this, it is sufficient to keep only
the exponential contributions to the electron struc-
ture functions. The final result can be obtained by
the substitution of the term (1 + 𝛿0) by the following
term:

𝛽

2

(︂
Δ𝐸

𝑚

)︂𝛽 1∫︁
0

𝑥
𝛽
2 −1(1− 𝑥)

𝛽
2 𝑑𝑥,

𝛽 =
2𝛼

𝜋

[︂
𝜀2
𝑘2

ln

(︂
𝜀2 + 𝑘2

𝑚

)︂
− 1

]︂
.

(35)

4. Since 𝑄2 is very small in this reaction as com-
pared with the proton mass squared, we use the Tay-
lor series expansion for the proton charge form factor:

𝐺𝐸(𝑞
2) = 1 +

1

6
𝑞2⟨𝑟2⟩+𝑂(𝑞2), (36)

where ⟨𝑟2⟩ is the mean-square radius of proton’s
electromagnetic charge distribution. As is seen from
Eq. (13), the contribution of the magnetic form fac-
tor is suppressed by the factor 𝑞2/𝑀2 compared with
the charge form factor.
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Fig. 1. Differential cross-section as a function of the proton-
beam energy 𝐸 for different angles 𝜃𝑒 without (solid line) and
with (dashed line) regard for RC calculated with PCR ex-
tracted from the electron experiment

Fig. 2. Quantity (1-𝑅) as a function of the proton-beam en-
ergy 𝐸 for different angles 𝜃𝑒. Here, 𝑅 = 𝑑𝜎𝑒/𝑑𝜎𝜇, where
subscript 𝑒(𝜇) means that the differential cross-section is cal-
culated with PCR determined from the electron (muon) exper-
iments

In our calculations, we want to ensure the accuracy,
which allows us to distinguish two values of PCR. For
numerical results in this work, at very small values
of 𝑄2, it is sufficient to use the static value of the
form factor 𝐺𝑀 (𝑞2): 𝐺𝑀 (0) = 2.793. For 𝐺2

𝐸 , we use
𝐺2

𝐸 = 1 + 1
3 𝑞

2 ⟨𝑟2⟩.
However, in other kinematical regions, it is nec-

essary to use the more exact formula for the electric
and magnetic form factors at least for the Born cross-
section. For example, at 𝐸 = 100 GeV, such region
includes the recoil electron energies 𝜖2 ≥ 5 GeV. If
we have to include the terms of the order of 𝑞4 in
the cross-section, it is necessary to use the following
expressions for 𝐺𝐸 and 𝐺𝑀 :

𝐺𝐸(𝑞
2) = 1 +

1

6
𝑞2⟨𝑟2⟩+ 1

120
𝑞4⟨𝑟4⟩,

Fig. 3. Differential cross-section as a function of the proton-
beam energy 𝐸 for different recoil-electron energies 𝜀2 (upper
panel). The total RC as a function of the proton-beam energy
𝐸 for different recoil-electron energies 𝜀2 and different values of
the parameter Δ𝐸: Δ𝐸 = 50 keV (solid line), Δ𝐸 = 100 keV
(dashed line) (lower panel)

𝐺𝑀 (𝑞2) = 𝐺𝑀 (0)

(︂
1 +

1

6
𝑞2 ⟨𝑟2𝑚⟩

)︂
.

The values for ⟨𝑟2⟩, ⟨𝑟4⟩, and ⟨𝑟2𝑚⟩ can be obtained,
for example, from the recent analysis of the Mainz
data [16], where the parametrizations for 𝐺𝐸 and 𝐺𝑀

are presented.
The dependences of the differential cross-section on

the proton beam energy 𝐸 for different values of the
electron scattering angle 𝜃𝑒 are shown in Fig. 1. The
cross-section has a minimum, which shifts to the
smaller values of the proton beam energy, as the elec-
tron scattering angle increases, and, at this time, the
magnitude of the cross-section becomes larger. It is
due to the fact that the value of 𝑞2 tends to zero, as
the angle 𝜃𝑒 approaches the value 900. In this figure,
we show also the effect of the inclusion of RCs. One
can see that RCs are negative and increase with the
proton beam energy.

In Fig. 2, we show the quantity (1 − 𝑅), where
𝑅 = 𝑑𝜎𝑒/𝑑𝜎𝜇 is the ratio of the differential cross-
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sections calculated with PCR determined from the
electron [3] (muon [2]) experiments. One can see that
the difference between the differential cross-sections
𝑑𝜎𝑒 and 𝑑𝜎𝜇 increases, as the angle 𝜃𝑒 decreases, and
the proton beam energy becomes larger.

The upper panel of Fig. 3 shows the differential
cross-section as a function of the proton-beam energy
𝐸 for different recoil-electron energies 𝜀2: 10 MeV and
100 MeV. Increasing the energy 𝜀2 leads to decreas-
ing the differential cross-section, since the value of 𝑞2
becomes larger in this case. The lower panel of Fig. 3
shows the dependence of the total RC (1 + 𝛿) on the
proton-beam energy 𝐸 for different recoil-electron en-
ergies 𝜀2 and different values of the parameter Δ𝐸:
Δ𝐸 = 50 keV (solid line), Δ𝐸 = 100 keV (dashed
line). All calculations are performed with PCR ex-
tracted from electron experiments.

In summary, the model-independent QED RCs to
the differential cross-section of the elastic scattering
of the proton beam on electrons at rest have been
calculated. Under the kinematical conditions consid-
ered, the electric contribution to the cross-section
dominates, and the magnetic contribution can be
safely neglected. This allows a precise measurement
of PCR.
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МОДЕЛЬНО НЕЗАЛЕЖНI
РАДIАЦIЙНI ПОПРАВКИ В ПРУЖНОМУ
ПРОТОН-ЕЛЕКТРОННОМУ РОЗСIЯННI

Р е з ю м е

Модельно незалежнi КЕД радiацiйнi поправки обчисленi
для диференцiального перерiзу пружного розсiяння про-
тонного пучка на електронi в станi спокою. Врахованi радi-
ацiйнi поправки зумовленi поляризацiєю вакуума та випро-
мiнюванням вiртуального та м’якого фотонiв в електроннiй
вершинi. Отримано числовi оцiнки цих поправок.
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