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FOR THE ELEMENTARY FUNCTIONS z2 AND +/z

Rules for the propagation of the error and mean value obtained for a measured physical quantity
x onto another one, which is coupled to the former by means of the x* or \/z functional
relation, have been derived. Those rules are inherently based on the Gaussian weight scheme, so
that they should provide correct results in the framework of the latter with discrete data, which
is typical of a real physical experiment (with samplings). The obtained analytical form that
represents the mentioned rules (the “analytical propagation rules”) and their exact character
allow the processing and analysis of experimental data to be simplified and accelerated.
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1. Introduction

This work is devoted to a challenging problem dealing
with the estimation of the errors for physical quan-
tities obtained at indirect measurements. In such a
way, it proposes a solution for some part of a more
general problem concerning the error propagation. In
more details, the problem of error propagation was
described in works [1, 2].

There are two approaches to solve this problem. All
modern theoretical and practical applications, as well
as calculation procedures and developments, con-
sider the error propagation exclusively on the basis
of the Taylor series expansion (differentiation) [4—
12]. The scope of problems aimed at the “analyt-
ical” error propagation was described, best of all,
in work [1]. Some efforts in this direction are made
in this work, which is a logic continuation of work
[2]. Namely, two widespread elementary functions, 2
and +/z, are considered.
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2. New Rules of Calculation

of the Mean Values and the Error
Propagation for the Elementary
Functions =2 and /z

In order to derive analytical rules for two chosen func-
tions (22 and /x), the mean Tpean and the “error”
k(Az)2 .., Were related (formalized) to the basic con-
cepts of mathematical statistics [2]:

k(Az)?,.. ~ D.,

~
Tmean ~ Eacv mean

where E, is the mathematical expectation, and D,
the dispersion of a measured quantity z. According
to work [1], those parameters are defined as follows:

w=FE, :/xf(x)dw;

D, = / (2 — B, f(2)de = / (& — w2 f(e)de; (1)

7f(x)da: =1.
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For the functional relation y = h(z), the mathemati-
cal expectation Fj and the dispersion Dy, are defined
as follows [1,2]:

oo

x=FE, = / h(z) f(z)dx;
Dy = / h2(2) f(x)dz — E2.

Among the distributions f(z), the so-called normal
(Gaussian) probability distribution is considered to
be the most important [1,2]:
?]

flz) = % exp|—p?(z — )2, (3)

w=FE,.

In Egs. (2) and (3), the quantities y = E, and D,
enter the function f(z) as its parameters. Therefore,
strictly speaking, f(z) can be written as f(z, E, D;):

oo

By = / h(@) f(z, Es, Dy)da, (@)
D, +E} = /hQ(:r)f(:z:,Em,Dx)da:. (5)

It is easy to notice that Egs. (4) and (5) are in-
tegral equations. By solving them, we could obtain a
required analytical relation between Ej, and D, (they
are mean analogs for the function h(z)), on the one
hand, and E, and D, (the analogs of the measured
means), on the other hand. It turned out, that it is
possible to select tabulated integrals [3] that are sim-
ilar to expressions (4) and (5) and, in this manner,
to solve the problem for two elementary functions, 2
and \/z (see Appendix).

As a result, for the function 22, the mentioned re-

lations look like
Ej = E,» = E> + D,; ©
Dy, = D,» = 2D? + 4E2D,,

where E, and D, correspond to the mean and vari-
ance, respectively, of measured data, and F,» and
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D,> to the mean and variance, respectively, of the
measured result propagation, by using the function
22, For the function /z, the relations look like

1

4 4 2 .
Bl =FEl;=E - 3D,; 7
: (7)

E2 — -D,,

Dy=Dy=E, - 5

where E, and D, correspond to the mean and the
variance of measured data, respectively, and F 5 and
D /7 to the mean and the variance of the measured
result propagation, by using the function /z.

Hence, we obtained (see Appendix) the required
rules for the “error propagation” and the calculation
of the “shifted mean” of the type Ej = Ej(E;, D;)
and Dy, = Dy(E,, D,) for the functions h(z) = 2
and h(x) = .

3. Application of New
Rules to Experimental Data

Let a set of experimental data include separate ran-
dom values z; obtained for the measured physical
quantity x. This is the so-called sample {z;}. The
quantity x can be characterized by a continuous dis-
tribution [1]. In other words, these are values that
were randomly “chosen by a device” from a continu-
ous set of values.

Let us consider how the obtained relations are
obeyed in the case of samples. For this purpose, let us
calculate the means for four samples using the stan-
dard procedure (it will be regarded as a reference
one): for two experimental data sets {z;} and two
sets of calculated functions 22 and \/z. Then we in-
tend to compare them with the results obtained, by
using relations (6) and (7).

Example for =2

As an example for z, let us take the sample {z;}
consisting of 20 measurements for one of the unit cell
parameters in the crystal lattice:

{2;} =9.75, 9.778, 9.792, 9.841, 9.841, 9.848, 9.848,

9.855, 9.855, 9.862, 9.722, 9.708, 9.659, 9.659, 9.652,
9.652, 9.645, 9.645, 9.638, 9.75 (A);

Hereafter, the samples are constructed on the basis of
measurement data obtained on a three-circle diffrac-
tometer [13,14]. The arithmetic means calculated for
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Fig. 1. Dependence of the D 2 (E,, D) function variance on
E; at Dy = 0.5
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Fig. 2. Dependence of the D\/E(Ez, D) function variance on
E; at Dy = 0.04

this sample with the constant probability w; = 1/20
give the following values:

E, =975 D, =0.00729, A, = 0.08945.

Using them as the first approximation, we can cal-
culate the Gaussian means (this routine takes 2 to
3 iterations) with the help of the Gaussian weight
scheme

E, = Zﬂﬁz‘fi; D, = ( T — Ex)zfi§
Ay =+/Dy,

where f; is the probability over the sample normalized
to 1,
w;
fZ Z ’LU,L‘ bl zn: fl 9
n
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(8)

and
1
wi =z expl= (@ =)l PP = 55 (9)
As a result, we obtain
E, =975, D, =0.00537, A, =0.07328.

In other words, for this sample, we have FE, =
=9.75+0.07.

In order to correctly calculate the means for the
function 22, it is necessary to construct a new statis-
tical sample {2?} and to calculate the means for it.
The new sample is

{x2} = 95.0625, 95.60928, 95.88326, 96.84528,
96.84528, 96.9831, 96.9831, 97.12103, 97.12103,
97.25904, 95.0625, 94.51728, 94.24526, 93.29628,
93.29628, 93.1611, 93.1611, 93.02602, 93.02602,

92.89104 (A%).
The corresponding arithmetic means are

E, =95.06979, D, =2.7725, A, = 1.6651.

Using the values obtained for E;, D,, and A,, and
carrying out the calculations in accordance with for-
mulas (8) and (9), we obtain the sought means for
the function 22 in the standard way:

E,> = 95.06786, D,» = 2.04139, A,. = 1.42877.

The “propagation of errors” with the help of relations
(6) brings about the following values:

E,» = 95.06787, D,» =2.042, A,» = 1.42899.

Hereafter, we intentionally left more digits than re-
quired (in particular, two digits for D, and only one
for A;) in order to trace all calculations in more de-
tails. Comparing the results, we may assert that, in
the case of the function 2, the standard deviations
A2 completely coincide. In other words, the propa-
gation of errors for the function 22 with the use of
relations (6) is proper and provides good results for
samples.

Example for \/x

Now, let us consider an example for the function
v/z. The following sample of measurement data ob-
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tained for the parameter a? of a unit cell will be used:

{y;} = {22} = 40.45, 40.895, 40.984, 41.518, 41.518,
41.607, 41.607, 41.696, 41.785, 41.785, 40.45, 40.005,
39.916, 39.382, 39.382, 39.293, 39.293, 39.204,

39.115, 39.115 (A%).

According to the standard calculation scheme used
above for the sample means,

i) first, we calculate the arithmetic means (the
probability w; = 1/20),
E, =40.45, D, =1.05587, A, = 1.02756;

ii) then, we calculate the Gaussian means with the
weight scheme (9),
E, =4045, D,=0.79847, A, = 0.8935T;

iii) further, we create an array (sample) for the
function /y,

{V/Ui} = 6.36003, 6.39492,, 6.40187, 6.44345,
6.44345, 6.45035, 6.45035, 6.45724, 6.46413, 6.46413,
6.36003, 6.32495, 6.31791, 6.27551, 6.27551,
6.26841, 6.26841, 6.26131, 6.2542, 6.2542 (A).

The corresponding arithmetic means are

E 5 =06.35952, D g5 =0.00653, A z=0.08081.

The statistical treatment of this sample with the use
of the values of E,, D,, and A, gives us

E 5 =6.35965, D 5 =0.00494, A 5= 0.07029.

The calculations according to relations (11) result in
the following values of “error propagation™

E 5 =6.35964, D 5 =0.00494, A 5= 0.07025.

One can see that the coincidence is ideal in this case.
In other words, in the case of the function /z, the
“propagation of errors” by formulas (7) is proper and
works well for samples.

It should be noted that the correctness of the in-
verse formula should be verified, by using samples
with wider intervals of means and dispersions. How-
ever, this task goes beyond the scope of this paper.
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4. Some Common Properties
of the Obtained Relations

The analytical form obtained for the propagation
rules makes it possible to easily distinguish the pe-
culiarities of corresponding relations and even plot
graphic dependences, which is very useful, when plan-
ning and analyzing a physical experiment.

It should be emphasized that the quantities
E,, Dy, E,, and D, are interrelated with one an-
other. In addition, F; and D} are functions of two
variables rather than one:

Eh - Eh(Ea:a Dx)7 Dh = Dh(E:m Dz)

Sometimes, this fact may be difficult to get used to,
e.g., like the fact that the variances A(z?) or A(yZ)
of the function h(x) depend on the measured mean
value Zyean. But otherwise, it is difficult to under-
stand that E,» can never, at no measurement, van-
ish. Moreover, E,2 will always be larger than D,;
more precisely, F,z > D, (see Eq. (6)). This conclu-
sion dictates a condition for the inverse function, 1/,
which follows from Eq. (7); namely, E, > %Dy. All
that can be well observed in Figs. 1 and 2, where
the dependences of the dispersions of the functions
Dy = D2 (E;, D) and Dy = D 7 (E,, D), respec-
tively, on the measured “means” of their argument F,
(the argument D, is assumed to be fixed) are plot-
ted. Note that the very possibility to obtain a graphic
representaion for the obtained relations allows one
to discuss the character of future measurements and
plan them.
Note that, in the limiting case D, = 0, we have

E,» = E% D, =0;
Eﬁ:\/Ez; Dﬁzo,

But the “usual” rules of error propagation

Ep2=E., Ej;=E,

can be applied in this case as well. In other cases,
when D, appreciably differs from zero, expressions
(6) and (7) for E,> provide more proper values.

5. Conclusions

Relations (6) and (7) give a correct result for samples
and can be widely used to reduce and to substantially
simplify computation procedures, when carrying out
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statistical calculations for the functions 22 and \/z. In
the case where the initial array of experimental data is
absent, the method of error propagation may turn out
a unique rather simple, but correct way to calculate
FEp, Dy, and the variance ¢ for the indicated func-
tions. Since the dispersions Dj; and the variances o
for both examined functions practically coincide with
the corresponding real values, the exact propagation
of errors is possible for a chain of functions of the
type 22 andy/z or, taking the results of work [2] into
account, any other combination of the functions z2,
\/x, cosx, and arccos z.

Therefore, on the basis of the obtained analytical
relations, two simple universal algorithms can be con-
structed for the calculation of pairs of separate val-
ues: (E(2?), D(2?)) and (E(y/z), D(y/z)). Those al-
gorithms can be inbuilt as separate modules (subrou-
tines) into any software codes, with the algorithms re-
maining transparent (easy for reading) at that. This
is impossible in principle for other propagation meth-
ods, because the latter demand that the superposition
of functions should be expanded in series (or differ-
entiated) as a whole. Therefore, a separate procedure
has to be constructed for each individual problem.

The error of a function can be predicted, and its
dependence on the planned region of measurements
of a physical quantity can be plotted.

Also interesting is a possibility to obtain an exact
mean shift for £(z?) and E(y/z). In the examples pre-
sented above, this shift did not affect the mean values
and did not play any role. However, in some applica-
tions, it does exist, and its value can be used.

APPENDIX

In this Appendix, the validity of the relations obtained for two
functions, E(x2) and E(y/z), i.e. the reduction of the integral
equations (4) and (5) to tabulated integrals and the reduction
of the obtained relations to the convenient forms (6) and (7),
is proved mathematically.

Mathematical expectation
E;, for the function h(x) = x2

In the case h(z) = x2, Eq. (4), taking the Gaussian distribution
(3) into account, reads

oo oo
Bu= B = [ f@in= [ o\ /2 expl-p(o— )] =
— 00 — 00
=/ g / z? exp[—pa® + 2pzp — pp®ldz =
—oo

188

o0
=/ % exp(—pu?) / z? exp[—pa® + 2papldr =

= \/gexp(—p;ﬂ)(], (10)

where
oo
J = / z2 exp[fpmz + 2pux)dx.
— 00

In essence, the integral expression J is the tabulated integral
[3, formula (3.462.8)]

o0
1 2 2
Ts = / z2 exp[—px?+2qz]de = — /I (1 + Qq—) exp (q—,)
2pV p P P

—o0

in which ¢ = pu. Substituting this value into the expression
for Ty, we have

1 2,2 2,,2
J=— E(l—i—qu)exp(pM):
2p\V p p p

1 T
= 5oy (14 2pu%) exp(pp?).
p\ p

By including this expression into Eq. (10), we obtain

p
Ep =E,2 =/ = exp(—ppu?)J =

D 1 T
=/ = exp(—pp?) o=\ [~ (1 + 2pu®) exp(pu®) =
s 2\ p

1 1
= —(L+2pu®) = — + 4.
2p 2p

With regard for the relation p = 2D1(z) = ﬁ and Eq. (4), we
ultimately obtain
E,=E,2=p?+D,=FE?+D,. (11)

This is an almost expected result. The “shift” D, can be ig-

nored if it is small (D & 0), but expression (15) is an exact

working formula in the case h(z) = z2.

Dispersion D}, for the function h(x) = x2

From Eq. (5), the “propagation error” equals
oo
D(z?) = / i f(x)de — B2 = Jy — E2. (12)
— 00

Let us consider the integral Jy. It can be reduced to the corre-
sponding tabulated integral, by using transformations similar
to Eq. (10):

oo}

Jo = / a f(x)de = 7 x4\/§exp[—p($ - =

o0
=/ % / a* exp[—pa® + 2pap — pp®ldz =
— 00
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—o0

oo
=/ g exp(—pp?) / z* exp[—pa® + 2pzp)de =

= geXP(_pNZ)JOL (13)

where

oo
Jo1 = / z* exp[—p:c2 + 2ppx]de.

—o0

The integral expression Jo; looks like the tabulated integral To
[3, formula (3.462.2)],

[e @)
1 7w dr! 9
— n — 2 = on_1. o am—1 »
T _/:1: exp[—pz +2qz]dm_2n—1p\/;dqn—1 {lep (p):|’
—o0
oo

Ty = / z" exp[fpav2 + 2qz]dx =

™ @ (aV" < ) 1 P\
=y (5) () X oo (i)

At n = 4, the both integrals are identical, i.e. T2, = Ty. Hence,
at n = 4, we obtain

—~
w3

oo
Jor=Ts = / zt exp[—pax? + 2qz]dz =

— 00
1 T d3® [ (qQ)} 1 T
= — _— ex — = — /| — s
23p\ pdgd |77\ sp\ p

where
3

02 = —%5 |gexp | — = —5 |exXp | — — exXp | — =
dg3 P dq? P P P

d [2q 7\ | 4q 7\ | 4¢° '
=—|—exp|— )+ —exp|{—|+—Fexp|—| =
dg [ p P P P P P
i [ (5)+ 3 e (D)
=—|—exp|— )+ —F exp|—]| =
dg [ p P P
6 2 12 2 2 12 2 2
() 5 ()3 wo(2):
p p p p p p

8 4 2 6 24, 2 8 4 2
+ % exp (q—)} = [7 + Z + %} exp (q—)
p p p p p p

Substituting ¢ = pu, we obtain

24172#2 N 8p4“4 . p2u2 B
p? P A

6
Jo2 = [*—&-
p

6
= {; + 2447 + 8pu4} exp(pp?).

Accordingly,

1 T [6
Jor = é\/%Joz = %\/; {; + 2447 + 8pu4} exp(pp?) =

s 3 2
=/~ exp(pp?) {72 +35 +u4}
p 4p p
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Substituting this value into Eq. (13) and taking into account

that p = we have

_1
2D,

p P T
Jo =/ = exp(—pp®)Jor = 1| = exp(—pu®), |~ exp(pu®) x
T ™ p

3 o 3 ©oog
X 3— = 3— =
{4p2+ p+u 4102Jr P e

3
= Z4D§ +3u?2Dy + pu* = 3D2 + 62Dy + pt.

Making allowance for Jy and Eq. (12), we obtain for the dis-
persion D(z?) of the function h(x) = x? that

D(z®) =Jo—x>= 3D +6u>Dy+p* — (1> + Dy)* =
=3D2 +6u?Dy + p* — p* —2u%D, — D2 =

=2D2 4+ 442D, = 2D2 + 4E%D,.

The final result looks like

D(x?) =2D2 + 4u®D, = 2D? + 4E%D,. (14)

This is the “error propagation” rule for the function h(x) = z2.

It should be noted that all the used mathematical operations
(the calculation of an integral of a sum as a sum of integrals,
factorization, and so on) are proper from the viewpoint of sta-
tistical rules [1].

Mathematical expectation Ej
and dispersion Dy, for the function h(z) = /=

A direct calculation of E\/E and D\/; with the help of tabulated
integrals is rather a problematic task. The required relations
can be obtained by considering the function 1/ as an inverse
one to z2 and by applying formulas (6). Really, the latter give
us the explicit relations between four integrals Fi,Dg, F 2,
and D_2; or, roughly speaking, between four numbers:

Eo2=FE_ (Ez, Dg), D> =D, (Ez, Dyg). (15)

The inverse functions

Ea: = Em(E$27 Dz2)7 Dz = DI(EI2y Dzz)

determined from Egs. (6) and (15) must also correctly de-
scribe mathematical relations between those four integrals. If
E_2 and D_ 2 are obtained in a different way (e.g., if they are
measured) and have the same numerical values as those calcu-
lated by Eq. (15), they will satisfy the coupling equations for
four integrals (6) and (15), if and only if E; and D; have the
same values given in Eq. (6).

In other words, if y = 22 and, accordingly, = = VY, the
relations Ey = Ey(Ey, Dy) and Dy = Dy (Ey, Dy), which are
inverse to Egs. (6) and (15), give us the correct values of inte-
gral expressions for the mathematical expectation E; and dis-
persion D, determined by formulas (8) and (9) for a function
of the random variable y, which is coupled with the variable
z by the law y = 22 or z = /Y- This means that, by solving
Egs. (6) and (15) for z, we can use simple calculations to ob-
tain F; and D, on the basis of Ey- and Dy-values, which are
means for the measurements of the random variable y, which
is coupled with z by the relation x = /y.
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Let us solve Egs. (6). For this purpose, let us rewrite them
in the form

Ey = E% + D,, (16)

Dy =2D2% + 4E2D,. (17)

Bearing in mind that the integrals E; and D, are coupled
by the function y = z?, and the integrals E, and D, by the
function x = /y, let us solve those equations with respect to
the integrals E; and D,. Squaring the both sides of Eq. (16)
and multiplying them by 2, we obtain

2B, = 2(E2 + Dy)>.

Subtracting this equation from Eq. (17), we have
Dy — 2E. = 2D2 + 4E2D, — [2(EZ + D2)?] =
=2D2 + 4E2D, — 2E% —4E%D, — 2D2 = —2E%.

From whence, we obtain the explicit expression for the function
Eq (Eyv Dy):
1

E; = E; — 5D (18)

Writing down Eq. (16) in the form D, = Ey — E2 and sub-
\VEZ - %Dy obtained from Eq. (6)
(here, the sign “+” before the root was selected taking into ac-

count that E2 > 0), we ultimately obtain the explicit form for
the function Dy (Ey, Dy):

1
Dy = By — B} — - Dy. (19)

It should be noted that the executed transformations do not

stituting the value E2 =

contradict statistical rules [1], i.e. they are correct.
Finally, let us rewrite the obtained relations (16)—(19) in a
more clear symbolic form,
E, = E,2 = E2 4 Dy;
Dy, = D2 =2D2 + 4E2D,;

1 20
Eﬁ:EjE:Eg—ipz; (20)

/ 1
Dh:Dﬁ:Ea:— E%_EDQC’

where x stands for the measured physical quantity (argument),
and h for the corresponding function (z2 or v/z).

With regard for the results of work [2], it is useful to present
the “analytical” propagation rules for two more functions: cosx
and arccos z. They look like

Dy,
Ep = Ecos = €xp 5 cos Ey;
1
Dy = Dcos = 5[1 — exp(—Dgz)][1 — exp(—D,,) cos 2E];
Es . (2D
+\/E2 + /(- B2)? — 2D,

E1 = Earccos = arccos

Dy = Darccos = In <

190

respectively. Considering the formalization

z~ By, k(Az)? = D,

Egs. (20) and (21) give us the required “propagation rules” for
the means and errors in the case of the functions z2, \/z, cos z,
and arccos x:

X — H, |AX|—|AH]|.

The presented material was reported at the sem-
inars of eight departments at the Institute of
Physics of the NASU. The author is sincerely grate-
ful to the teams and the heads of those depart-
ments (I.V. Blonskyi, M.S. Brodyn, A.G. Naumovets,
A.M. Negryiko, Yu.O. Reznikov, S.M. Ryabchenko,
P.M. Tomchuk, and L.P. Yatsenko) for their atten-
tion. There is no doubt that, without critical remarks
made during the discussions at the seminars, the work
would have been considerably worse or would have not
been carried out at all. My special thanks are due to
S.M. Ryabchenko for his extremely critical discussion
of the results obtained, to G.V.Klimusheva for her
reading of the manuscript and critical remarks, and
to O.I Voitenko for his advice. I am also grateful to
everybody who was not indifferent to this work and
supported it.

1. D.J. Hudson, Statistics. Lectures on Elementary Statistics
and Probability (CERN, 1964).

2. G.G. Rode. The propagation of measurement errors and
measured means of a physical quantity for the elementary
functions cosz and arccosz. Ukr. J. Phys. 61, 345 (2016)

[DOI: 10.15407 /ujpe61.04.0345].
3. I.S. Gradshtein, I. M. Ryzhik. Table of Integrals, Series,

and Products (Academic Press, 1980) [ISBN: 0122947606].
4. Propagation of wuncertainty (Wikipedia) [https://
en.wikipedia.org/wiki/Propagation of uncertainty].
5. H.H. Ku. Notes on the use of propagation of error formulas.
J. Res. Nat. Bur. Stand. T0C, 263 (1966) [DOI: 10.6028/

jres.070C.025].
6. Ph.R. Bevington, D.K. Robinson. Data Reduction and

Error Analysis for the Physical Sciences (McGraw-Hill,

2002) [ISBN: 0-07-247227-8|.
7. J.R. Taylor. An Introduction to Error Analysis: The Study

of Uncertainties in Physical Measurements (University

Science Books, 1997)[ISBN: 0-935702-75X].
8. B.N. Taylor, C.E. Kuyatt. Guidelines for Evaluating and

Ezxpressing the Uncertainty of NIST Measurement Results
(NIST Technical Note 1297) (National Institute of Stan-

dards and Technology, 1994).
9. P.K. Sinervo. Definition and treatment of systematic un-

certainties in high energy physics and astrophysics. In Pro-
ceedings of the PHYSTAT2003 Conference, SLAC, Stan-

ford, CA, September 8-11 (2003), p. 122.
10. J. Denker. Nonlinear least squares |[http://www.av8n.com/

physics/nonlinear-least-squares.htm]|.

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 2



Propagation of the Measurement Errors and Measured Means of Physical Quantities

11.

12.

13.

14.

E.W. Weisstein. Standard deviation entry at mathworld.

[http://mathworld.wolfram.com/StandardDeviation.html]|.
Evaluation of measurement data — An introduction to the

“Guide to the expression of uncertainty in measurement”
and related documents. http://www.bipm.org/utils/ com-
mon/documents/jcgm/JCGM _104_ 2009 _E.pdf.
D.M. Kheiker, E.L. Lube, A.V. Mirenskii, N.I. Komyak,
0O.V. Maklakov, L.Z. Tatkin, E.N. Gurevich, V.S. Ro-
gachev. A design of automatic diffractometer for studying
single crystals. In Equipment and Methods of X-ray Anal-
ysts (Mashinostroenie, 1968), Vol. 3, p. 130 (in Russian).
E.L. Lube, D.M. Kheiker. A control program for the auto-
matic diffractometer DAR-1. In Equipment and Methods
of X-ray Analysis (Mashinostroenie, 1968), Vol. 3, p. 145
(in Russian).
Received 23.03.16.
Translated from Ukrainian by O.I. Voitenko

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 2

I.T". Pode

ITEPEHOC ITOXNBOK
TA CEPEJTHIX BUMIPIB ®I3NYHOI BEJIMYNHU
JIJIs1 EJIEMEHTAPHUX OYHKIIIN 22 TA /z

Peszmowme

Orpumani “npaBusia MMepeHOCY IMOXUOKHU Ta CEPeIHBOrO” OfHi-
€1 BuMmiproBaHol (bi3UYHOI BEJIMYMHU HA IHIY, IOB’sI3aHy 3 HEIO
bynkiitaum 38°a3K0M 22 abo /x. B 1i mpasuma mo mpupo-
ai 3akJsazeHa BaroBa cxema layca. Tomy BoHM MaroThb g06pe
[paIfoBaTH B paMKax peaybHOI BaroBol cxemu layca 3 aumc-
KPETHUMH JaHUMU peasbHoro (isuaHoro gociaijpkenns (3 “Bu-
Gipkamu”). Anasitndana dopma, B fKifl npeacrasiieHi 3rala-
ui npasuia (“amajgiTudHi npaBuia mepeHocy”’), a TaKoXK IX TO-
YHHUI XapaKTep JI03BOJISE€ CIIPOCTUTH i IPUCKOPUTH HPOIELY DY
00pOoOKU i1 aHAJII3y €KCIEePHMEHTAILHUX JAHUX.
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