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THE EFFECTIVE MASS OF AN IMPURITY
ATOM IN THE BOSE LIQUID WITH A DEFORMED
HEISENBERG ALGEBRAPACS 05.30.Jp, 02.40.Gh

We consider the movement of a 3He impurity atom in the Bose liquid. We suggest to de-
scribe the many-particle correlations between atoms of the Bose liquid, by using a deformed
Heisenberg algebra. As generalized coordinates, we choose the collective variables that are the
Fourier components of fluctuations of the density of Bose particles. The wave function of the
investigated system in the zeroth approximation is the product of the wave function of the
liquid helium-4 within deformed commutation relations between generalized coordinates and
momenta and the plane wave of the impurity atom. We calculate the correction to the ground-
state energy of the system “Bose liquid plus impurity” and the effective mass of the impurity
atom 3He, by assuming that the boson-impurity interaction is a small perturbation.
K e yw o r d s: boson systems, deformed Heisenberg algebra, effective mass.

1. Introduction
The investigation of the impurity states of Bose
and Fermi systems is intensified in connection with
the consideration of spin-polarized hydrogen, high-
temperature superconductors, and the experimental
discovery of a Bose condensate by cooling the diluted
gases of alkali metals. The study of the behavior of
impurities in mixtures 3He–4He and in superfluid 4He
is also relevant. Here, the important issue is the de-
scription of quantum states of the system “the Bose
liquid plus the impurity atom”, by modeling the in-
teraction potential between atoms of the Bose liquid
and the impurity atom. The consideration of many-
particle correlations between atoms in this system will
give the qualitative and quantitative estimation of the
effective mass of impurities.

Well promising are the studies of the dynamics
of strongly related impurities in the one-dimensional
Bose liquid [1]. With the development of various
methods of cooling of Bose gases for the obser-
vation of the Bose condensation phenomenon, the
interest in the studies of the tunneling effect for
Bose particles in traps with strong boson–impurity
interaction has increased [2]. The depletion phe-
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nomenon of the Bose condensate by moving impu-
rities (Na+, Rb+, Yb+) was examined in the re-
cent experimental work [3]. The presence of impu-
rity atoms in the Bose condensate leads to many
exciting phenomena. An example is the creation of
a two-electron bound state, which is called a bipo-
laron. It was found that they participate in atypi-
cal pairing mechanisms of high-temperature super-
conductivity.

A lot of papers are devoted to the investigation
of impurity states and the calculation of the effective
mass of impurity atoms in the Bose systems, in partic-
ular, within the Feynman variational formalism [4]. If
the Bose condensate is described by the Fröhlich
Hamiltonian, Feynman’s variational approach is used
for the calculation of the impurity effective mass. In
work [5], a class of variational Gauss wave functions
was proposed for the description of Fröhlich polarons
at finite momenta. The effective masses of polarons of
41K and 133Cs impurities in the Bose–Einstein con-
densate (BEC) of 87Rb atoms, as well as the effective
mass of 6Li in BEC of 23Na atoms, were calculated
in [5]. The self-energy as a function of the scattering
length parameter in the third order of perturbation
theory with the use of ladder diagrams and the ef-
fective mass of the impurity were obtained in work
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[6]. In work [7], it was shown that, in the long-wave
limit, the strong interaction between Bose particles
of a two-component ultracold Bose gas with nonzero
spins led to an increase of the value of effective mass
of particles. In work [8], the lifetime of deuterium in
a chamber, whose walls are covered with liquid satu-
rated 4He, was considered, and the possibility of as-
sessment of the effective mass of the impurity was
discussed. In work [9], the properties of an impurity
immersed in a dilute Bose gas at the zero temperature
were investigated by quantum Monte-Carlo methods.

The analytical and numerical results for the effec-
tive mass of impurity 3He at 𝑇 → 0 K in a Bose
liquid were obtained for the first time in the work
by Slusarev and Strzemechnyj [10] in the frame of
the Brillouin–Wigner perturbation theory (𝑀*/𝑀 =
= 2.4). In work [11], the wave function in the zeroth
approximation for the system “Bose liquid plus the
impurity atom” was chosen in the form of a prod-
uct of the wave function of the ground state of the
Bose liquid and the wave function of an isolated
atom 3He. Having formulated the perturbation the-
ory on such states, the authors obtained the numer-
ical value of effective mass 𝑀*/𝑀 = 1.81 with re-
gard for the structure factor calculated in [12]. The
value 𝑀*/𝑀 = 1.7 was obtained by the variational
method. In work [14], where the interaction between
atoms 4He and an impurity atom 3He was modeled
by the Aziz potential, and the value 𝑀*/𝑀 = 2.15
with the use of the experimental structure factor [15]
was obtained in the second order of perturbation the-
ory. The study of the low-temperature behavior of the
effective mass of an impurity [16] was based on the
averaging of the full statistical operator of a system
“Bose liquid plus impurity” over the states of pure
4He. We also note that, in work [17], the chemical po-
tential, immersion energy, and effective mass of 3He
in a Bose liquid were obtained by the Monte-Carlo
method.

The growth of the effective mass of impurity 3He
in superfluid 4He can be explained by the existence
of the bound states of 3He and 4He in liquid and
in pure 4He due to the appearance of Cooper pairs
[18]. This fact is confirmed by the experimental data
on the effective mass of the impurity 3He, 𝑀*/𝑀 =
= 2.15, in the mixture 4He–3He, when 𝑇 → 0 and the
concentration of impurity atoms is small [19].

In our work, we will investigate the impurity states
of the system “liquid 4He plus one impurity atom

3He” in the low-temperature limit. We propose an ap-
proach, which allows us to consider the nonlinear fluc-
tuations between atoms of the liquid by introducing a
deformed Heisenberg algebra with the generalized co-
ordinates and momentum. The deformed Heisenberg
algebra was first proposed in [21]. For this algebra, we
choose generalized coordinates and the corresponding
generalized momenta, so that the commutator be-
tween these variables is a quadratic function of the
generalized coordinates with some deformed parame-
ter [22]. We assume that this deformed function con-
tains all anharmonic terms generated by the strong
interaction between Bose particles. We develop a per-
turbation theory, by assuming that the interaction
between the impurity and atoms of the Bose liquid
is small. We calculate corrections to the ground-state
energy of the system, by summing over the wave vec-
tor. We discuss the problem of the effective mass of
the impurity 3He in liquid 4He at 𝑇 → 0. We remark
that the deformation parameter in our calculations is
fixed. Note that the wave function of the ground state
of the system “Bose liquid plus of the impurity atom”
in this approach is applicable not only to the calcula-
tion of the effective mass, but also for the evaluation
of the immersion energy of the impurity.

2. Statement of the Problem

We consider a collection of spinless Bose-particles of
mass 𝑚 and with Cartesian coordinates r1, ..., r𝑁 ,
which are situated in a volume 𝑉 together with an
impurity atom of mass 𝑀 and a coordinate r. For
the study of the impurity states of the many-boson
system, it is convenient to use the representation of
collective variables:

𝜌k =
1√
𝑁

𝑁∑︁
𝑗=1

𝑒−𝑖kr𝑗 , 𝜌k = 𝜌𝑐k − 𝑖𝜌𝑠k, k ̸= 0, (1)

which are the Fourier components of the density fluc-
tuations of Bose particles. The Hamiltonian of the
system “Bose liquid plus impurity” can be represented
as a sum̂︀𝐻 = ̂︀𝐻𝐼 + ̂︀𝐻𝐿 + ̂︀𝐻int. (2)

Here, ̂︀𝐻𝐼 is the Hamiltonian of the impurity, being
its operator of kinetic energy:

�̂�𝐼 = −~2∇2

2𝑀
, (3)
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here −𝑖~∇ is the operator of momentum of the im-
purity atom.

The second term ̂︀𝐻𝐿 is the Hamiltonian of the Bose
liquid, which can be written in the 𝜌k-representation
aŝ︀𝐻𝐿 =

∑︁
k̸=0

~2𝑘2

2𝑚

(︂
− 𝜕2

𝜕𝜌k𝜕𝜌−k
+

1

4
𝜌k𝜌−k − 1

2

)︂
+

+
𝑁(𝑁 − 1)

2𝑉
𝜈0 +

𝑁

2𝑉

∑︁
k̸=0

𝜈𝑘(𝜌k𝜌−k − 1) + Δ ̂︀𝐻, (4)

where Δ ̂︀𝐻 contains all anharmonic terms associated
with fluctuations of the particle density:

Δ ̂︀𝐻 =
∑︁
k̸=0

∑︁
k′ ̸=0

k+k′ ̸=0

~2(kk′)

2𝑚
√
𝑁
𝜌k+k′

𝜕2

𝜕𝜌k𝜕𝜌k′
+

+
∑︁
𝑛≥3

(−)𝑛

4𝑛(𝑛− 1)(
√
𝑁)𝑛−2

×

×
∑︁
k1 ̸=0

...
∑︁
k𝑛 ̸=0

k1+...+k𝑛=0

~2

2𝑚
(𝑘21 + ...+ 𝑘2𝑛)𝜌k1...𝜌k𝑛 , (5)

and 𝜈𝑘 is the Fourier image of the interaction poten-
tial of Bose particles:

𝜈𝑘 =

∫︁
Φ(𝑅)𝑒𝑖kRdR. (6)

The last term in relation (2) ̂︀𝐻𝑖𝑛𝑡 is the operator,
which involves the interaction of atoms of the liquid
with the impurity atom:

�̂�int =
𝑁

𝑉
𝜈0 +

√
𝑁

𝑉

∑︁
k1 ̸=0

𝜈𝑘1𝜌k1𝑒
𝑖k1r. (7)

Here, 𝜈𝑘 is the Fourier image of the interaction po-
tential of the system “impurity plus Bose liquid”.

A specific feature in the studies of the quantum
states of the system of Bose particles with Hamilto-
nian (4) is the correct consideration of the contribu-
tion Δ�̂�. Now, we suppose that the canonical collec-
tive variables 𝜌k and canonically conjugate momenta
−𝑖~𝜕/𝜕𝜌k,𝜇 are replaced by some generalized coordi-
nates ̂︀𝑄k,𝜇 and momenta ̂︀𝑃k,𝜇 which satisfy the de-
formed commutation relation

[ ̂︀𝑄k,𝜇, ̂︀𝑃k,𝜇] = 𝑖~(1 + 𝛽𝑘 ̂︀𝑄2
k,𝜇). (8)

The replacement we have made allows us to take the
operator Δ̂𝐻 into account in some effective man-
ner. Then the Bose liquid can be interpreted as a
collection of noninteracting harmonic oscillators with
constant frequencies and a contribution from the an-
harmonicity of oscillations we propose to describe by
the deformed Heisenberg algebra (8) with deforma-
tion parameter 𝛽𝑘.

Our task is to estimate the effective mass of the
impurity. We will calculate corrections to the ground-
state energy of the system “Bose liquid plus impurity,”
by using stationary perturbation theory. We assume
that the operator ̂︀𝐻int is a small perturbation.

3. Quantum States
of the System “Bose Liquid Plus
Impurity” with the Deformed Algebra

We suppose that the wave function of the system
“Bose liquid plus impurity” can be written as a prod-
uct of the wave function of the Bose liquid |k⟩ and
the wave function of the impurity atom:

|k,q⟩ = 1√
𝑉
𝑒𝑖qr|k⟩. (9)

To obtain solutions of the Schrödinger equation (4)
for the Bose liquid with the deformed commutation
relation (8), we use the standard transformation from
the operators ̂︀𝑄k,𝜇 and ̂︀𝑃k,𝜇 to a new pair of canoni-
cally conjugate variables 𝑞k,𝜇 and 𝑝k,𝜇:

𝛽𝑘 > 0:

̂︀𝑃k,𝜇 = ̂︀𝑝k,𝜇, ̂︀𝑄k,𝜇 =
tan(̂︀𝑞k,𝜇√𝛽𝑘)√

𝛽𝑘
, (10)

𝛽𝑘 < 0:

̂︀𝑃k,𝜇 = ̂︀𝑝k,𝜇, ̂︀𝑄k,𝜇 =
tanh(̂︀𝑞k,𝜇√︀|𝛽𝑘|)√︀

|𝛽𝑘|
, (11)

where

[̂︀𝑞k,𝜇, ̂︀𝑝k,𝜇] = 𝑖~. (12)

We can also conclude that the wave function of the
Bose liquid depends on the sign of the deformation
parameter 𝛽𝑘.

The wave functions of the Bose liquid for (10) and
(11) can be written as follows:

|k⟩ =
∏︁
k̸=0

′ ∏︁
𝜇=𝑐,𝑠

𝜓𝑛k,𝜇
(𝑞k,𝜇). (13)
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Here, the quantum numbers 𝑛k,𝜇 = 0, 1, 2, ..., and
𝜇 = 𝑐, 𝑠.

The detailed analysis of the solutions of the
Schrödinger equation with Hamiltonian (4) for (10)
and (11) showed that the deformation parameter 𝛽𝑘
should be chosen negative for liquid helium [22].

We write the explicit form of the wave function for
a fixed mode in (13), when 𝛽𝑘 < 0:

𝜓𝑛(𝑞k,𝜇) = |𝛽𝑘|1/4
√︃

Γ(𝜈 − 𝑛+ 1/2)Γ(2𝜈 − 2𝑛+ 1)

𝑛!Γ(1/2)Γ(𝜈 − 𝑛)Γ(2𝜈 − 𝑛+ 1)
×

×
(︂
− 𝑑

𝑑𝑥
+ 𝜈 tanh𝑥

)︂
...

(︂
− 𝑑

𝑑𝑥
+ (𝜈 − 𝑛+ 1) tanh𝑥

)︂
×

× cosh−𝜈+𝑛 𝑥 .

Here,
𝑥 ≡ 𝑞k,𝜇

√︀
|𝛽𝑘|, 𝑛 ≡ 𝑛k,𝜇.

In particular, the ground-state wave function of the
Bose liquid (when all quantum numbers 𝑛k,𝜇 are
equal to zero) for 𝛽𝑘 < 0 reads

|0⟩ =
∏︁
k̸=0

′ ∏︁
𝜇=𝑐,𝑠

|𝛽𝑘|1/4
√︃

Γ(𝜈 + 1/2)

Γ(1/2)Γ(𝜈)
×

× cosh−𝜈(𝑞k,𝜇
√︀
𝛽𝑘). (14)

Here,

𝜈 = −1

2
+

𝛼𝑘

|𝛽𝑘|

√︃
1 +

(︂
|𝛽𝑘|
2𝛼𝑘

)︂2
, (15)

where 𝛼𝑘 is the Bogoliubov factor:

𝛼𝑘 =

√︂
1 +

2𝑁

𝑉
𝜈𝑘

⧸︁~2𝑘2
2𝑚

. (16)

Let us write the wave function of the first excited
level of the system ”Bose liquid plus impurity” for
the k′, 𝜇′ mode and the wave vector of the impurity
q′. We suppose that, in the set of quantum numbers
𝑛k,𝜇, the number 𝑛k′,𝜇′ = 1 (when k′ = k, 𝜇′ = 𝜇),
and other quantum numbers 𝑛k,𝜇 = 0 (when k′ ̸= k,
𝜇′ ̸= 𝜇). Then

|k′,q′⟩ = 1√
𝑉
𝑒−𝑖q′r|k′⟩. (17)

Here, |k′⟩ is the wave function of the excited state of
the Bose liquid for 𝛽𝑘 < 0:

|k′⟩ =
√︀

2(𝜈 − 1) sinh(𝑞k′,𝜇′
√︀
|𝛽𝑘′ |)|0⟩. (18)

In the limit 𝛽𝑘 → 0, the wave function of the system
“Bose liquid plus impurity” in the first excited state
is:
|k′,q′⟩ = 1√

𝑉
𝑒−𝑖q′r

√
2𝛼𝑘′𝜌−k′,𝜇′ |0⟩, (19)

|0⟩ =
∏︁
k̸=0

′
√︂
𝛼𝑘

2𝜋
𝑒−

1
2𝛼𝑘𝜌k𝜌−k . (20)

4. Corrections to the Ground-State
Energy of the System “Bose Liquid Plus
Impurity” with a Deformed
Heisenberg Algebra

Let as suppose that the Bose liquid is in the ground
state with the wave function given by Eq. (14). The
ground-state energy

𝐸0 =
𝑁(𝑁 − 1)

2𝑉
𝜈0 −

∑︁
k ̸=0

~2𝑘2

8𝑚
(𝛼𝑘 − 1)2 +

+
∑︁
k̸=0

~2𝑘2

4𝑚
𝛼𝑘

(︂√︃
1 +

(︂
𝛽𝑘
2𝛼𝑘

)︂2
+

𝛽𝑘
2𝛼𝑘

− 1

)︂
(21)

was calculated in [22] with the deformed Heisenberg
algebra (8). When 𝛽𝑘 → 0, we obtain the ground-
state energy of the Bose liquid in Bogoliubov’s ap-
proximation.

The motion of the impurity can be described by
the Hamiltonian ̂︀𝐻𝐼 , and the wave function of the
impurity is a plane wave. We now obtain a correction
to the ground-state energy of the system “Bose liquid
plus impurity”. Suppose that the interaction between
atoms of the liquid and the impurity (7) is a small per-
turbation. It should be noted that the probability of
the transition to higher excited states that correspond
to quantum numbers 𝑛k,𝜇 > 1 from (k, 𝜇)-modes is
low.

The total energy of the system “Bose liquid plus
impurity” in the limit of low temperature according
to perturbation theory can be written as
𝐸𝑞 = 𝐸(0)

𝑞 + 𝐸(1)
𝑞 + 𝐸(2)

𝑞 , (22)

where the first term is the ground-state energy of the
system in the zeroth approximation:

𝐸(0)
𝑞 = 𝐸0 +

~2𝑞2

2𝑀
. (23)

The second term is the diagonal matrix element of the
perturbation operator calculated on the ground-state
wave functions of the system (when 𝑛k,𝜇 = 0):

𝐸(1)
𝑞 = ⟨0,q|�̂�int|0,q⟩. (24)
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Having used the evident form of operator (7) and
making replacement 𝜌k,𝜇 = ̂︀𝑄k,𝜇, we obtain

̂︀𝐻int =

=
𝑁

𝑉
𝜈0 +

√
𝑁

𝑉

∑︁
k1 ̸=0

𝜈𝑘1

(︁̂︀𝑄k1,𝑐 − 𝑖 ̂︀𝑄k1,𝑠

)︁
𝑒𝑖k1r. (25)

Since we consider corrections to the ground state, we
obtain in the first order (because k1 ̸= 0):

𝐸(1)
𝑞 =

𝑁

𝑉
𝜈0. (26)

The second-order correction to the ground-state en-
ergy of the system can be written as

𝐸(2)
𝑞 =

∑︁
q′ ̸=0

∑︁
k′ ̸=0

|⟨k′,q′|�̂�𝑖𝑛𝑡|0,q⟩|2

~2𝑞2/2𝑀 − ~2𝑞′2/2𝑀 − 𝐸𝑘′
, (27)

where 𝐸𝑘′ is the spectrum of elementary excitations
of liquid 4He, which can be represented as a function
of the structure factor of the Bose liquid 𝑆𝑘′ . In the
deformed case, we have

𝐸𝑘′ =
~2𝑘′2

2𝑚𝑆𝑘′
+

~2𝑘′2

2𝑚
𝛽𝑘′ . (28)

Equation (28) shows that the deformation parameter
𝛽𝑘′ takes negative values. The experimentally mea-
sured spectrum of elementary excitations is lower
than the theoretical one calculated in the approxima-
tion of pair correlations. To find correction (27), we
have to calculate the off-diagonal matrix element on
the wave functions given by Eq. (9), when 𝑛k,𝜇 = 0,
and Eq. (17). Details of the calculation are presented
in Appendix A. Now, the off-diagonal matrix element
for the negative values of the deformation parameter
can be written as follows:⃒⃒⃒
⟨k′,q′| ̂︀𝐻int|0,q⟩

⃒⃒⃒2
=

=
𝑁

𝑉 2
𝜈2𝑘′

1

𝛽𝑘′

(𝜈 − 1)(𝜈 − 1/2)2

𝜈2

[︂
Γ(𝜈 − 1/2)

Γ(𝜈)

]︂4
, (29)

where 𝜈 is taken from Eq. (14), when 𝑘 = 𝑘′. We
write the second-order correction to the ground-state
energy (27), by taking the off-diagonal matrix ele-
ment (29) into account at 𝛽𝑘 < 0. Expression (27)
can be expanded in a series in powers of k′:

𝐸(2)
𝑞 = − 𝑁

𝑉 2

∑︁
k′ ̸=0

𝜈2𝑘′
1

𝛽𝑘′

(𝜈 − 1)(𝜈 − 1/2)
2

𝜈2
×

×
[︂
Γ(𝜈 − 1/2)

Γ(𝜈)

]︂4
1

~2𝑘′2/2𝑀 + 𝐸𝑘′
×

×

[︃
1 +

(︂
2(k′q)

𝑘′2 + 2𝐸𝑘′𝑀/~2

)︂2

+ ...

]︃
. (30)

We have taken into account that q′ = q + k′. We
also remark that the terms

∑︀
k′ ̸=0(k

′q)𝑠, which ap-
pear in decomposition (30), are equal to zero. Since
the lowest excited states of the system “Bose liquid
plus impurity” correspond to sound waves, the ex-
pansion in powers of k′ is allowed for any value of the
wave vector k′. We write the second-order correction
in the limit 𝛽𝑘′ → 0. With regard for the approxi-
mate expansion for the Gamma-function, Γ(𝜈 + 𝑎) =√
2𝜋𝑒−𝜈𝜈𝜈+𝑎−1/2, we can easily show that the correc-

tion to the ground-state energy (30) of the system is
the same as in the non-deformed case:

𝐸(2)
𝑞 =

= − 𝑁

𝑉 2

∑︁
k′ ̸=0

𝜈2𝑘′/𝛼𝑘′

~2𝑘′2/2𝑀 + ~2(k′q)/𝑀 + 𝐸𝑘′
. (31)

5. Effective Mass

Let us write the second-order correction to the
ground-state energy (30) of the system as

𝐸(2)
𝑞 = 𝐸

(2)
𝑞=0 −

− 𝑁

𝑉 2

∑︁
k′ ̸=0

(︂
~2𝜈𝑘′

𝑀

)︂2
(k′q)

2

[~2𝑘′2/2𝑀 + 𝐸𝑘′ ]
3 𝑓(𝛽𝑘′), (32)

where
𝐸

(2)
𝑞=0 = − 𝑁

𝑉 2

∑︁
k′ ̸=0

𝜈2𝑘′
1

~2𝑘′2/2𝑀 + 𝐸𝑘′
𝑓(𝛽𝑘′), (33)

and the function

𝑓(𝛽𝑘′) =
(𝜈 − 1)(𝜈 − 1/2)2

|𝛽𝑘′ |𝜈2

[︂
Γ(𝜈 − 1/2)

Γ(𝜈)

]︂4
. (34)

In the limit 𝛽𝑘′ → 0, the function 𝑓(𝛽𝑘′) → 1/𝛼𝑘′.
The first-order corrections to the ground-state en-

ergy together with term (33) gives the immersion en-
ergy of the impurity atom in the Bose liquid:

𝐸𝑖 = 𝜌𝜈0 −
1

𝑁

∑︁
k′ ̸=0

(𝜌𝜈𝑘′)2

~2𝑘′2/2𝑀 + 𝐸𝑘′
𝑓(𝛽𝑘′), (35)

where 𝜌 = 𝑁/𝑉 is the density of 4He.
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The Fourier coefficient 𝜈0 can be written as a func-
tion of the speed of sound in liquid helium. To do
that, we use the well-known thermodynamic relation:

𝑚𝑐2 = 𝑁
𝜕2𝐸0

𝜕𝑁2
. (36)

We note that the speed of sound in liquid helium at
𝑇 = 0 K is equal to 𝑐 = 238.2 m/s. As a result, we
obtain

𝜈0 =
𝑚𝑐2

𝜌0
+

1

2𝑁𝜌0

∑︁
k̸=0

~2𝑘2

2𝑚
𝑆𝑘 ×

×
(︂
𝑆𝑘 − 1

𝑆𝑘

)︂2 [︃
1−

(︂
𝛽𝑘𝑆𝑘

2

)︂2]︃3/2
, (37)

where 𝜌0 = 0.0218 Å−3 is an equilibrium density of
liquid helium. The expression for the total energy of
the system “Bose liquid plus impurity” can be written
as follows:

𝐸𝑞 = 𝐸0 + 𝐸𝑖 +
~2𝑞2

2𝑀* , (38)

where 𝑀* is the effective mass of the impurity:

𝑀

𝑀* = 1− 𝑁

𝑉 2

∑︁
k′ ̸=0

𝜈2𝑘′

(︂
2𝑀

~2

)︂2
×

× 4(k′q)
2
𝑓(𝛽𝑘′)

[𝑘′2 + 2𝐸𝑘′𝑀/~2]3
. (39)

For the numerical evaluation of the effective mass of
the impurity, we will model the deformation param-
eter by a function that depends on the structure fac-
tor. The structure factor can be taken from the ex-
trapolated data on the structure factor for the Bose
liquid at 𝑇 = 0 K:

𝛽𝑘′ = −𝑆𝑘′ |𝑆𝑘′ − 1|3. (40)

We note that the choice of the deformation parameter
gives the correct behavior in the long-wavelength do-
main. Function (40) can be used for finding the phys-
ical quantities in the limit of 𝑇 → 0. We can suggest
other model of the function, which would reproduce
the corrections to physical characteristics of the sys-
tem “Bose liquid plus impurity” in the post-RPA ap-
proximation.

Now, we calculate the effective mass of the impurity
atom 3He, by supposing that the deformation param-
eter takes the form (40). We write expression (39)

for the effective mass in the thermodynamical limit
(𝑁 → ∞, 𝑉 → ∞, 𝑁/𝑉 = const). The sum over the
wave vector k′ in that relation can be replaced by an
integral. Having performed the integration over an-
gular variables, we arrive at the expression

𝑀

𝑀* = 1− 2

3𝜋2
𝜌

∞∫︁
0

𝑘′4 ×

× 𝜈2𝑘′(2𝑀/~2)2

[𝑘′2 + 2𝐸𝑘′𝑀/~2]3
𝑓(𝛽𝑘′) d𝑘′. (41)

The Fourier image of the interaction potential be-
tween the Bose particles and the impurity atom 𝜈𝑘′

can be expressed as a function of the structure fac-
tor of the Bose liquid. Let us suppose that 𝜈𝑘′ = 𝜈𝑘′ .
Then, for the 3He impurity, we can write

𝜈𝑘′ =
~2𝑘′2

4𝑚𝜌0

(︂
1

𝑆2
𝑘′

− 1

)︂
. (42)

This assumption is also correct for the elements, for
which the outer 𝑠-electron shells are filled completely,
in particular, this fact holds for the inert gases. We
note that the equality 𝜈𝑘′ = 𝜈𝑘′ does not take place for
other kinds of impurities, because the Fourier trans-
forms exist just for few types of the interaction poten-
tial. For the equilibrium density of the liquid helium
(𝜌0 = 0.0218 Å−3), the effective mass of the atom
3He is equal to 𝑀* = 1.78𝑀 .

An important characteristic of the system “Bose
liquid plus impurity” is the separation energy. The
separation energy is the energy that is necessary for
the removal of an impurity atom from the mixture
3He–4He (when the concentration of impurities is
very low). The value of separation energy for a sin-
gle impurity atom 3He (when the density of helium is
𝜌0 = 0.0218 Å−3) is equal to 𝐵exp = 2.76 K [11].

We now calculate the separation energy 𝐵 with the
deformation parameter (40) for different values of the
4He density. To do that, we replace the impurity atom
with the atom of the Bose liquid. Then the ground-
state energy (22) of the system of (𝑁 + 1) Bose par-
ticles is decomposed into a series in powers of 𝑁 . We
obtain the expression

Δ𝐸 = 𝐸𝑖 −
(︂
𝜕𝐸0

𝜕𝑁

)︂
𝑇

. (43)

It is the so-called substitution energy of the system
“Bose liquid plus impurity atom” provided that the
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Fourier image of the impurity-liquid interaction po-
tential equals the Fourier image of the liquid-liquid
potential. The explicit form of Eq. (43) is

Δ𝐸 =
1

4𝑁

∑︁
k̸=0

~2𝑘2

2𝑚
(𝛼2

𝑘 − 1)

(︂
2− 1

𝛼𝑘
−

− 1√︀
1 + (𝛽𝑘/2𝛼𝑘)2

−
(︂
𝜌

𝜌0

)︂2 (︀𝛼2
𝑘 − 1

)︀
𝑓(𝛽𝑘)

𝑚/𝑀 + 𝛼𝑘 + 𝛽𝑘

)︂
, (44)

where the Bogoliubov factor 𝛼𝑘 depends on the de-
formation parameter:

𝛼2
𝑘 =

1

𝑆2
𝑘

− 𝛽2
𝑘

4
. (45)

In the limit 𝛽𝑘 → 0 and with 𝜌0, the substitution
energy given by Eq. (44) reads

Δ𝐸 = − 1

4𝑁

(︁
1− 𝑚

𝑀

)︁∑︁
k ̸=0

~2𝑘2

2𝑚

(𝛼𝑘 − 1)
2

𝛼𝑘

1 + 𝛼𝑘

𝑚/𝑀 + 𝛼𝑘
.

(46)
When 𝑚 =𝑀, we obtain Δ𝐸 = 0.

The definition of the separation energy from [11]
can be written, in our notation, as

−𝐵 = Δ𝐸 +
𝐸0

𝑁
. (47)

Here, the ground-state energy of the Bose liquid
𝐸0/𝑁 is given by Eq. (21) and can be presented for
one particle as [22]

𝐸0

𝑁
=
𝑚𝑐2

2

𝜌

𝜌0
+

1

32𝜋2
𝐼1 +

1

8𝜋2
𝐼2, (48)

where

𝐼1 =
~2

2𝑚𝜌0

∞∫︁
0

𝑘4

[︃
(1− 𝑆2

𝑘)
2

𝑆𝑘
+

(︃
2(𝑆2

𝑘 − 1)+

+

(︂
𝛽𝑘𝑆𝑘

2

)︂2)︃(︂
𝛽𝑘𝑆𝑘

2

)︂2]︃
d𝑘, (49)

𝐼2 =
~2

2𝑚𝜌

∞∫︁
0

𝑘4

[︃
𝛽𝑘 +

𝛽2
𝑘

4
−
(︂
1− 1

𝑆𝑘

)︂2]︃
d𝑘. (50)

We write Eqs. (49) and (50) similarly in the
thermodynamic limit, by considering

∑︀
k̸=0 →

→ 1/(8𝜋3𝜌)
∫︀
dk.

To evaluate the separation energy (47) for densi-
ties that are not equal to the equilibrium density 𝜌0,

the structure factor 𝑆𝑘 in Eqs. (44), (49), and (50)
should be renormalized. To perform this procedure,
we rewrite the structure factor in the following form:

1

𝑆2
𝑘

= 1 +
𝜌

𝜌0

(︂
1

𝑆2
exp(𝑘)

− 1

)︂
, (51)

where 𝑆exp(𝑘) is the structure factor of the Bose liquid
taken from experimental measurements.

Table 2 shows the values of separation energy
that we have calculated by formula (47) in the de-
formed case. For comparison, the second and third
columns represent the separation energies for the
same densities that obtained in work [11]. We re-
mark that, in the calculation of the separation en-
ergy, the Brillouin–Wigner perturbation theory was
used. Here, the separation energy 𝐵 for the system
of (𝑁 − 1) Bose particles and a single impurity atom
is given. We also present the results of the separation
energy from work [24]. In our work, the immersion
energy is defined as the difference of the energy of
the system “Bose liquid plus impurity,” which is cal-
culated by the variational method in the approxima-
tion of pair correlations, and the energy of the pure
Bose liquid. The effective mass for different values of
the density of the Bose liquid is shown in Table 1.

We note that one can propose other model func-
tions for the deformation parameter provided that the
contributions to physical characteristics of the system

Table 1. Effective mass of the impurity
atom 3He for different values of the density of 4He

𝜌, 𝑀*/𝑀 𝑀*/𝑀 𝑀*/𝑀 , 𝑀*/𝑀 , 𝑀*/𝑀 ,
Å−3 (this work) (if 𝛽𝑘 = 0) [19] [17] [23]

0.0218 1.78 1.71 2.15 2.20 2.09
0.0240 2.13 2.00 2.39 2.36 2.34
0.0254 2.50 2.27 2.62 2.72 2.55

Table 2. Separation energy of the impurity
atom 3He for different values of the density of 4He

𝜌, 𝐵, K 𝐵, K 𝐵, K, 𝐵, K,
Å−3 (this work) (if 𝛽𝑘 = 0) [11] [24]

0.0218 4.56 2.09 1.39 2.02
0.0226 4.09 1.66 1.15 2.05
0.0234 3.58 1.21 0.88 2.09
0.0242 3.05 0.74 0.51 2.09
0.0250 2.53 0.27 0.13 2.05
0.0258 2.00 −0.16 −0.36 1.98
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“Bose liquid plus impurity” will reproduce the results
in the post-RPA approximation. For the sake of com-
parison of our results, we choose the deformation pa-
rameter in the form

𝛽𝑘 = −𝛽0𝑒−(1−𝑘/𝑘0)
2

. (52)

As 𝑘 → ∞, we can set 𝛽𝑘 = −𝛽0. We choose the coef-
ficient 𝛽0 so that the theoretical excitation spectrum
(28) reproduces the experimental one. The wave vec-
tor in this case takes the value 𝑘0 = 0.98 Å−1. This
choice of the coefficient 𝑘0 and 𝛽0 provides such a
value of the ground-state energy (48) that is consis-
tent with the experimental data for the ground-state
energy of the Bose liquid.

APPENDIX A

We write the off-diagonal matrix elements in the form

⟨k′,q′| ̂︀𝐻int|0,q⟩ = 𝛿k1,q′−q

√
𝑁

𝑉
𝜈𝑘1

×

×
(︁
⟨k′| ̂︀𝑄k1,𝑐|0⟩ − 𝑖⟨k′| ̂︀𝑄k1,𝑠|0⟩

)︁
. (53)

We calculate one of the terms in brackets, by using the follow-
ing expression for the wave function of the first excited state
of a Bose liquid (18):

⟨k′| ̂︀𝑄p,𝜇′ |0⟩ =

=
√︀

2(𝜈 − 1)
⟨
0
⃒⃒⃒
sinh

(︁
𝑞k′,𝜇

√︀
|𝛽𝑘′ |

)︁ ̂︀𝑄p,𝜇′

⃒⃒⃒
0
⟩
. (54)

Here, we have introduced the notation p = q′ − q and 𝜇′ = 𝑐

or 𝜇′ = 𝑠. Equation (54) is not equal to zero, when p = k′ and
𝜇′ = 𝜇. With regard for the explicit form of the ground-state
wave function, the matrix element can be written as follows:

⟨k′| ̂︀𝑄p,𝜇′ |0⟩ =
1√︀
|𝛽𝑘′ |

√︀
2(𝜈 − 1)

Γ(𝜈 + 1/2)

Γ(1/2)Γ(𝜈)
×

×
∞∫︁

−∞

sinh2
(︁
𝑞k′,𝜇

√︀
|𝛽𝑘′ |

)︁
cosh2𝜈+1

(︁
𝑞k′,𝜇

√︀
|𝛽𝑘′ |

)︁d𝑞k′,𝜇. (55)

The last integral can be reduced to the Beta-function. Finally,
we obtain

⟨k′,q′| ̂︀𝐻int|0,q⟩ =

=

√
𝑁

𝑉
𝜈𝑘′ (1− 𝑖)

√︃
𝜈 − 1

2|𝛽𝑘′ |
𝜈 − 1/2

𝜈

[︂
Γ(𝜈 − 1/2)

Γ(𝜈)

]︂2
.
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ЕФЕКТИВНА МАСА ДОМIШКОВОГО
АТОМА В БОЗЕ-РIДИНI З ДЕФОРМОВАНОЮ
АЛГЕБРОЮ ГАЙЗЕНБЕРГА

Р е з ю м е

В роботi розглянуто рух домiшки 3He в бозе-рiдинi. Осо-
бливiстю використаного нами пiдходу є врахування багато-
частинкових кореляцiй мiж атомами рiдини деформованою
алгеброю Гайзенберга. В ролi узагальнених координат ви-
брано колективнi змiннi, що є коефiцiєнтами Фур’є флу-
ктуацiї густини бозе-частинок. Хвильову функцiю систе-
ми в нульовому наближеннi описуємо добутком хвильової
функцiї рiдкого гелiю-4 на мовi деформованих комутацiй-
них спiввiдношень мiж узагальненими координатами i спря-
женими iмпульсами та плоскою хвилею домiшкового ато-
ма. Вважаючи бозон-домiшкову взаємодiю малим збурен-
ням, знайдено поправки до енергiї основного стану системи
“бозе-рiдина плюс домiшка”, а також обчислено ефективну
масу домiшкового атома 3He.
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