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TWO SYSTEMS OF MAXWELL’S EQUATIONS
AND TWO CORRESPONDING SYSTEMS OF WAVE
EQUATIONS FOR ELECTROMAGNETIC FIELD
VECTORS E AND B IN A ROTATING FRAME
OF REFERENCE: A LINEAR APPROXIMATIONPACS 03.50.De; 42.81.Pa

On the base of two systems of Maxwell’s equations for the electromagnetic field vectors E and B
in a uniformly rotating frame of reference, which were first proposed in the works by L.I. Schiff
[Proc. Natl. Acad. Sci. USA 25, 391 (1939)] and W. Irvine [Physica 30, 1160 (1964)], two
corresponding systems of wave equations are derived (to the first order in Ω). The analysis
of these systems implies that: 1) the factor of rotation causes the arising of longitudinal E-
and B-components of electromagnetic waves, which interact with the transversal ones; 2) the
wave equations for the vector E in both systems of equations have the same form, while the
equations for the vector B have different form; 3) the structure of equations for vectors E and
B in the first case is asymmetric. Therefore, the propagation of the E- and B-components
of electromagnetic waves in a rotating frame of reference will be governed by qualitatively
different laws; 4) the structure of the wave equations in the second case is symmetric. Hence,
the propagation of these field components will be governed by similar laws. It is also shown
that, in the approximation of transversal electromagnetic waves, the distinction between the
two systems of wave equations for the vectors E and B vanishes: both are transformed into
two identical sets of separate (independent of one another) wave equations for the vector E
and the vector B of a simpler (and already known from the literature) form.

K e yw o r d s: Maxwell’s equations, wave equations, Sagnac effect, ring laser gyro.

1. Introduction

The analysis of the literature shows that there are
mainly two basic systems of Maxwell’s equations for
the electromagnetic field vectors E and B written in
a frame of reference uniformly rotating with angular
velocity Ω. Both systems are based on the Galilean
description of a rotation, and both utilize the Newton
(absolute) time 𝑡.

In the absence of free charges and currents, the first
system (proposed in work [1]) has the form (we keep
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the terms only up to the first order in Ω)

∇×E+
𝜕B

𝜕𝑡
= 0,

∇B = 0,

∇×
(︁
B− 1

𝑐2
v ×E

)︁
− 1

𝑐2
𝜕

𝜕𝑡
(E− v ×B) = 0,

∇ (E− v ×B) = 0,

(1)

and the second one (proposed in work [2]) is

∇×E+
𝜕

𝜕𝑡

(︁
B+

1

𝑐2
v ×E

)︁
= 0,

∇
(︁
B+

1

𝑐2
v ×E

)︁
= 0,
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∇×B− 1

𝑐2
𝜕

𝜕𝑡
(E− v ×B) = 0,

∇ (E− v ×B) = 0.
(2)

Both systems (and their derivation) are discussed in
works [3, 4].

In expressions (1) and (2), all the quantities are
specified by the formulas

∇ = �̂� (𝜕/𝜕𝑥) + 𝑦 (𝜕/𝜕𝑦) + 𝑧 (𝜕/𝜕𝑧),

E = 𝐸𝑥 �̂�+ 𝐸𝑦 𝑦 + 𝐸𝑧 𝑧,

B = 𝐵𝑥 �̂�+𝐵𝑦 𝑦 +𝐵𝑧 𝑧,

Ω = Ω𝑥 �̂�+Ω𝑦 𝑦 +Ω𝑧 𝑧,

r = 𝑥 �̂�+ 𝑦 𝑦 + 𝑧 𝑧,

v = Ω× r = 𝑣𝑥 �̂�+ 𝑣𝑦 𝑦 + 𝑣𝑧 𝑧,

𝑣𝑥 = Ω𝑦 𝑧 − Ω𝑧 𝑦,

𝑣𝑦 = Ω𝑧 𝑥− Ω𝑥 𝑧,

𝑣𝑧 = Ω𝑥 𝑦 − Ω𝑦 𝑥.

(3)

Here, �̂�, 𝑦, and 𝑧 are the unit vectors that form an or-
thogonal coordinate basis {�̂�𝑦𝑧} of a rotating frame;
𝐸𝑥, 𝐸𝑦, 𝐸𝑧 and 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 are components of the
vectors E and B in this basis; Ω is the vector of an-
gular velocity with which the basis {�̂�𝑦𝑧} rotates in
an inertial frame; Ω𝑥, Ω𝑦, Ω𝑧 are components of the
vector Ω; r is the radius-vector of a given observation
point in the basis {�̂�𝑦𝑧}; 𝑥, 𝑦, 𝑧 are components of
the vector r; v is the vector of linear tangential veloc-
ity of the observation point calculated in the inertial
frame; and 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 are components of the vector v.

As we can see, the above two systems of Maxwell’s
equations (1) and (2) for the electromagnetic field
vectors are not identical: system (1) has an asymmet-
ric structure with respect to Ω in the sense that the
rotation manifests itself only in the third and fourth
equations, but not in the first and second ones; sys-
tem (2) has a symmetric structure with respect to
Ω, because the rotation manifests itself in all four
equations. In this situation, we may ask the question:
what will the form of the corresponding wave equa-
tions be for the indicated vectors in the first and sec-
ond cases? The answer to this question is not given
in the literature. So, the purpose of this paper is to
derive the wave equations for the vectors E and B: at
first, on the base of the system of Maxwell’s equations
(1) and then on the base of system (2). All calcula-
tions must be performed with accuracy to the first
order in 𝑣 (𝑣 = |v|) or, equivalently, Ω (Ω = |Ω|).

2. Auxiliary Relations

In this section, we are going to present some useful
formulas for the quantities ∇×(∇×G), ∇×(v×G),
∇ (v × G), ∇(vG), ∇2(v × G), which involve the
vectors v = Ω× r and G (G = E, B).

A. Consider the term ∇ × (∇ × G). It is known
(see, e.g., [5]) that

∇× (∇×G) = −∇2G+∇(∇G). (4)

B. Consider the identity ∇× (v×G) = (G∇)v−
− (v∇)G+v(∇G)−G(∇v). In the case where v =
= Ω × r, we have (G∇)v = Ω ×G, ∇v = 0, and,
to the first order in Ω, v(∇G) = 0. Therefore,

∇× (v ×G) = −(v∇)G+Ω×G. (5)

C. Consider the identity ∇ (v×G) = G (∇×v)−
−v (∇×G). Since ∇× v = 2Ω,

∇ (v ×G) = 2ΩG− v (∇×G). (6)

D. Consider the identity ∇(vG) = (v∇)G+
+(G∇)v + v × (∇ × G) + G × (∇ × v). Since
(G∇)v = Ω×G, ∇× v = 2Ω, and G× (∇× v) =
= −2(Ω×G),

∇(vG) = (v∇)G−Ω×G+ v × (∇×G). (7)

E. Consider the vector ∇2(v ×G). We have

∇2(v ×G) = ∇2(v ×G)𝑥�̂�+

+∇2(v ×G)𝑦𝑦 +∇2(v ×G)𝑧𝑧. (8)

First, let us calculate the projection ∇2(v × G)𝑥
of this vector onto the axis �̂�. In view of (3), we have

∇2(v ×G)𝑥 =

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

)︂
(𝑣𝑦𝐺𝑧 − 𝑣𝑧𝐺𝑦)

(9)
or

∇2(v ×G)𝑥 =

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

)︂
×

× [(Ω𝑧𝑥− Ω𝑥𝑧)𝐺𝑧 − (Ω𝑥𝑦 − Ω𝑦𝑥)𝐺𝑦]. (10)

After the calculation, we get

∇2(v ×G)𝑥 = 𝑣𝑦

(︂
𝜕2𝐺𝑧

𝜕𝑥2
+

𝜕2𝐺𝑧

𝜕𝑦2
+

𝜕2𝐺𝑧

𝜕𝑧2

)︂
−
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− 𝑣𝑧

(︂
𝜕2𝐺𝑦

𝜕𝑥2
+

𝜕2𝐺𝑦

𝜕𝑦2
+

𝜕2𝐺𝑦

𝜕𝑧2

)︂
−

− 2Ω𝑥

(︂
𝜕𝐺𝑦

𝜕𝑦
+

𝜕𝐺𝑧

𝜕𝑧

)︂
+ 2

(︂
Ω𝑦

𝜕𝐺𝑦

𝜕𝑥
+Ω𝑧

𝜕𝐺𝑧

𝜕𝑥

)︂
. (11)

Let us add the following terms to the right-hand side
of (11): −2Ω𝑥(𝜕𝐺𝑥/𝜕𝑥) and +2Ω𝑥(𝜕𝐺𝑥/𝜕𝑥). Then

∇2(v ×G)𝑥 = 𝑣𝑦

(︂
𝜕2𝐺𝑧

𝜕𝑥2
+

𝜕2𝐺𝑧

𝜕𝑦2
+

𝜕2𝐺𝑧

𝜕𝑧2

)︂
−

− 𝑣𝑧

(︂
𝜕2𝐺𝑦

𝜕𝑥2
+

𝜕2𝐺𝑦

𝜕𝑦2
+

𝜕2𝐺𝑦

𝜕𝑧2

)︂
−

− 2Ω𝑥

(︂
𝜕𝐺𝑥

𝜕𝑥
+

𝜕𝐺𝑦

𝜕𝑦
+

𝜕𝐺𝑧

𝜕𝑧

)︂
+

+2

(︂
Ω𝑥

𝜕𝐺𝑥

𝜕𝑥
+Ω𝑦

𝜕𝐺𝑦

𝜕𝑥
+Ω𝑧

𝜕𝐺𝑧

𝜕𝑥

)︂
(12)

or

∇2(v ×G)𝑥 = [v × (∇2G)]𝑥 −

− 2Ω𝑥(∇G) + 2
𝜕

𝜕𝑥
(ΩG). (13)

Similarly, we obtain

∇2(v ×G)𝑦 = [v × (∇2G)]𝑦 −

− 2Ω𝑦(∇G) + 2
𝜕

𝜕𝑦
(ΩG), (14)

∇2(v ×G)𝑧 = [v × (∇2G)]𝑧 −

− 2Ω𝑧(∇G) + 2
𝜕

𝜕𝑧
(ΩG). (15)

Therefore,

∇2(v×G) = v×(∇2G)−2Ω(∇G)+2∇(ΩG). (16)

Finally, taking into account that, to the first order in
Ω, Ω(∇G) = 0, we get

∇2(v ×G) = v × (∇2G) + 2∇(ΩG). (17)

Formulas (4)–(7) and (17) will be used in the next
sections.

3. First System of Wave
Equations for the Vectors E and B
in a Rotating Frame of Reference

In this section, we are going to derive the first system
of wave equations for the electromagnetic field vec-
tors E and B, which will correspond to the system of
Maxwell’s equations (1). The first, second, third, and
fourth equations of the system will be mentioned in
the text as (1a), (1b), (1c), and (1d), respectively.

3.1. Equation for the vector 𝐸

To derive the wave equation for the vector E, we ap-
ply the operator ∇× to expression (1a):

∇× (∇×E) +
𝜕

𝜕𝑡
(∇×B) = 0. (18)

Taking (4) and (1c) into account, we rewrite (18) in
the form

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡

(︂
v × 𝜕B

𝜕𝑡

)︂
− 1

𝑐2
𝜕

𝜕𝑡
×

× [∇× (v ×E)]−∇(∇E) = 0 (19)

or, using (1a),

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×E)+

+v × (∇×E)]−∇(∇E) = 0. (20)

With the help of (5), we get

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E−

−v × (∇×E)]−∇(∇E) = 0. (21)

Consider the term ∇(∇E) in (21). According to
(1d), ∇E = ∇ (v × B). Taking (6) and (1c) into
account, we have ∇ (v × B) = 2ΩB − (1/𝑐2)×
× (𝜕/𝜕𝑡)(vE), so

∇(∇E) = 2∇(ΩB)− 1

𝑐2
𝜕

𝜕𝑡
∇(vE). (22)

Consider the last term in (22). In accordance with (7),

∇(vE) = (v∇)E−Ω×E+ v × (∇×E). (23)

Therefore,

∇(∇E) = 2∇(ΩB)−

− 1

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E+ v × (∇×E)]. (24)

Finally, substituting (24) into (21), we obtain the
desired wave equation for the vector E:

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0. (25)
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3.2. Equation for the vector 𝐵

To derive the wave equation for the vector B, we ap-
ply the operator ∇× to expression (1c):

∇× (∇×B)− 1

𝑐2
∇× [∇× (v × 𝐸)]−

− 1

𝑐2
𝜕

𝜕𝑡
(∇×E) +

1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)] = 0. (26)

In view for (4), (1a), and (1b), we rewrite (26) as

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)] +

+
1

𝑐2
∇× [∇× (v ×E)] = 0. (27)

Since ∇×[∇×(v×E)] = −∇2(v×E)+∇[∇ (v×E)],
we have

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)]−

− 1

𝑐2
∇2(v ×E) +

1

𝑐2
∇[∇ (v ×E)] = 0. (28)

Using (5), we get

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B]−

− 1

𝑐2
∇2(v ×E) +

1

𝑐2
∇[∇ (v ×E)] = 0. (29)

Consider the term ∇[∇ (v ×E)] in (29). In accor-
dance with (6), ∇ (v × E) = 2ΩE − v (∇ × E) or,
with (1a), ∇ (v ×E) = 2ΩE+ (𝜕/𝜕𝑡)(vB). Then

∇[∇ (v ×E)] = 2∇(ΩE) +
𝜕

𝜕𝑡
∇(vB) (30)

or, taking (7) into account,

∇[∇ (v ×E)] = 2∇(ΩE) +
𝜕

𝜕𝑡

[︁
(v∇)B−Ω×B] +

+
𝜕

𝜕𝑡
[v × (∇×B)

]︁
. (31)

With the help of (1c), we find

∇[∇ (v ×E)] = 2∇(ΩE) +
𝜕

𝜕𝑡
[(v∇)B−Ω×B] +

+v × 1

𝑐2
𝜕2E

𝜕𝑡2
. (32)

Substituting (32) into (29), we obtain

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] +

+
2

𝑐2
∇(ΩE)− 1

𝑐2

[︂
∇2(v ×E)− v × 1

𝑐2
𝜕2E

𝜕𝑡2

]︂
= 0.

(33)

Consider the last term in (33). In accordance with
(17), ∇2(v ×E) = v × (∇2E) + 2∇(ΩE). Hence,

∇2(v ×E)− v × 1

𝑐2
𝜕2E

𝜕𝑡2
=

= v ×
(︂
∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2

)︂
+ 2∇(ΩE). (34)

It is clear that, to the first order in Ω,

v ×
(︂
∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2

)︂
= 0. (35)

So, expression (34) may be rewritten as

∇2(v ×E)− v × 1

𝑐2
𝜕2E

𝜕𝑡2
= 2∇(ΩE). (36)

By inserting (36) into (33), we obtain the desired
wave equation for the vector B:

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] = 0. (37)

3.3. Result of Section 3

According to (25) and (37), the first system of wave
equations for the electromagnetic field vectors E and
B in a rotating frame of reference has the following
form:

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] = 0.

(38)

4. Second System of Wave
Equations for the Vectors E and B
in a Rotating Frame of Reference

In this section, we are going to obtain the second
system of wave equations for the electromagnetic field
vectors E and B, which will correspond to the system
of Maxwell’s equations (2). The first, second, third,
and fourth equations of the system will be mentioned
in the text as (2a), (2b), (2c), and (2d), respectively.
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4.1. Equation for the vector 𝐸

To derive the wave equation for the vector E, we ap-
ply the operator ∇× to expression (2a):

∇× (∇×E) +
𝜕

𝜕𝑡
(∇×B)+

+
1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×E)] = 0. (39)

Taking (2c) and (4) into consideration, we rewrite
(39) in the form

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡

(︂
v × 𝜕B

𝜕𝑡

)︂
−

− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×E)]−∇(∇E) = 0 (40)

or, using (2a),

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×E)+

+v × (∇×E)]−∇(∇E) = 0. (41)

In view of (5), we have

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E−

−v × (∇×E)]−∇(∇E) = 0. (42)

Consider the term ∇(∇E) in (42). According to
(2d), ∇E = ∇ (v × B), where, taking (6) into ac-
count,

∇ (v ×B) = 2ΩB− v (∇×B). (43)

With the help of (2c), we find ∇ (v × B) = 2ΩB−
− (1/𝑐2)(𝜕/𝜕𝑡)(vE). Hence,

∇(∇E) = 2∇(ΩB)− 1

𝑐2
𝜕

𝜕𝑡
∇(vE). (44)

Consider the term ∇(vE) in (44). In accordance with
(7),

∇(vE) = (v∇)E−Ω×E+ v × (∇×E). (45)

Then

∇(∇E) = 2∇(ΩB)−

− 1

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E+ v × (∇×E)]. (46)

Substituting (46) into (42), we obtain the desired
wave equation for the vector E:

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0. (47)

4.2. Equation for the vector 𝐵

To derive the wave equation for the vector B, we ap-
ply the operator ∇× to expression (2c):

∇× (∇×B)− 1

𝑐2
𝜕

𝜕𝑡
(∇×E)+

+
1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)] = 0. (48)

Taking (2a) and (4) into account, we rewrite (48)
in the form

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡

(︂
v × 1

𝑐2
𝜕E

𝜕𝑡

)︂
−

− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)]−∇(∇B) = 0 (49)

or, using (2c),

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
− 1

𝑐2
𝜕

𝜕𝑡
[∇× (v ×B)+

+v × (∇×B)]−∇(∇B) = 0. (50)

Consider the term ∇× (v×B) in (50). According to
(5), ∇× (v ×B) = −(v∇)B+Ω×B. Thus,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

1

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B−

−v × (∇×B)]−∇(∇B) = 0. (51)

Consider the term ∇(∇B) in (51). In accordance
with (2b),

∇B = −(1/𝑐2)∇ (v ×E). (52)

Taking (6) into account, we have

∇ (v ×E) = 2ΩE− v (∇×E) (53)

or, using (2a),

∇ (v ×E) = 2ΩE+
𝜕

𝜕𝑡
(vB). (54)

So,

∇B = − 2

𝑐2
ΩE− 1

𝑐2
𝜕

𝜕𝑡
(vB). (55)

Hence,

∇(∇B) = − 2

𝑐2
∇(ΩE)− 1

𝑐2
𝜕

𝜕𝑡
∇(vB). (56)

Consider the term ∇(vB) in (56). In accordance
with (7),
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∇(vB) = (v∇)B−Ω×B+ v × (∇×B). (57)

Then
∇(∇B) = − 2

𝑐2
∇(ΩE)−

− 1

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B+ v × (∇×B)]. (58)

Substituting (58) into (51), we obtain the desired
wave equation for the vector B:

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] +

+
2

𝑐2
∇(ΩE) = 0. (59)

4.3. Result of Section 4

According to (47) and (59), the second system of wave
equations for the electromagnetic field vectors E and
B in a rotating frame of reference has the following
form:
∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−

−Ω×B] +
2

𝑐2
∇(ΩE) = 0.

(60)

5. Two Systems of Wave Equations
for the Vectors E and B in a Rotating Frame
of Reference: a Comparative Analysis

The first system of wave equations for the electro-
magnetic field vectors E and B [which was derived
from system of Maxwell’s equations (1)] has the form

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] = 0.

(61)

The second system of wave equations [which was
obtained from system of Maxwell’s equations (2)] is

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E−Ω×E]−

− 2∇(ΩB) = 0,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B−Ω×B] +

+
2

𝑐2
∇(ΩE) = 0.

(62)

Expressions (61) and (62) represent the two differ-
ent systems of wave equations for the vectors E and
B in a uniformly rotating frame of reference. From
the analysis of these systems, it follows:

1) the factor of rotation causes [via the quantities
Ω × E, Ω × B, ∇(ΩE), ∇(ΩB)] the arising of the
longitudinal E- and B-components of electromagnetic
waves, which interact with the transversal ones (this
agrees with the statement of work [6]);

2) the wave equations for the vector E in both sys-
tems have the same form (this confirms the statement
of work [3]), while the equations for the vector B have
different form;

3) the structure of equations for the vectors E and
B in the first system is asymmetric (with respect to
Ω). Therefore, the propagation of the E- and B-com-
ponents of electromagnetic waves in a rotating frame
of reference will be governed by qualitatively different
laws;

4) the structure of the wave equations in the second
system is symmetric. Hence, the propagation of the
indicated field components will be governed by similar
laws.

The systems of wave equations (61) and (62) may
serve as a theoretical basis for the detailed study of
the propagation of electromagnetic waves in a rotat-
ing frame of reference. But, before the beginning of
such study, the researcher must first solve the problem
of choosing between the mentioned systems (because
the final results will be different).

6. Simplified Wave Equations
for the Vectors E and B in a Rotating
Frame of Reference

As we can see from two above systems of wave equa-
tions (61) and (62), the factor of rotation causes the
arising of the longitudinal E- and B-components of
electromagnetic waves, which interact with the trans-
versal ones. To find the analytic solutions of such sys-
tems of equations is a difficult task (see, e.g., cal-
culations in work [6]). But if it is acceptable to ig-
nore these longitudinal components to make the wave
equations more simple for analysis, then the quanti-
ties Ω × E, Ω × B, ∇(ΩE), ∇(ΩB) in (61) and
(62) may be dropped. As a result, both systems of
wave equations are transformed into two identical sets
of separate (independent of one another) wave equa-
tions for the vector E and the vector B of a simplified
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form:
∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)E] = 0,

∇2B− 1

𝑐2
𝜕2B

𝜕𝑡2
+

2

𝑐2
𝜕

𝜕𝑡
[(v∇)B] = 0.

(63)

The equation for the vector E in (63) and its analytic
solution are well known in the theory of ring laser gyro
(see, e.g., works [7, 8]). It was obtained in the men-
tioned works by approximate methods (some terms
have been neglected in the process of calculation) on
the base of the system of Maxwell’s equations (1).

From the analysis of the simplified wave equations
(63), it follows that the propagation of the E- and
B-components of electromagnetic waves in a rotating
frame of reference will be governed by identical laws.

Thus, in the approximation of transversal electro-
magnetic waves, the distinction between two above
systems of wave equations (61) and (62) vanishes:
both of them take the form (63).

7. Conclusions
On the base of two systems of Maxwell’s equations
(1) and (2) for the electromagnetic field vectors E and
B in a uniformly rotating frame of reference, which
were first proposed in works [1] and [2], respectively,
two corresponding systems of wave equations (61) and
(62) have been derived (to the first order in Ω). From
the analysis of these systems, it follows:

1) the factor of rotation causes the arising of the
longitudinal E- and B-components of electromagnetic
waves, which interact with the transversal ones;

2) the structure of the wave equations for the vec-
tors E and B in system (61) is asymmetric. Therefore,
the propagation of the E- and B-components of elec-
tromagnetic waves in a rotating frame of reference
will be governed by qualitatively different laws;

3) the structure of the wave equations for the vec-
tors E and B in system (62) is symmetric. Hence, the
propagation of the indicated field components will be
governed by similar laws.

It is also shown that, in the approximation of
transversal electromagnetic waves, the distinction be-
tween two systems of wave equations (61) and (62)
vanishes: both are transformed into the two identi-
cal sets of separate (independent of one another) wave
equations for the vector E and vector B of the simpler
(and already known from the literature) form (63).

The author is grateful to the anonymous referee for
the helpful questions and recommendations.
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Є.А.Бондаренко

ДВI СИСТЕМИ РIВНЯНЬ МАКСВЕЛА ТА ДВI
ВIДПОВIДНI СИСТЕМИ ХВИЛЬОВИХ РIВНЯНЬ
ДЛЯ ВЕКТОРIВ ЕЛЕКТРОМАГНIТНОГО ПОЛЯ
E I B В ОБЕРТОВIЙ СИСТЕМI ВIДЛIКУ:
ЛIНIЙНЕ НАБЛИЖЕННЯ

Р е з ю м е

На основi двох систем рiвнянь Максвела для векторiв еле-
ктромагнiтного поля E i B в рiвномiрно обертовiй системi
вiдлiку, що були вперше запропонованi в працях [L.I. Schi-
ff, Proc. Natl. Acad. Sci. USA 25, 391 (1939)] та [W. Irvine,
Physica 30, 1160 (1964)], отримано двi вiдповiднi системи
хвильових рiвнянь (в першому порядку по Ω). З аналiзу
цих систем випливає: 1) фактор обертання зумовлює вини-
кнення поздовжнiх E- i B-компонентiв електромагнiтних
хвиль, що взаємодiють з їх поперечними компонентами; 2)
хвильовi рiвняння для вектора E для обох систем рiвнянь
мають однаковий вигляд, тодi як рiвняння для вектора B

мають рiзний вигляд; 3) структура хвильових рiвнянь для
векторiв E i B в першiй системi є асиметричною. Через це
поширення E- i B-компонентiв електромагнiтних хвиль в
обертовiй системi вiдлiку буде пiдпорядковуватись якiсно
рiзним законам; 4) структура хвильових рiвнянь в другому
випадку є симетричною. Тому поширення вказаних компо-
нентiв хвиль буде пiдпорядковуватись схожим законам. У
статтi також показано, що у наближеннi поперечних еле-
ктромагнiтних хвиль – вiдмiннiсть мiж двома системами
хвильових рiвнянь для векторiв E i B зникає: обидвi систе-
ми перетворюються на два iдентичних набори окремих (не-
залежних одне вiд одного) хвильових рiвнянь для вектора
E та вектора B бiльш простої (i вже вiдомої з лiтератури)
форми.
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