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ON THE CONCENTRATION OF ADSORBED ATOMS

The dispersion law for elastic surface acoustic waves and the dependence of the surface acoustic
mode width on the concentration of adsorbed atoms have been found. The calculations are
carried out in the long-wave approximation for the interaction between the adatoms with regard
for image forces and the non-local elastic interaction between the adsorbed and matrix atoms.
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1. Introduction

The method of surface acoustic waves (SAWSs)
has been widely used recently to study the dynamic
parameters (dynamic conductivity, charge carrier mo-
bility, and concentration) of two-dimensional electron
layers in Al;_,Ga,As heterostructures [1-3], which
demonstrate piezoelectric properties. Nanoheterosys-
tems with strained GaAs/In;_,Ga,As/GaAs
[4], Cdy_;Zn,Te/CdTe/Cd;_,Zn,Te [5, 6], and
CdTe/HgTe [6] layers are characterized by both
non-uniform deformation and non-uniform piezo-
electric fields. An SAW generates an alternating
electric field and a dynamic deformation field. The
latter creates irregularities on the semiconductor
surface [7], which are responsible for the emergence
of regions with surface electron states at the semi-
conductor interface. Those regions are characterized
by different physical properties. They are separated
by an energy gap, the width of which is determined
by the irregularity height. The latter can depend on
both the concentration of adsorbed atoms and the
deformation potential magnitude [8]. Furthermore,
the interaction of the alternating electric field with
two-dimensional electrons [3] and the interaction of
the dynamic deformation field with adsorbed atoms
result in the renormalization of the SAW velocity
and damping.

The authors of work [9] studied the influence of in-
teraction between the surface elastic Rayleigh wave
and the electron-hole plasma in a two-dimensional
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semimetal (HgTe) — this interaction is driven by
two mechanisms: the deformation potential and the
piezoelectric effect — on the dispersion law and the
damping of Rayleigh waves. The influence of a struc-
turally distorted isotropic surface layer that was
grown up on the surface of isotropic solid on the
dispersion law and the reciprocal damping length of
Rayleigh waves was analyzed in work [10].

Since SAWs can be one of the sources that are re-
sponsible for long-range effects stimulating the for-
mation of nanoclusters beyond the laser-irradiated
region on the crystal surface [11], the researches of
the processes giving rise to the damping of surface
elastic acoustic waves on a single-crystalline sub-
strate surface with defects are challenging. The aim
of this work was to calculate the dispersion law and
the width of the surface elastic acoustic modes as
the functions of the concentration of adsorbed atoms
taking into account the non-local elastic interaction
of adatoms with the self-consistent quasi-Rayleigh
acoustic wave, as well as image forces.

2. Model of Adatom Interaction
with a Surface Acoustic Wave

Let a semiconductor surface coincide with the plane
z = 0 (the axis z is directed into the single crys-
tal depth). This surface is bombarded with a flux
of atoms obtained in the course of the molecular
beam epitaxy process. The adsorbed atoms are con-
sidered as defects on the surface (elastic surface in-
clusions). Owing to the deformation potential and the
local renormalization of surface energy, the adsorbed
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atoms and the surface elastic quasi-Rayleigh acous-
tic wave together non-uniformly deform the near-
surface layer of the thickness a (a is the lattice con-
stant along the axis z). In its turn, the arising self-
consistent non-uniform deformation, acting through
the deformation potential, redistributes the adsorbed
atoms over the surface, i.e. it induces an additional
deformation-diffusive flux of adatoms [12,13] The in-
fluence of adsorbed atoms is reduced to the change of
boundary conditions for the strain tensor o;; at the
surface z = 0.

The displacement vector of a point in the medium,
u(r,t), satisfies the equation [14]

0%u
ot?
The solution of this equation for the surface Rayleigh

wave propagating along the axis x is sought in the
form

=cZAu+ (¢ —cf) @ (divu). (1)
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where k7, = ¢* — ;"TQ; and A and B are the SAW
’ 1t

amplitudes.

The direction = on the crystal surface is determined
by elastic anisotropy. On an isotropic surface, it is de-
termined either by an external action that induces the
elastic anisotropy or owing to a spontaneous symme-
try breaking in the defect-deformation system, simi-
larly to work [15].

The strain ¢ at the semiconductor surface (z = 0)
is defined in terms of components of the displacement
vector, by using the relation

ou,  w?

ou w . .
x =2 A 1qr—zwt. 4
oz 0z ¢} ¢ )

e(xz,t) =

The spatially non-uniform surface strain e(z,t) stim-
ulates an inhomogeneous redistribution of adatoms
Nd(.’lf, t)l

Na(z,t) = Ngo + Na1(,t) = Nao + Nap(q)e’9® ",
(5)

where Nyo is the spatially homogeneous compo-

nent, and Ny1(q) the periodic perturbation amplitude

(N4g1 < Ngo). In the non-local Hooke’s law approx-
imation [12, 16, 17], the energy of interaction of an
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adsorbed atom with atoms of the matrix, Wy,, is de-
termined as follows:

W () = —/A(p;' ~ o) (e )AQy da, (6)

where A is the operator of elastic moduli [16], and
AQg a variation of the crystal volume induced by one
adsorbed atom.

Let us introduce the variable 7 = 2’ —x and expand
g(z') in a Taylor series in 7:

Wik(w) = = [ A(rl)e(o +7) 027 =

—— [3im e+ D T) acaar -
0%e(x)
Ox?

where Kq = [ A(|7])dr = K is the elastic modulus,
an

= —KdE(l')AQd - Kd l?iAQd, (7)

d
2o f)\(T)T2dT
d 2 [ X(|7])dr

is the average squared characteristic distance of the
interaction of an adatom with atoms of the matrix.

The elastic fields created by adsorbed atoms shift
atoms in vicinities of other adatoms and create forces
acting on them, which results in their elastic inter-
action. The energy of this interaction decreases, by
following the power law. This energy is rather sub-
stantial if adatoms strongly deform the crystal lat-
tice. In isotropic objects, the energy of elastic interac-
tion between defects equals zero. Along with the elas-
tic interaction of adsorbed atoms, which decreases,
by following the power law, as the distance between
the adatoms grows, there exists an interaction that
smoothly changes at distances of an order of the
crystal size. This interaction is associated with image
forces applied to the crystal surface. The correspond-
ing energy Wégt of interaction between an adsorbed
atom located at 7/ and other adatoms distributed
with the concentration Ny(z) is practically indepen-
dent of the adatom position 7’ and can be determined,
by using the formula [17]

2 1-2

Wint __z_- = 2
dd (1‘) 3 K(l _ u)a s

Nd(x)a (8)

where v is Poisson’s ratio, and 6, = K AQg is the
surface deformation potential.
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The elastic field that arises in the matrix implanted
with adatoms acts on the adatom with the force

O(WikEi(z) +Witt(z)) 2 1-2v
F=- == X
oz 3K(1—-v)a
ONg(x) Oe(x,t) D3e(x,t)
2 2
x 03 E + 0 o + 0513, A (9)

Besides the ordinary diffusion flux e

this force induces an additional deformation flux of

adatoms. The latter results from the strain, w

and defect concentration, m&(x)’ gradients.

The analysis of formula (9) demonstrates that the

concentration gradient (036%#50)) creates a compo-

(_Dd 8Nd(x)>’

)

nent of the deformation flux. Unlike the ordinary dif-
fusion flux, this component is directed in the direc-
tion of the adatom concentration growth (the first
term). In addition, the adatoms that are stretching
centers (AQy; > 0) move into a region that un-
dergoes a relative stretching, whereas the adatoms
that are squeezing centers (AQy; < 0) move into a
region undergoing a relative squeezing (the second
term). Under the action of force (9), the adatoms in
the elastic field obtain the velocity

72 1—2v DdﬂfaNd(x)
C 3K(1—-v)kgTa Oz

v=pkF

Dg0, Oe(x,t)
kBT or

Ddﬁs 2 835(93,15)
kBT da 8x3 ’

(10)

where D, is the diffusion coefficient for the adatom, T
the temperature, kg the Boltzmann constant, and the
adatom mobility u is determined using the Einstein
relation.

In view of Eq. (10) and the continuity equation

8Nd('ra t)

divj=— TR

the flux of implanted adatoms equals

- 8Nd(x,t) Dd 95
] = Dd Oz + kBT Nd({E,t) X
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and the equation for the adatom concentration reads

6Nd(l’,t) Dd82Nd(I,f)

ot Ox?
D46, 0 9 (2 1-2v
" ksT O (Nd(x’t)ax (3 R —pjaelal@ )+

2
+ ez, t) + 13, 82&?”)).

The first term in Eq. (12) describes the ordinary
gradient-driven concentration diffusion, whereas the
second one is a qualitatively new diffusion effect, “the
flux of deformation drawing-in”. The latter is gov-
erned by both image forces and the deformation gra-
dient [18], on the one hand, and the non-local interac-
tion of adatoms with surface atoms [19], on the other
hand.

In the linear approximation with regard for the con-
ditions Ng1 < Ngo and formula (5), Eq. (12) looks

like
, 2 1-2v 62
(—zw + Dy (1 — = _d Ndo) q2) Nai(q) =
(13)

(12)

" 3K(1—v)aksT
_ Dgby4

- N, 2(1 = 12¢2).
T a0e(@)q™ (1 —1597)

This equation is used to obtain an expression for
the amplitude of the surface adatom concentration
Nai(q).

The spatially non-uniform distribution of adatoms
modulates the surface energy

OF

F(z) = Fy+ —— Ngi(x),

(@) = Fo + 3 N a1(x)
which results in the appearance of the lateral mechan-
ical stress

OF (N(x))
or
which is compensated by the shift stress in the
medium [14].
The boundary condition reflects a balance of lateral
stresses:

Ouy . ou,
F\ oz Ox
where 1 is the shear modulus of the medium. The co-

efficient -2£- is considered to be a given phenomeno-
) ONa1
logical parameter.

O.(EZ -

() 2

8Nd1 635 ’ (14)
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Furthermore, owing to the interaction between the
adatoms and the semiconductor atoms, there arises a
normal mechanical stress on the semiconductor sur-
face, so that the boundary condition looks like

ou, Ouy, _ 0aNg ()
(82 +(1-28) 5‘:5)

o et
where a is the crystal lattice constant at the semi-
conductor surface, 3 = c? /ch, and p is the crystal
density.

; (15)

3. Dispersion Equation
and the Width of the Surface Elastic Acoustic
Mode Interacting with Adsorbed Atoms

In order to derive the dispersion equation, let us sub-
stitute Eq. (13) into Egs. (14) and (15) with regard
for Egs. (2), (3), (4), and (5). As a result, we obtain
a system of two linear equations for the amplitudes
A and B. The condition that its solutions must be
non-trivial gives rise to the following dispersion equa-
tion for the surface acoustic wave interacting with ad-
sorbed atoms:

2 w2 Gdeo
(% + kD2 — 4¢P kiky = — ==
¢ t B ¢t kgTpc?
D 2
X d? 5 X
—iw + Dy ( 3K(1 V)a kBTNdO>

F 0

x (1—134%) <q2kt a?vdl +(q° + k?)ZZ) (16)
The left-hand side of this equation coincides with
the Rayleigh determinant, with the zero value of the
latter determining the dispersion law for a surface
Rayleigh acoustic wave in the absence of adsorbed
atoms [14]. The right-hand side of Eq. (16) renormal-
izes the dispersion equation for the Rayleigh acous-
tic wave owing to the force action (~64) of adsorbed
atoms that deform the near-surface layer of the crys-
tal lattice. Substituting w = ¢;¢€ into Eq. (16), we
obtain

: 26%0,N,
2-¢%)? - 1-—¢2 _ G g 257ValNdo
(2-¢€%) € E e=-
Daq (Dd ( 3 ﬁ T NdO) q+ zctg)

X

(Dd ( K%;2y)a kBTNdO)) q2 + Ct2£2
0
< (1= B¢) (o T= 8+ 2 ) 21),
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8N » (17)

Expression (17) has the real and imaginary parts,
which ultimately determine a correction to the dis-
persion law for the Rayleigh wave and its damping,
respectively. The presence of the factor ¢ in the nu-
merator of Eq. (17) makes it possible to solve this
equations in the long-wave region (ga < 1) by the
iteration procedure.

Let us designate the left-hand side of Eq. (17) as
a function f(§) and expand it in the Taylor series in
a vicinity of the point &y, which is a solution of the
equation f(&) = 0:

f(o +08) =~ f(&o) + f(§0)0¢.

Then the correction §¢ is determined by the right-
hand side of Eq. (17), in which the substitution £ —
— & was made:

(18)

1 263 604Nao
f'(&) ksTpc?

1-2v

% D ( B § K(1—v)a kBTNdO)
(Pa (1 - 3wt kBTNdO)) ¢ + &

OF 0
< (1~ i3¢?) (q\/l ~ G+ - D) -

1 2Ct§80de0

o€ = —

X

_Zf'(ﬁo) ksTpc}
X qu X
(Da (1 - 2 2 M) @ + 3
OF 0
<18 (01 -G+ - Dt} (9)

A numerical analysis testifies that f'(&) > 0 in the
whole domain of the variable &g.

Extracting the real and imaginary parts of Eq. (19)
and taking the relation w = c;q€y+crqd€ into account,
we obtain the dispersion law w’(g) for the surface elas-
tic acoustic wave in the form

1 2£04Nqo
f'(&) ksTpct

1-20 63
Dia ( - *K(l v)a kBTNdO)
X
(Dd ( 3 K}l 25)(1 kBTNd())) ¢ + i &g

oF 0
<=8 (/1 - Gy + 2 - D32

w'(q) = ¢iqéo <1 -

X




R.M. Peleshchak, M.Ya. Seneta

and the following expression for its width w’(q),
which is associated with the interaction between
the adsorbed atoms and the self-consistent quasi-
Rayleigh wave:

1 2&304Naq0
w// — _c2 “507a-Yab
@) =~ Fe) hnTpe?
2
X DdZQ 3 X
(Pa (1= 3t i Vo)) a2+ 265
oF

04
1—12¢ 1—8—— +(2-6)==). 21
<=8 (/1= G+ -5 @
The obtained formulas make allowance for both the
non-local elastic interaction of an implanted impurity

with the matrix atoms [16] and image forces [17].

4. Dispersion Law and the Width
of the Surface Elastic Acoustic Mode.
Numerical Calculation and Analysis

of Their Dependences on the Concentration
of Adsorbed Atoms

The dispersion law w'(q) = Re w(q) for the sur-
face elastic acoustic wave and the width w’(q) =
= Im w(q) of the acoustic mode were calculated
for the GaAs (001) semiconductor with the surface
concentrations of adsorbed atoms Ng = 3 x 102
and 3 x 10'® cm~2. The values of other parame-
ters were as follows: Iz = 2.9 nm, a = 0.565 nm,
e = 4400 m/s, ¢; = 2475 m/s, p = 5320 kg/m?,
Dy =5x10"2cm?/s, 03 = 10eV, 0F/ONg = 0.1eV,

@'\,
8 10115-1
T1'1"15
Ty .
rl'l"I
Taor
2 o
0.005 0010 0.015 0.020 0025 0.030,
g,A™
Fig. 1. Dispersion law and the phonon mode width for

the surface elastic acoustic wave interacting with adsorbed
atoms. Image forces and the non-local character of the interac-
tion between the adsorbed atom and the matrix atoms ({4 # 0)
are taken into consideration
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and T' = 100 K [13]. The value of characteristic length
of the interaction between an adatom and lattice
atoms, [y, was determined from the minimum condi-
tion for the free energy of the crystal with adsorbed
atoms [12].

Figure 1 illustrates the results of calculations car-
ried out for the dispersion law w’(g) of the surface
elastic acoustic mode (curves I and 2) and for the
dependence w”(q) of its width on the absolute value
of the wave vector ¢ (curves 7', 1 and 2, 2"). The
latter dependence arises due to the account for the
interaction between the adsorbed atoms and the self-
consistent quasi-Rayleigh wave, and it was calculated
making allowance for image forces. The calculations
were performed for two indicated values of the ad-
sorbed atom concentration V.

One can see that the dependences w'(q) and w”(q)
are non-linear in the interval 0 < ¢ < i If ¢ — 0,
the width of the surface acoustic mode w”(q) tends
to zero, whereas the dispersion curve w’(q) asymptot-
ically approaches the dispersion curve w(q) = ¢:&oq
for the surface Rayleigh wave. It has to be noted
that, at ¢ = i, the length of the surface acoustic
wave is identical to the characteristic length of the
interaction between an adatom and lattice atoms. As
one can see from Fig. 1, the width of the acoustic
phonon mode grows with the concentration of ad-
sorbed atoms. In particular, at ¢ = 0.012 A the
energy width for the surface acoustic mode hw'(q)
amounts approximately to I'aion = 8.9 peV, if the
adatom concentration Ngo = 3 x 102 cm~2, and to
Ty =55 peV, if Ngg = 3x10'3 cm~2. In the short-
wave interval for the surface elastic acoustic waves (at
q = 0.02 A), the energy widths at the same concen-
tration equal 16.6 and 66.7 peV, respectively. In addi-
tion, at ¢ = 0.02 A, the energy width I'o/on = 28 eV,
if Ngg = 3 x 10'2 em™2, and I'y/qr = 100 peV, if
Ny =3 x 10'3 em 2.

The analysis of our calculation results obtained
for the dispersion law w’(q) and the phonon mode
width T';; (4,5 = 1,2/, ...) of the surface elastic acous-
tic wave demonstrates (see Figs. 1 and 2) that the
phonon mode width I';; grows in the absence of
a non-local interaction (Fig. 2). Furthermore, if the
non-local interaction is not taken into consideration
(Ig = 0), the phase velocity vy = @ of propaga-
tion of a quasi-Rayleigh wave is higher in compari-
son with the case where this interaction is taken into
account.
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From the boundary conditions (14) and (15) with
regard for Egs. (2) and (3), as well as the orthogo-
nality conditions for the displacement vectors u,, and
Uy, (n,m =x,y,z) [20]

x‘,_‘

1

1 *
= ul(x, z)uy(z, 2)dz = 1, (22)

(e}

we obtain the expressions for the amplitudes |A| and
|B|, which enter the formula for the height of an ir-
regularity created by a quasi-Rayleigh wave and ad-
sorbed atoms on the surface z = 0. The irregularity
height ¢ is defined as the sum of the normal compo-
nents of the vectors of displacements for longitudinal
(u') and transverse (u') waves at the monocrystal
surface (z = 0):

¢ =ul(0) + u(0), (23)

where u! = k; |A|; u! = q|B|; k% is the depth of pen-
etration of an acoustic wave into the semiconductor,

k 1 k
— g3 /(M 2 M
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—k?+(1-28)> + M | 1

x By T el Tk /R
¢ (kR +(1-28)° + M)?+ 22
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(24)
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where
w? 62 D3Ny  ¢?

M=-—"d d 1—12¢° 26
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'3 92 DN, 2
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Fig. 2. The same as in Fig. 1, but neglecting the non-local
interaction between the adsorbed atom and the matrix atoms
(la=0)

Those amplitudes enter the formula for the height of
an irregularity created by a quasi-Rayleigh wave and
adsorbed atoms on the surface z = 0. The irregularity
height ¢ is determined as the sum of the normal com-
ponents of the displacement vectors for longitudinal
(u!) and transverse (u‘) waves at the single-crystal
surface (z = 0):

¢ = u3(0) + ut(0), (28)

where vl = ki |A|, v} = ¢q|B|, and kil is the pen-
etration depth of an acoustic wave into the semi-
conductor.

5. Conclusions

1. A theory describing the dispersion of surface elastic
acoustic waves and its dependence on the concentra-
tion of adsorbed atoms and the deformation potential
has been developed. The theory involves the non-local
elastic interaction between the adsorbed atoms and
the matrix atoms, as well as image forces.

2. The energy width of the surface acoustic mode is
found to be proportional to the product of the surface
concentration of adsorbed atoms and the deformation
potential of an adsorbed atom (I';; ~ Ngobq).

3. The non-local elastic interaction between the ad-
sorbed atom and the matrix atoms is found to result
in a reduction of the energy width of the surface elas-
tic acoustic mode. In the short-wave interval of the
acoustic mode, the non-local elastic interaction af-
fects more strongly the variation of the energy width
of the surface acoustic elastic mode.
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4. Provided an identical concentration of adsorbed
atoms in the near-surface region of the crystal lat-
tice, the width of the surface acoustic mode is found
to be larger, if those atoms are interstitial impurities
in comparison with the case where they are substitu-
tional impurities. This difference is associated with
the fact that the surface deformation potential of
adsorbed atoms in the former case (interstitial im-
purities), 951) = Ka?, is larger than in the case
where the adsorbed atoms are substitutional impu-
rities, ) = 27(R2 — R3), where R, and Ry are the
covalent-ionic radii of the adsorbed and matrix atoms,
respectively.
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3AKOH JUCIIEPCII TA IIINPUHA
IIOBEPXHEBOI AKYCTUYHOI MO
B BAJIEXKHOCTI BIJI KOHIIEHTPAIIIT
AJICOPBOBAHIX ATOMIB

Peszmowme

YV Mexkax MOoesi B3aeMOZil a/IaTOMIB 3 CaMOy3TO/[?KEHOO aKy-
CTUYHOIO KBa3ipesleeBChKOI0 XBHJIEIO B JIOBIOXBUJILOBOMY Ha-
OJIM>KEeHH] 3 ypaxXyBaHHSIM CUJI J3€PKAJBHOIO 300parkKeHHsT Ta
HEJIOKAJIbHOI NPY2KHOI B3a€MO/i1l aJcopOOBAHOIO aToMa 3 aTo-
MaM# MaTpHIl 3HAHIEHO 3aKOH JHUCIEpPCil MOBEPXHEBUX IIPY-
JKHUX aKyCTUYHHMX XBWJIb 1 IIMPUHY IIOBEPXHEBOI aKyCTHYIHOI
MO/IY B 3aJIE?KHOCTI BiJi KOHIIeHTpAaIlil a/1cOpOOBaHUX aTOMIB.
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