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INTRODUCING THE GENERALIZED
ABSORPTANCE FOR A GAS WITH BOUND
ATOMIC STATESPACS 42.50.-p

The quantum optical theory of absorption/reemission properties of a system of interacting
atoms is discussed. The calculation method of the absorption coefficient is developed with regard
for the quantization of field, thermal atomic motion, Doppler effect, and the model interaction
between atoms. It is shown that the formulation of the absorption coefficient in the quantum
optical context is based on the commutation relation between the operators of electric field
and intensity. The revealed non-linear dependence of the absorption coefficient on the atomic
density, even in the case of negligible binary interaction, can be referred to a certain kind of
quantum-optic collective effects.
K e yw o r d s: absorption coefficient, quantum optics, Doppler effect, commutation relation,
many-body interaction.

1. Introduction
In this paper, the definition and methodology of nu-
merical evaluation of the absorption coefficient is pre-
sented for a system of interacting two-level atoms
coupled with a quantized electromagnetic field. The
presented formalism is based on a model Hamilto-
nian. In comparison with other models (e.g., used in
such works as [1]–[4]), we explicitly take the atomic
motion in space into consideration within the model
Hamiltonian, and the induced Doppler effect is nat-
urally introduced into the corresponding averaging
procedure. The local absorptance is defined as the in-
tensity logarithm derivative with respect to the dis-
tance in a vicinity of the given spatial point and
the moment of time. The intensity is represented by
the averaged normally ordered product of the cre-
ation and annihilation operators of certain states of
the electromagnetic field. The averaging is performed
over all possible quantum states of the total system
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of the field and atoms. Approximating the model of
the system by the time-independent Hamiltonian, the
general expression for the intensity is expanded into
the series in terms of the commutation relations be-
tween the Hamiltonian and the intensity operator. In
comparison with the method of the impact theory,
the chronological order of events in the system is not
discussed here (compare, e.g., with [5]). Under cer-
tain deterministic assumptions for the system placed
into a perfect cavity, the formulation of the Maxwell–
Bloch equations (or the so-called optical Bloch equa-
tions, see [6]) describing the evolution of the system in
terms of one-particle population/polarization matrix
elements is not discussed.

As shown in the second part of this research, the
assumption about some initial thermodynamic equi-
librium corresponding to the average over a statis-
tical ensemble amends the properties of the system
as a whole, which is of certain interest. Namely, the
ensemble-averaged value of a physical quantity can
be found complex, as it will be shown elsewhere. In
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comparison with the commonly used introduction
of an explicit phenomenological non-Hermitian item
(see, e.g., [7]) into the model Hamiltonian describ-
ing the decay phenomena and therefore defining a fi-
nite absorption line width in the dipole approxima-
tion, the source of non-ideality is expected here from
the model statistical distribution of atomic states. In
the used assumptions, the decay of atomic states can
be implicitly included in the dynamics of the sys-
tem. Furthermore, some non-ideality is imposed by
the defined averaging procedure (see the discussion,
e.g., in [8] and [9]). In other words, the introduction of
the concept of measuring the intensity “takes off” the
thermodynamic isolation (e.g., the particle conserva-
tion) and, generally speaking, requires the consider-
ation of certain dissipative processes. Technically, we
avoid the explicit formulation of a damping operator
in our discussion. The detailed description of the used
model is provided below.

Furthermore, the model introduced here also in-
volves the collective interaction between atoms in-
duced by the mediatorial electromagnetic field. The
proposed method potentially allows one to account
for collective level shifts and the line broadening aris-
ing from the photon exchange between atoms and be-
ing observed experimentally ([10]–[15]). The theory
can be useful in the applications to many-body quan-
tum science.

2. Model of the System

Assume that the system of 𝑁 atoms occupies the vol-
ume 𝑉 bounded by optically transparent and ther-
mally insulated (e.g., up to the near-infrared region)
walls. Suppose also that the electromagnetic field
generated within a certain period of time “reaches”
the space of volume 𝑉el (which includes 𝑉 ). Atoms
that fill 𝑉 are able to interact with the modes
of this electromagnetic field. The frequencies of the
modes are distributed near the resonant frequency
𝜔0 of a single atomic (or molecular) transition be-
tween only two levels 𝑏 (ground state) and 𝑎 (excited
state). The modes of the electromagnetic field cor-
respond to Fock states (or the number states with
a well-defined number of quanta) formally obtained
through the standard procedure of quantization in
the volume 𝑉el. Moreover, the atoms interacting on
relatively short distances (e.g., of the order of the
van der Waals radius) by means of a potential 𝑈 are

able to absorb or emit quanta of the electromagnetic
field in some high-frequency domain (in the optical re-
gion). The interaction of the field with an atom is de-
termined through the scalar potential formed by the
scalar (inner) product of the atomic dipole moment
(more carefully, the dipole matrix) and the opera-
tor of electric field. The translational motion of each
atom has three degrees of freedom and is confined by
rigid walls (forming the volume 𝑉 ). Therefore, the in-
finitesimal change of the state function of the system
during the infinitesimal time intervals is described by
the following Hamiltonian:

ℋ̂ =

𝑁∑︁
𝑖=1

⎛⎝p̂2
𝑖

2𝑀𝑖
+ ℋ̂rel

𝑖 +

𝑁∑︁
𝑗=1;𝑖<𝑗

𝑈𝑖𝑗 − d̂𝑖 ·E(r𝑖)

⎞⎠+ℋ̂𝐹. (1)

Here, the first two terms describe the spatial “move-
ment” of 𝑁 atoms with the momenta p̂𝑖 and intrinsic
energies ℋ̂rel

𝑖 (for 𝑖 = 1, ..., 𝑁). 𝑀𝑖 denotes the 𝑖-th
atomic mass. The third term (𝑈𝑖𝑗 ≡ 𝑈 (𝑟𝑖𝑗 , 𝛼𝑖, 𝛼𝑗))
gives the potential energy of all pairs of atoms de-
pending on the interatomic distances 𝑟𝑖𝑗 ≡ |r𝑖𝑗 | =
= |r𝑖 − r𝑗 | and the internal atomic states 𝛼𝑖, 𝛼𝑗 . The
fourth term is the energy of interaction between the
atoms and the electromagnetic field E expressed by
the standard dipole-field coupling. Here, in the co-
ordinate representation, the dipole moment operator
for the 𝑖-th atom is defined as d̂𝑖 =

∑︀Val
𝑣=1

(︀
−𝑒r̂reliv

)︀
taking all the Val valent (unpaired) electrons into ac-
count, 𝑒 is the absolute value of electron charge, r̂reliv is
the position of the 𝑣-th valent electron relative to the
nucleus of 𝑖-th atom, and ℋ̂𝐹 represents the energy
of the free electromagnetic field in the volume 𝑉el.

If the bound states between any two atoms in the
system are taken into account, then, in the coordi-
nate representation, we expand the state if the sys-
tem in the basis vectors of the Hilbert space defined as
the product of the subspaces of the eigenvectors |r𝑖⟩
and |𝛼𝑖⟩, |r𝑑⟩ and |r𝑖𝑗⟩ and |𝛼𝑑, 𝛼

′
𝑑⟩ for 𝑖 = 1, ..., 𝑁

and 𝑑 = 1, ..., 𝐷. The eigenvectors from the subspaces
are, by definition, the solutions of the corresponding
stationary Schrödinger equations. Therefore, denot-
ing |𝜀, r, 𝛼⟩𝑖 ≡ |𝑖⟩ , it satisfies the eigenvalue equation
such as ℋ̂𝐴

𝑖 |𝑖⟩ = (𝜀𝑖 + ~𝜔𝛼𝑖) |𝑖⟩ , giving the sum of
translational kinetic and intrinsic energies for a free
atom indexed as the 𝑖-th one. Here, the quantum of
energy ~𝜔𝛼𝑖

equals the energy of a valent electron
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(electrons) on the energy level indexed by the symbol
𝛼𝑖, 𝑖 = 1, ..., 𝑁 .

The subspace of bound (weakly bound) two-atomic
states consists of such subspaces as |r𝑑⟩ defining the
translational motion of the center of masses for the
coupled 𝑖-th and 𝑗-th atoms, |r𝑖𝑗⟩ defining the motion
of atoms relative to the center of masses in a bound
state (such as rotation and vibration), and the state
of the valent electrons in the pair of atoms denoted
by |𝛼𝑑, 𝛼

′
𝑑⟩. Formally, symbolizing |r𝑑⟩ |r𝑖𝑗⟩ |𝛼𝑑, 𝛼

′
𝑑⟩

as the vector |𝑑⟩, we have
(︁
ℋ̂𝐴

𝑖 + ℋ̂𝐴
𝑗 + 𝑈𝑖𝑗

)︁
|𝑑⟩ =

= (𝜀𝑑 + 𝐸𝑑 + ~𝜔𝛼 + ~𝜔𝛼′) |𝑑⟩ giving the sum of the
translational 𝑝2

𝑑

2𝑀𝑑
, rotational and vibrational 𝐸𝑑, and

“intrinsic” electronic ~𝜔𝛼+~𝜔𝛼′ energies for a coupled
two-atomic system indexed by 𝑑.

As was noted above, the electromagnetic field can
be defined through the superposition of its modes de-
termined by the corresponding Fock states. Then the
total “free” field energy can be represented through
the sum of the corresponding quanta of energy: ℋ̂𝐹 =
=
∑︀

𝑞 ℋ̂𝐹
𝑞 , where the symbol 𝑞 denotes the mode of

the electromagnetic field with the propagation wave
vector k and the 𝑗-th polarization with 𝑗 = 1, 2 (see
details, e.g., in [16]). Accordingly, the Fock states de-
noted by |𝑛𝑞⟩ are the eigenvectors of the correspond-
ing operators ℋ̂𝐹

𝑞 |𝑛𝑞⟩ =
(︀
𝑛𝑞 +

1
2

)︀
~𝜔𝑞|𝑛𝑞⟩. Recall

that the state |𝑛𝑞⟩ determines the number of photons
𝑛 corresponding to the mode 𝑞.

Therefore, we can introduce the pure quantum
state of the system as the superposition

|Ψ⟩ =
∑︁
{ }

𝐶{ } (𝑡)

𝑁−2𝐷∏︁
𝑖ℓ=1

|𝑖ℓ⟩
𝐷∏︁

𝑑ℓ=1

|𝑑ℓ⟩
∏︁
𝑞

|𝑛𝑞⟩, (2)

where

𝑞 ≡ (k, 𝑗), and { } ≡ ℓ, {𝜀} , 𝐷, {𝛼} , {𝛼𝑑𝛼
′
𝑑} , {𝑛𝑞}.

The all possible permutations of the atoms between
the unbound and bound states are indexed by the
symbol ℓ. Note that the number of the Fock states
(photons) indexed by 𝑛𝑞 is not limited from above.

Let us define the following unit operator:

1̂ =
∑︁
{ }

𝑁−2𝐷∏︁
𝑖ℓ=1

𝐷∏︁
𝑑ℓ=1

∏︁
𝑞

|𝑛𝑞⟩|𝑑ℓ⟩|𝑖ℓ⟩⟨𝑖ℓ|⟨𝑑ℓ|⟨𝑛𝑞|. (3)

The corresponding representation of the initial
Hamiltonian can be derived, by multiplying each of

the terms in (1) by the unit operator 1̂ from the left-
and the right-hand sides. Then, assuming the normal-
ization and completeness of the defined subspaces, the
total Hamiltonian (1) in the introduced basis (2) can
be factorized in the following way:

ℋ̂ → ℋ̂
′𝐴 + ℋ̂𝐷 + ℋ̂𝐹 + ℋ̂

′𝐴𝐴 +

+ ℋ̂𝐴𝐷 + ℋ̂′𝐴𝐹 + ℋ̂𝐷𝐷 + ℋ̂𝐷𝐹 . (4)

By definition, ℋ̂′𝐴 ≡
∑︀

ℓ,𝐷

∑︀𝑁−2𝐷
𝑖ℓ=1 ℋ̂𝐴

𝑖ℓ
, where the

notation 𝐷 means the total number of bound states
for the given permutation ℓ. The maximum amount
of the coupled states is 𝑁/2 for an even number
of atoms, while the total number of available per-
mutations of the pair of indices without repeating
is 𝑁(𝑁 − 1)/2. ℋ̂𝐴

𝑖ℓ
≡ 𝑇𝑟𝑑ℓ,𝑞 1̂ℋ̂𝐴

𝑖 1̂. We have also
ℋ̂𝐷 ≡

∑︀
ℓ,𝐷

∑︀𝐷
𝑑ℓ=1 ℋ̂𝐴

𝑑ℓ
, where, by analogy, ℋ̂𝐴

𝑑ℓ
≡

≡ 𝑇𝑟𝑖ℓ,𝑞 1̂ℋ̂𝐴
𝑖 1̂. The symbol 𝑇𝑟𝑑ℓ,𝑞 means that only

the uncoupled (unbound) states of atoms held in
the summation over all the permutations {ℓ}, while
𝑇𝑟𝑖ℓ,𝑞 means that only the coupled (bound) states of
atoms held in the summation over all the permuta-
tions {ℓ}. We have also

ℋ̂′𝐴𝐹 ≡ 𝑇𝑟𝑑ℓ,𝑞 1̂ ℋ̂𝐴𝐹 1̂ =
∑︁
ℓ,𝐷

𝑁−2𝐷∑︁
𝑖ℓ=1

ℱ Ŝ𝑖ℓ · ℰ (r𝑖ℓ), (5)

where the notation ℱ imposes special additional
limitations on the terms under the sign of sum in
(5). Mainly, this introduces the corrections in accor-
dance with the laws of conservations (total momen-
tum and energy conservation during We have the
scattering of a photon on a single atom) and the rel-
ativistic Doppler effect influencing the resulting ab-
sorption or emission frequencies. Therefore, for non-
relativistic atomic velocities

√︀
2𝜀𝑖/𝑀𝑖 ≪ 𝑐, where 𝑐

equals the speed of light in vacuum, the following
restrictions on the acts of photon absorption or emis-
sion composing the recoil of a single atom should be
noted:

p𝑖 ± ~k = p′
𝑖, +(−) signforabsorption(emission);

𝜀𝑖 + ~𝜈𝑘 = 𝜀′𝑖 + ~𝜔rel
0

(︁
p𝑖, 𝑘

)︁
,

𝜔rel
0 ≃

(︃
1 +

𝑘 · p𝑖

𝑀𝑖 𝑐

)︃
𝜔0.

(6)

Here, �̂�·p𝑖

𝑀𝑖 𝑐
= −𝜐𝑖

𝑐 cos 𝜃𝑠, 𝑘 = k
|k| is the unit vector

directed along the wave vector k, and 𝜃𝑠 is the angle
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between the atomic velocity of the 𝑖-th atom 𝜐𝑖 and
the direction to the (here imaginable) source of the
photon at the point of absorption (see, e.g., [17]). By
analogy, we have

ℋ̂𝐷𝐹 ≡ 𝑇𝑟𝑖ℓ,𝑞 1̂ℋ̂𝐴𝐹 1̂ =
∑︁
ℓ,𝐷

𝐷∑︁
𝑑ℓ=1

ℱ Ŝ𝑑ℓ
· ℰ (r𝑑ℓ

) (7)

with the applied restriction of the laws of conserva-
tions and the Doppler frequency shift:

p𝑑 ± ~k = p′
𝑑, +(−) signforabsorption(emission);

𝜀𝑑 + 𝐸𝑑 + ~𝜈𝑘 = 𝜀′𝑑 + 𝐸′
𝑑 + ~𝜔rel

0

(︁
p𝑑, 𝑘

)︁
,

𝜔rel
0 ≃

(︃
1 +

𝑘 ·
(︀
p𝑑 + prel

𝑑

)︀
𝑀𝑖,𝑑 𝑐

)︃
𝜔0,

(8)

where, within the classical interpretation, prel
𝑑 means

the relative impulse (momentum) in the two-body
problem corresponding to the motion of the 𝑖-th atom
(molecule) relative to the center of masses of the 𝑑-th
complex.

In a similar manner, projecting the shot-range in-
teraction energy ℋ̂𝐴𝐴 onto the defined basis of states,
we can split the corresponding sum over all permu-
tations {ℓ} into the term “containing” only unbound
states, and corresponding to the interaction between
“free” and coupled atoms, and the interaction between
the pairs of bound atoms (in bound states). For ex-
ample,

ℋ̂′𝐴𝐴
≡
∑︁

ℓ,𝐷,𝑛𝑞

𝑁−2𝐷,𝑁−2𝐷∑︁
𝑖ℓ<𝑗ℓ

𝑛∑︁
𝑚=0

[︁̂︂𝐴𝐴𝑚 +𝐴𝑑𝑗.
]︁
, (9)

where 𝑛 = 2, ̂︂𝐴𝐴𝑚 = ℱ𝑈 ′
𝑚 (r𝑖ℓ𝑗ℓ , 𝑛𝑞) |𝑛𝑞 − 𝑚⟩⟨𝑛𝑞|.

Here, 𝑈 ′
𝑚 (r𝑖ℓ𝑗ℓ , 𝑛𝑞) is the operator consisting of the

products of matrix elements of the potential energy 𝑈
and projection operators on the unbound states from
the basis in (3). Then, by analogy, we can write the
short-range term for the atom-dimer, ℋ̂𝐴𝐷, and for
dimer-dimer, ℋ̂𝐷𝐷, interactions. But now, instead of
𝑈 ′

𝑚, we can use the notation �̂�
(𝑑)
𝑚 (r𝑖ℓ𝑑𝜍 , 𝑛𝑞) for the

first type of interaction and �̂�
(𝑑𝑑)
𝑚 (r𝑑ℓ𝑑𝜍

, 𝑛𝑞) for the
second type, accordingly. In addition, we have 𝑛 = 3
in the first case of atom-dimer coupling and 𝑛 = 4 in
the second case, r𝑖ℓ𝑑𝜍 is the distance between the 𝑖ℓ-
th atom and the center of masses of the 𝑑𝜍 -th pair of
atoms, and r𝑑ℓ𝑑𝜍

is the distance between the centers
of masses of the 𝑑ℓ-th and 𝑑𝜍 -th pairs of atoms.

In the case of the Hamiltonian independent of time,
the state function (2) can formally be represented in
the form

|Ψ⟩ (𝑡) = 𝑒−
𝑖
~ ℋ̂𝑡|Ψ⟩0, (10)

where |Ψ⟩0 stands for the value of the state function
at the initial moment of time.

Then, in accordance with the accepted model of a
device counting photons (see, e.g., [16] and [18]), the
local absorption coefficient is defined as follows:

𝛼tot ≈
𝛿

𝛿𝑧
ln
∑︁
Ψ

⟨Ψ|0ℐ̂𝜏𝜌Ψ|Ψ⟩0, (11)

where

ℐ̂𝜏 ≈ ℐ̂ +
𝑖

~
𝜏
[︁
ℋ̂, ℐ̂

]︁
+

1

2

(︂
𝑖

~
𝜏

)︂2 [︁
ℋ̂,
[︁
ℋ̂, ℐ̂

]︁]︁
,

and

ℐ̂ = ℰ+ℰ−,

with
ℰ+ (r) =

∑︁
𝑞

𝑒𝑞ℰ𝑞𝑒−𝑖k𝑞·r𝑎†𝑞,

and
ℰ− (r) =

∑︁
𝑞′

𝑒𝑞′ℰ𝑞′𝑒𝑖k𝑞′ ·r𝑎𝑞′ .

The statistical distribution over the pure states |Ψ⟩
of the system at the initial moment of time 𝑡 = 0 is
given by the operator 𝜌Ψ. It was assumed that the
optical pathway inside the sample is parallel to the
𝑍-axis. Therefore, 𝑟 = 𝑧. The phase factor in the

mode amplitude ℰ𝑞 =
(︁

~𝜈
2𝜀0𝑉el

)︁1/2
is neglected for sim-

plicity. Note that the electric field operator can be
represented as the sum of its constituents ℰ+ (r) and
ℰ− (r).

3. Calculation of the Commutators

We are interested in the calculation of such com-
mutators as

[︀
ℋ̂, ℐ̂

]︀
,
[︀
ℋ̂,
[︀
ℋ̂, ℐ̂

]︀]︀
, ... . Based on the

commutation relations for the boson field operators[︀
𝑎𝑞, 𝑎

†
𝑞′

]︀
= 𝛿𝑞 𝑞′ , we obtain the expression

[︁
ℋ̂′𝐴𝐹 , ℐ̂

]︁
=
∑︁
ℓ,𝐷

𝑁−2𝐷∑︁
𝑖ℓ=1

ℱ Ŝ𝑖ℓ ·
[︁
ℰ̂(r𝑖ℓ), ℐ̂ (r)

]︁
, (12)
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where[︁
ℰ̂ (r𝑖) , ℐ̂ (r)

]︁
=
∑︁
𝑞,𝑞

𝑒𝑞ℰ2
𝑞 (𝑒𝑞 · 𝑒𝑞) ℰ𝑞 ×

×
(︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖𝑎𝑞 −𝐴𝑑𝑗.

)︁
. (13)

Using the defined action of the photon creation
and annihilation operators on the Fock states such as
𝑎†𝑞′ |𝑛𝑞⟩ =

√
𝑛+ 1|𝑛𝑞 + 1⟩ and 𝑎𝑞′ |𝑛𝑞⟩ =

√
𝑛|𝑛𝑞 − 1⟩,

the following notations can be held in the Hilbert
space:

̂︂𝒜𝒜
𝑞

𝑚,𝑛𝑞
(r𝑖𝑗) = ℱ𝑈 ′

𝑚 (r𝑖𝑗 , 𝑛𝑞) |𝑛𝑞 −𝑚⟩⟨𝑛𝑞| −𝐴𝑑𝑗.,

(14)

̂︂𝒜𝒜
𝑞, 𝑞′,−
𝑚,𝑛𝑞

(r𝑖𝑗) =

= ℱ𝑈 ′
𝑚 (r𝑖𝑗 , 𝑛𝑞)

{︁√
𝑛𝑞|𝑛𝑞 −𝑚⟩⟨𝑛𝑞 − 1|𝑎𝑞′ −

− 𝑎𝑞′
√︀

𝑛𝑞 −𝑚+ 1|𝑛𝑞 −𝑚+ 1⟩⟨𝑛𝑞|
}︁
+

+ℱ�̂� ′
𝑚 (r𝑖𝑗 , 𝑛𝑞)

{︁√︀
𝑛𝑞 −𝑚|𝑛𝑞⟩⟨𝑛𝑞 −𝑚− 1|𝑎𝑞′ −

− 𝑎𝑞′
√︀
𝑛𝑞 + 1|𝑛𝑞 + 1⟩⟨𝑛𝑞 −𝑚|

}︁
, (15)

̂︂𝒜𝒜
𝑞, 𝑞′,+

𝑚,𝑛𝑞
(r𝑖𝑗) = −

(︂̂︂𝒜𝒜
𝑞, 𝑞′,−
𝑚,𝑛𝑞

(r𝑖𝑗)

)︂†
. (16)

Therefore, the commutators of interatomic interac-
tion operators with the intensity operator can be writ-
ten as follows:[︁
ℋ̂

′𝐴𝐴
𝑖𝑗 , ℐ̂ (r)

]︁
=

=
∑︁
𝑚

∑︁
𝑞

{︂
𝑚 ℰ2

𝑞
̂︂𝒜𝒜

𝑞

𝑚,𝑛𝑞
(r𝑖𝑗) +

∑︁
𝑞 ̸=𝑞′

ℰ𝑞ℰ𝑞′ (̂𝑒𝑞 · 𝑒𝑞′)×

×
(︂
𝑒𝑖(k𝑞′−k𝑞)·r̂︂𝒜𝒜

𝑞, 𝑞′,−
𝑚,𝑛𝑞

−𝐴𝑑𝑗.

)︂}︂
. (17)

Analogous expressions for the commutators of ℋ̂𝐴𝐷
𝑖𝑑

and ℋ̂𝐷𝐷
𝑑𝑑′ with the intensity operator ℐ̂ can be

written, by introducing, for example, the nota-

tions in each case ̂︂𝒜𝒟
𝑞

𝑚,𝑛𝑞
(r𝑖𝑑), ̂︂𝒜𝒟

𝑞, 𝑞′,−
𝑚,𝑛𝑞

(r𝑖𝑑),̂︂𝒜𝒟
𝑞, 𝑞′,+

𝑚,𝑛𝑞
(r𝑖𝑑) and ̂︂𝒟𝒟

𝑞

𝑚,𝑛𝑞
(r𝑑𝑑′), ̂︂𝒟𝒟

𝑞, 𝑞′,−
𝑚,𝑛𝑞

(r𝑑𝑑′),̂︂𝒟𝒟
𝑞, 𝑞′,+

𝑚,𝑛𝑞
(r𝑑𝑑′) in the place of ̂︂𝒜𝒜

𝑞

𝑚,𝑛𝑞
(r𝑖𝑗),̂︂𝒜𝒜

𝑞, 𝑞′,−
𝑚,𝑛𝑞

(r𝑖𝑗), ̂︂𝒜𝒜
𝑞, 𝑞′,+

𝑚,𝑛𝑞
(r𝑖𝑗), accordingly.

Using the commutation relations between the pairs
of bosonic operators, we find[︁
ℋ̂𝐹 , ℐ̂

]︁
=

=
∑︁
𝑞,𝑞′

~𝜔𝑞 (𝑒𝑞 · 𝑒𝑞′) ℰ𝑞ℰ𝑞′𝑎†𝑞𝑎𝑞′
[︁
𝑒𝑖(k𝑞′−k𝑞)·r − C.C.

]︁
.

(18)

Using the above-found commutators (12)–(18), the
parentheses of the commutation operation can be re-
moved in the terms

[︁
ℋ̂,
[︁
ℋ̂, ℐ̂

]︁]︁
in (11), so that[︁

ℋ̂′𝐴𝐹 ,
[︁
ℋ̂′𝐴𝐹 , ℐ̂

]︁]︁
=

= −
∑︁
𝜍,𝐷′

𝑁−2𝐷′∑︁
𝑖𝜍=1

∑︁
ℓ,𝐷

𝑁−2𝐷∑︁
𝑖ℓ=1

∑︁
𝑞,𝑞

(︁
ℱ Ŝ𝑖𝜍 · 𝑒𝑞

)︁(︁
ℱ Ŝ𝑖ℓ · 𝑒𝑞

)︁
×

× (̂𝑒𝑞 · 𝑒𝑞) ℰ2
𝑞 ℰ2

𝑞

{︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖ℓ 𝑒−𝑖k𝑞·r𝑖𝜍 +C.C.

}︁
;

(19)[︁
ℋ̂𝐹 ,

[︁
ℋ̂′𝐴𝐹 , ℐ̂

]︁]︁
=

= −
∑︁
ℓ,𝐷

𝑁−2𝐷∑︁
𝑖ℓ=1

∑︁
𝑞,𝑞

~𝜔𝑞

(︁
ℱ Ŝ𝑖ℓ · 𝑒𝑞

)︁
(̂𝑒𝑞 · 𝑒𝑞) ℰ2

𝑞 ℰ𝑞 ×

×
{︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖ℓ𝑎𝑞 +𝐴𝑑𝑗.

}︁
. (20)

We also expand the commutator of the atomic oper-
ator ℋ̂′𝐴 with the found commutation relation (12),
mainly[︁
ℋ̂

′𝐴,
[︁
ℋ̂′𝐴𝐹 , ℐ̂

]︁]︁
=

=
∑︁
ℓ,𝐷

𝑁−2𝐷∑︁
𝑖ℓ=1

{︂
ℱ Ŝ𝑖ℓ ·

∑︁
𝑞,𝑞

𝑒𝑞ℰ2
𝑞 (𝑒𝑞 · 𝑒𝑞) ℰ𝑞 ×

×
(︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖ℓ𝐹+𝑎𝑞 − 𝑒−𝑖(k𝑞−k𝑞)·r𝑒−𝑖k𝑞·r𝑖ℓ𝐹−𝑎

†
𝑞

)︁
+

+ℱ Ŝ𝑖ℓ ·
∑︁
𝑞,𝑞

𝑒𝑞ℰ2
𝑞 (𝑒𝑞 · 𝑒𝑞) ℰ𝑞~𝜔𝑞 ×

×
(︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖ℓ𝑎𝑞 +𝐴𝑑𝑗.

)︁}︂
. (21)

Here, 𝐹± =
[︁
𝜔2
𝑞

(︁
1
𝑐2 ± 𝑀𝑖ℓ

~𝜔0

)︁
~2

2𝑀𝑖ℓ
∓ 1

2~𝜔𝑞

]︁
. We used

the following relations and identities: |⟩𝑖⟨|𝑖ℋ̂
′𝐴
𝑖 |⟩𝑖⟨|𝑖 =

= −|r𝑖⟩⟨r𝑖|~
2∇2

𝑖

2𝑀𝑖
|r𝑖⟩⟨r𝑖|+ ~𝜔𝛼𝑖

𝜎†
𝑖𝜎𝑖,

[︁
𝜎†
𝑖𝜎𝑖, 𝜎𝑖

]︁
= −𝜎𝑖,[︁

𝜎†
𝑖𝜎𝑖, 𝜎

†
𝑖

]︁
= 𝜎†

𝑖 ,
[︁
𝜎𝑖𝜎

†
𝑖 , 𝜎𝑖

]︁
= 𝜎𝑖, and

[︁
𝜎𝑖𝜎

†
𝑖 , 𝜎

†
𝑖

]︁
=

= −𝜎†
𝑖 . Here, 𝜎𝑖 = |𝛼⟩⟨𝛼′|𝑖 with 𝛼, 𝛼′ ∈ {𝑎, 𝑏}. And,
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[︀
∇2

𝑖 , 𝑒
𝑖k𝑞·r𝑖

]︀
= 𝑒𝑖k𝑞·r𝑖

(︀
−𝑘2 + 2𝑖k𝑞 · ∇𝑖

)︀
was substi-

tuted into (21) with regard for (6).
The series of commutators in (11) can be continued

in the fashion provided above.
Therefore, to compute the value of the absorp-

tion coefficient defined by (11), the distribution 𝜌Ψ
over the initial states |Ψ⟩0 of the system has to be
given. Because of the quite complicated expressions
for the commutators, the application of certain sta-
tistical properties of the system is not trivial. The
quantitative example of the averaging procedure and
the corresponding evaluation of the absorption coef-
ficient will be discussed in the separate work.

4. Conclusion

The derived expression for the absorption coefficient
is therefore based on the commutation relation be-
tween the operators of electric field and intensity. It
is of interest to note that the contribution of (19)
forms a non-linear dependence of the absorption co-
efficient on the atomic density even in the case of
negligible binary interaction defined by ℋ̂𝐴𝐴. Under
some conditions, this can be referred to a certain kind
of collective effect. Thus, the quantization of the elec-
tromagnetic field, for example, in the optical region
can play a fundamental role in defining the absorp-
tion/emission properties of a matter.
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УЗАГАЛЬНЕННЯ КОЕФIЦIЄНТА
ПОГЛИНАННЯ ДЛЯ ГАЗУ АТОМIВ
У ЗВ’ЯЗАНИХ СТАНАХ

Р е з ю м е

У данiй роботi наведено приклад побудови коефiцiєнта по-
глинання в термiнах квантової оптики. Розроблена мето-
дика обчислення враховує квантування електромагнiтного
поля, просторовi ступенi вiльностi атомiв, ефект Доппле-
ра, та парну взаємодiю мiж частинками. Показано, що в
основi квантово-оптичного формулювання коефiцiєнта по-
глинання може лежати комутацiйне спiввiдношення мiж
операторами електричного поля та iнтенсивностi. Показа-
но, що нелiнiйна залежнiсть коефiцiєнта поглинання вiд
атомної концентрацiї, навiть у випадку нехтування бiнар-
ною взаємодiєю, може бути пояснена цiлком визначеним ти-
пом квантово-оптичних колективних ефектiв.
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