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The problem of averaging the kinetics of a two-stage absorbing Markov chain over random
fluctuations in its forward transition probability approximated by the symmetric dichotomous
stochastic process is solved exactly. It is shown that the temporal behavior of the population
of chain’s transient state obeys a fourth-order differential equation with the tetra-exponential
form of a solution given the finite frequency and mean amplitude of fluctuations. In the limit
of frequent fluctuations, this tetra-exponential solution reduces to a simple bi-exponential form
typical of the deterministic two-stage decay process lacking fluctuations in its transition proba-
bility. Rather, in the limit of rare fluctuations, the tetra-exponential solution, while simplifying
to the tri- and bi-exponential solutions, becomes specific both for the low amplitude and the res-
onance amplitude fluctuations, respectively. Furthermore, there is a stochastic resonance point,
where the forward transition probability is in resonance with the mean fluctuation amplitude,
whereas the backward transition probability, decay transition probability, and fluctuation fre-
quency are negligibly small. In result, the stochastic immobilization of the two-stage absorbing
Markov chain in its initial state occurs at this point.
K e yw o r d s: nonequilibrium systems, nonstationary kinetics, fluctuation phenomena, sto-
chastic processes, absorbing Markov chain, ordinary differential equations.

1. Introduction
In physics, information on the dynamic and kinetic
characteristics of a system of interest, such as its
energy spectrum and probabilities of transitions be-
tween the different energy levels, is usually obtained
from different measurement techniques. One common
type of such techniques is the measurement of the de-
cay (or, generally, rise and decay) kinetics of popula-
tion of system’s states in response to sudden changes
in the external conditions controlled during exper-
iments. In many cases, however, the desired infor-
mation acquired from these measurements is incom-
plete, inadequate, and therefore impractical in per-
fectly identifying not only the energy spectrum of the
system, but also the number of its energy levels, nor
even to mention a kinetic model specifying a plausi-
ble chain of transformations of the levels with certain
transition probabilities. For example, it is known that
the kinetics of a two-stage model corresponds well
to the bi-exponential representation [1], though there
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are a lot of instances for kinetic data patterns requir-
ing the tri-, tetra-, and more exponential representa-
tions [2–4]. In these cases, because a larger number
of parameters must be introduced to simulate multi-
exponential processes, one hardly expects that using
the double exponential representation with a few in-
dependent parameters provides a complete knowledge
of the system. To overcome a choice of opportunities
in a consideration of the multiexponential kinetics,
one can choose between two alternative ways of de-
scription.

The first way is to begin with a simple two-state
model of the system in question and then endow it
with novel degrees of freedom in the form of adding
the new states hidden for a direct observation but in-
terconverting between each other with the additional
transition probabilities according to a more complex,
but more realistic multistate desired model. This al-
lows one to depict the model as a kind of kinetic di-
agram or flow chart, being the underlying Markov
chain of the evolution process [5]. However, striving
for a better description of the system leads to increas-
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ing the number of its states, which makes the problem
of finding a solution for all multiple states hard. In
spite of this, using the first way of description is typ-
ical of considering the different spontaneous and in-
duced kinetic phenomena in condensed phase systems
(see, e.g. [6–10] and references therein).

On the contrary, the second way of description
starts from the microscopic formulation of the prob-
lem, by associating each system’s state with a sin-
gle energy level, being distinct from those of other
states. The time evolution of these states is gov-
erned by a set of kinetic balance equations for pop-
ulations, whose every steady-state pair, when mul-
tiplied by corresponding interstate transition proba-
bilities, obeys the condition of detailed balance. Of
course, for a large number of kinetic equations, find-
ing their solution comprises the hard-to-solve prob-
lem too, also known as the number-of-states prob-
lem [11,12]. However, there are often the cases where
one can use the two-compartment system’s repre-
sentations such as those of two-level atoms and
the one-electron spin-1/2 systems [13] or in the
frame of pharmacokinetics/pharmacodynamics mod-
eling [14]. In these cases, the condition of local equi-
librium for the populations of states is supposed to
be established fast within each compartment, while
the probabilities of transitions between two compart-
ments, as well as those of their decay, are regarded
low. In result, one can arrive at a two-level system
with degenerate energy levels [15], whose degeneracy
corresponding thus to compartment’s dimensionality
is let to be a stochastic variable with a capability to
randomly fluctuate around its mean with average am-
plitude and frequency. Nonetheless, it is noteworthy
to say that using this way of description is untypical
and does not provide any strict analytical results hith-
erto even for a simplest two-level decay model (but
see Ref. [16], where a single-stage reversible reaction
with a one fluctuating rate constant was considered).

The present paper aims at combining the both
aforementioned ways of description of the multiexpo-
nential processes in one microscopic approach. The
approach is based on the density matrix formalism
of the Liouville–von Neumann equation for the evo-
lution of a finite state nonequilibrium system cou-
pled weakly to the infinite state equilibrium envi-
ronment. This formalism is shown to be well ap-
propriate to describe microscopic fluctuations in the
position of energy levels of the system caused by

stochastic forces acting from the environment [17–
20]. However, mapping the Liouville–von Neumann
equation to a master equation for kinetically bal-
anced state populations and representing this equa-
tion as a linear absorbing Markov chain with the vari-
able number of states in the leading order approxima-
tion [21] provide a description of macroscopic fluctu-
ations too. As distinct from their microscopic coun-
terparts, macroscopic fluctuations are associated not
with fluctuations in the energy levels of the system
but with stochastization of its level number, corre-
sponding likely to fluctuations in its entropy, pro-
vided that local equilibrium conditions for the er-
godic sets of Markov chain states are applied prop-
erly. Exactly how to perform the account of micro-
scopic and macroscopic fluctuations most accurately
constitutes the subject, to which Sections 2 and 3 of
this paper are devoted. In Section 4, the reduced two-
stage absorbing Markov chain with the stochastic for-
ward transition probability is considered in detail. It
is shown, to the best of our knowledge for the first
time, that the temporal behavior of a transient-state
population of the so-defined Markov chain obeys a
fourth-order differential equation with constant pos-
itive coefficients. The limiting behavior of the tetra-
exponential solution to this fourth-order problem in
different important cases of stochastic fluctuations in-
cluding the frequent and rare fluctuations, as well
as a stochastic resonance point, is described in Sec-
tion 5. Finally, in Section 6, the results obtained are
discussed and concluded.

2. Model of Microscopic Fluctuations

To construct a model of fluctuations in the positions
of microscopic energy levels, let us consider a finite
quantum dynamical system composed of the 𝑁+1 dif-
ferent states with the energies 𝐸𝑖 |𝑖 = 0, 1, ..., 𝑁⟩ and
interactions between states 𝑉𝑖𝑗 (𝑖 ̸= 𝑗) found in the
adiabatic approximation. Let this system be weakly
coupled to its environment represented as an infinite
sum of non-interacting harmonic oscillators (normal
modes 𝜔𝜆) equilibrated with the ambient temperature
𝑇 according to the Bose distribution for the vibra-
tion numbers 𝑛𝜆 = [exp(𝜔𝜆/𝑘B𝑇 )− 1]−1, where 𝑘B is
the Boltzmann constant (we set ~ ≡ 1). Let this cou-
pling be a nonadiabatic coupling of the environmental
phonons to relaxation transitions between the states
of the system [22], such that the singular perturba-

350 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 4



Differential Equation for a Two-Stage Absorbing Chain

tions of a generator of its unitary (adiabatic) dynam-
ics are induced with the stochastic force parameters
𝜅𝑖𝜆(𝑡) = 𝜅

(0)
𝑖𝜆 + 𝜅𝜆(𝑡) involving regular 𝜅

(0)
𝑖𝜆 and ran-

dom 𝜅𝜆(𝑡) parts. This creates the possibility for the
system being in its different states |𝑖⟩ to absorb or
emit environmental phonons of various energies 𝜔𝜆 in-
stantaneously, but at random times 𝑡, so that emitted
phonons are carried away by their time-invariant en-
vironment dynamics and never come back again. Fur-
thermore, this allows for the system to transit from
one state to the other, but with holding the condi-
tion of energy balance for each transition difference
Δ𝐸𝑖𝑗 = 𝐸𝑖 −𝐸𝑗 , by accompanying it with the simul-
taneous process of creation or annihilation in the en-
vironment of the corresponding phonon of the energy
𝜔𝜆 = |Δ𝐸𝑖𝑗 |. Then the stochastic Hamiltonian of the
whole system “nonequilibrium system + equilibrium
environment + their interaction” is decomposed into
three parts

𝐻(𝑡) = 𝐻S +𝐻B +𝐻int(𝑡). (1)

The first part represents the Hamiltonian of a
nonequilibrium system

𝐻S =
∑︁
𝑖

𝐸𝑖|𝑖⟩⟨𝑖|+
∑︁
𝑖,𝑗

𝑉𝑖𝑗(1− 𝛿𝑖𝑗)|𝑖⟩⟨𝑗|. (2)

The second part is the Hamiltonian of a heat bath
representing the equilibrium environment

𝐻B =
∑︁
𝜆

𝜔𝜆(𝛽
+
𝜆 𝛽𝜆 + 1/2). (3)

Both parts relate to the deterministic dynamical be-
haviors. Thus, the matrix elements 𝑉𝑖𝑗 in (2) define
the dynamics of system’s states, whose improper en-
ergies 𝐸𝑖 are found in isolation with the environment,
while 𝛽+

𝜆 and 𝛽𝜆 in (3) stand for the operators of
creation and annihilation of phonons being the vi-
brational eigenstates of harmonic excitations of the
environment itself. In the Fock space representation,
the latter corresponds to the second quantization of a
field of non-interacting bosons obeying the canonical
commutation relations [𝛽+

𝜆 , 𝛽𝜇] = −𝛿𝜆𝜇 for an infi-
nite sum of discrete normal modes constrained by a
non-degeneracy condition for their energies 𝜔𝜆 ̸= 𝜔𝜇

(𝜆 ̸= 𝜇) [22, 23]. Rather, the third part of (1) is the
time-dependent interaction Hamiltonian

𝐻int(𝑡) =
∑︁
𝑖

∑︁
𝜆

𝜅𝑖𝜆(𝑡)(𝛽
+
𝜆 + 𝛽𝜆)|𝑖⟩⟨𝑖|. (4)

It relates to the indeterministic effects in the dy-
namics, involving the time-dependent force 𝜅𝑖𝜆(𝑡) =

= 𝜅
(0)
𝑖𝜆 +𝜅𝜆(𝑡) with the stochastic addition 𝜅𝜆(𝑡). The

latter can be intrinsic in the system, e.g., by the chao-
tization of its trajectories, or imposed extrinsically
due to some random, but zero in mean, environmen-
tal fluctuations, whose average characteristics are in-
dependent of state |𝑖⟩.

If the overlapping between system’s states de-
fined by matrix elements 𝑉𝑖𝑗 is weak, it is pos-
sible to diagonalize the time-dependent Hamilto-
nian 𝐻(𝑡) (1). This can be done, e.g., by expand-
ing the first term on the right-hand side of (2) (the
non-eigenenergy term) in the displacements of the
phonon operators (𝛽+

𝜆 − 𝛽𝜆) so that the linear (one-
phonon) or nonlinear (multiphonon) terms are con-
sidered as perturbations induced by the environment
in the system. The non-perturbative transforma-
tion [24] uses the time-dependent unitary matrix 𝑈𝑡 =
= exp(

∑︀
𝑖 𝑢𝑖(𝑡)|𝑖⟩⟨𝑖|), where 𝑢𝑖(𝑡) =

∑︀
𝜆 𝑔𝑖𝜆(𝑡)(𝛽

+
𝜆 −

−𝛽𝜆) is the displacement operator of the 𝑖-th state,
and 𝑔𝑖𝜆(𝑡) = 𝜅𝑖𝜆(𝑡)/𝜔𝜆 is a dimensionless cou-
pling. This allows us to perform the second quantiza-
tion of the phonon field (3) being under the influence
of system’s deterministic dynamics (2). Thus, multi-
plying (1) from the left by 𝑈𝑡 and from the right by
𝑈+
𝑡 , we get exactly

𝐻(𝑡) = 𝐻0(𝑡) +𝐻B + 𝑉. (5)

Here, in contrast to (4), the transformed interaction
Hamiltonian is time-independent

𝑉 =
∑︁
𝑖,𝑗

(1− 𝛿𝑖𝑗)𝑉𝑖𝑗 exp(𝑢
(0)
𝑖𝑗 )|𝑖⟩⟨𝑗| (6)

with 𝑢
(0)
𝑖𝑗 =

∑︀
𝜆 𝑔

(0)
𝑖𝑗𝜆(𝛽

+
𝜆 − 𝛽𝜆) being the operator of

phonon displacements that depends on the determin-
istic couplings only 𝑔

(0)
𝑖𝑗𝜆 = [𝜅

(0)
𝑖𝜆 − 𝜅

(0)
𝑗𝜆 ]/𝜔𝜆. However,

the transformed Hamiltonian of the system

𝐻0(𝑡) =
∑︁
𝑖

�̃�𝑖(𝑡)|𝑖⟩⟨𝑖| (7)

is stochastic due to the refining of the transformed en-
ergy levels by fluctuating time-dependent terms pro-
portional to the reduced random forces |𝜅𝑖𝜆(𝑡)|2/𝜔𝜆

as follows:

�̃�𝑖(𝑡) = 𝐸𝑖 −
∑︁
𝜆

[︀
|𝜅𝑖𝜆(𝑡)|2/𝜔𝜆

]︀
. (8)
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At the same time, Hamiltonian (7) becomes diag-
onal, though with respect to “phonon-dressed” sys-
tem’s states. So, from this point on, the notations for
“phonon-dressed” states in (7) and “bare” states in (2),
(4) as well as for “shifted” and “unshifted” phonon op-
erators in (3), (5) are regarded the same for brevity so
that states |𝑖⟩ and the Hamiltonian 𝐻B are not modi-
fied in the following. Furthermore, the quadratic fluc-
tuations in the microscopic energy levels (8) reduce
to a linear dependence of the energy-level differences

Δ�̃�𝑖𝑗(𝑡) = Δ�̄�𝑖𝑗 − 2
∑︁
𝜆

𝑔
(0)
𝑖𝑗𝜆𝜅𝜆(𝑡) (9)

on the stochastic force 𝜅𝜆(𝑡), with Δ�̄�𝑖𝑗 = Δ𝐸𝑖𝑗 −
− 2

∑︀
𝜆 𝑔

(0)
𝑖𝑗𝜆𝑔

(0)
𝑖𝑗𝜆𝜔𝜆 and 𝑔

(0)
𝑖𝑗𝜆 = [𝜅

(0)
𝑖𝜆 + 𝜅

(0)
𝑗𝜆 ]/2𝜔𝜆, be-

ing the relative mean-field energy-level shifts and the
average dimensionless couplings, both deterministic,
respectively. This result justifies an analogous linear
addition of stochastic terms to the eigenenergies of
quantum states due to the presence of random fields
that has been done previously as an ad hoc assump-
tion in a number of papers (see, e.g., [17–21, 25–28]).

As we see, the model for the description of mi-
croscopic fluctuations in the system devised above
is very advantageous in that it provides the re-
duced energy-level differences (9) with strictly lin-
ear stochastic components in the adiabatic approxi-
mation. If the stochastic process underlying these
components occurs much faster than nonadiabatic
transitions between the different energy levels that
comprises the common Markovian approximation for
condensed-phase systems [22, 25], then this allows
us to describe the transition dynamics of the sys-
tem, by using the usual rate constant formalism of
the coarse-grained master equation [23]. Moreover,
due to microscopic fluctuations in the energy levels,
the process of their relaxation becomes irreversible
because of the memoryless exchange of phonons
between the system and the environment. In re-
sult, in the weak system-environment coupling limit,
the density matrix 𝜌(𝑡) = 𝜌0(𝑡)𝜌B of the whole
system is factorized by the density matrix 𝜌B =
= exp(−𝐻B/𝑘B𝑇 )/𝑡𝑟B exp(−𝐻B/𝑘B𝑇 ) of the equilib-
rium environment and the density matrix 𝜌0(𝑡) =
= 𝑡𝑟B𝜌(𝑡) of the nonequilibrium system (trace is
taken over all environmental phonons). In turn, this
reduces the stochastic Liouville–von Neumann quan-
tum evolution equation

�̇�(𝑡) = −𝑖𝐿(𝑡)𝜌(𝑡) (10)

with 𝐿(𝑡) = [𝐻(𝑡), ...] being the corresponding
stochastic Liouville superoperator related to the
stochastic Hamiltonian (5) to the master kinetic equa-
tion
�̇�𝑗(𝑡) = −𝑝𝑗(𝑡)

∑︁
𝑗′ ̸=𝑗

𝑊𝑗𝑗′ +
∑︁
𝑗′ ̸=𝑗

𝑝𝑗′(𝑡)𝑊𝑗′𝑗 (11)

for the stochastically averaged (denoted as ⟨⟨...⟩⟩)
population of the 𝑗th microscopic state of the system

𝑝𝑗(𝑡) = ⟨⟨{⟨𝑗|𝜌(𝑑)0 (𝑡)|𝑗⟩}⟩⟩, (12)

where 𝜌
(𝑑)
0 (𝑡) = 𝑇𝑑𝜌0(𝑡) are the diagonal elements

of 𝜌0(𝑡) with 𝑇𝑑 being the diagonalization operator.
Here,
𝑊𝑗𝑗′ = 2𝜋

∑︁
𝜆

|𝜒𝑗𝑗′𝜆|2[𝑛𝜆Λ𝑗𝑗′𝜆 + (1 + 𝑛𝜆)Λ𝑗′𝑗𝜆] (13)

determines the probability of the stochastic transi-
tion in the system from level 𝑗 to level 𝑗′ with the
corresponding Lorentzian Λ𝑗𝑗′𝜆 = 𝛾𝑗𝑗′{𝜋[𝛾2

𝑗𝑗′ +(𝜔𝜆 +

+Δ�̄�𝑗𝑗′)
2]}−1, where 𝜒𝑗𝑗′𝜆 = 𝑉𝑗𝑗′𝑔

(0)
𝑗𝑗′𝜆 and 𝛾𝑗𝑗′ =

= 𝛾𝑗′𝑗 = − lim{
𝜏→∞

1
𝜏 ln⟨⟨exp[𝑖

∫︀ 𝜏

0
𝑑𝑡

∑︀
𝜆 𝑔

(0)
𝑗𝑗′𝜆𝜅𝜆(𝑡)]⟩⟩}

are the nonadiabatic relaxation coupling and adia-
batic stochastic broadening parameters, respectively
(see, e.g., [17, 21, 25] for more details).

3. Model of Macroscopic Fluctuations

The master equation (11) in the form of the balance
of populations of microscopically fluctuating energy
levels derived in the previous section is essentially
a kinetic equation local in time. It consistently fol-
lows from the microscopic formulation of the prob-
lem conditioned by three assumptions: (i) The sys-
tem couples to the environment by exchanging the
energy of vibration excitations (phonons); (ii) The
system-environment coupling is weak so that the most
relevant physical variables can be represented by the
local-in-time populations of system’s states, while the
nonlocal correlations and coherences of states are re-
garded non-relevant variables effectively condensed in
the local-in-time probabilities of transitions between
the states; (iii) There exists a hierarchy of charac-
teristic times such that it takes much more time to
transit the system from its one state to another than
to retain the memory in the environment on the en-
ergy differences and relative phases involved in any
state-to-state transition. As such, in the system with
𝑁 + 1 states, there can be 𝑁(𝑁 + 1)/2 probabili-
ties of transitions between states with only 2𝑁 − 1
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of them be linearly independent [29]. Therefore, this
system can formally be projected onto the equivalent
𝑁 -stage absorbing Markov chain as follows:

|𝑁⟩
𝑊𝑁𝑁−1−→
←−

𝑊𝑁−1𝑁

|𝑁 − 1⟩...|2⟩
𝑊21−→
←−
𝑊12

|1⟩
𝑊10−→
←−
𝑊01

|0⟩. (14)

Here, 2𝑁 − 1 leading order transition probabilities
{𝑊𝑗𝑗′} ≡ {𝑊𝑁𝑁−1,𝑊𝑁−1𝑁 , ...,𝑊21,𝑊12,𝑊10} are
considered as independent variables, while the re-
maining transition probability 𝑊01 of not well re-
solved system’s recovery from the absorbing state |0⟩
to its nearest neighboring state |1⟩ is regarded negli-
gible

𝑊01 ≪𝑊𝑁𝑁−1,𝑊𝑁−1𝑁 , ...,𝑊21,𝑊12,𝑊10. (15)

In this context, the master equation (11), if taken in
its generalized matrix form

Γ̇(𝑡) = 𝐾 · Γ(𝑡), (16)

where Γ(𝑡) = col (𝑝0(𝑡), ..., 𝑝𝑁 (𝑡)) are system’s state
vectors, and 𝐾 is a transition probability matrix
with the components 𝐾𝑗𝑗′ = 𝑊𝑗𝑗′ − 𝛿𝑗𝑗′

∑︀𝑁
𝑖=0 𝑊𝑖𝑗 ,

directly corresponds to the Liouville–von Neumann
equation (10) written in the vector-state representa-
tion for the diagonal elements of the density matrix
and employing the imaginary transformation of the
time 𝑡 → 𝑖𝑡. This is almost analogous to mapping
the reversible quantum evolution equation onto the
stochastic diffusion equation used in the Monte Carlo
methods for irreversibly guiding the system toward
its ground state over time [30]. More formally, the
master equation is seen as a series of the four projec-
tions provided in the Liouville–von Neumann equa-
tion for the imaginary time in the following order:
(i) onto the space of diagonal elements of the density
matrix; (ii) onto the ensemble-averaged population
space of energy levels; (iii) onto the population space
stochastically averaged over the microscopic energy-
level fluctuations; and (iv) onto the transition prob-
ability space generating a complete set of system’s
independent parameters.

The representation above is advantageous in that
it allows us to describe the population kinetics of
microscopically fluctuating energy levels of the sys-
tem without clarifying what its mean-field energy-
level differences Δ�̄�𝑗𝑗′ , adiabatic stochastic broad-
ening 𝛾𝑗𝑗′ , as well as nonadiabatic 𝜒𝑗𝑗′𝜆 and adia-
batic 𝜅

(0)
𝑗𝜆 system-environment couplings, all enter-

ing the stochastically averaged microscopic transi-
tion probabilities 𝑊𝑗𝑗′ (13), exactly are, given the
vibrational modes 𝜔𝜆 and temperature of the environ-
ment. Instead, we are interested in which transition
probability taken from the reduced space {𝑊𝑗𝑗′} (15)
influences the time evolution of the populations of en-
ergy levels so strongly that we can consider the act
of populating these levels as well controllable. Thus,
having a linear (𝑁+1)-state absorbing Markov chain
(14) with the transition probabilities (15), which form
a set of 2𝑁 − 1 independent parameters chosen ar-
bitrary, and one recovery transition probability put
among these parameters nearly zero in the absorbing
limit, we can employ such a kind of representation
as an ad hoc simulation approach to very different
kinetic processes (see, e.g. [21, 30]).

Another advantage of representation (14) is that
it can also provide a description of macroscopic fluc-
tuations in the system. In doing so, it is sufficient
to assume that, in general, the number 𝑁 of tran-
sient states in the absorbing Markov chain is not
fixed in advance but rather well adjusted as the time-
dependent parameter having its own dynamics de-
termined by the phase transitions in the environment
or conformational transformations of the environmen-
tal macromolecules. For example, if number 𝑁 cor-
responds to the number of contacts of a single lig-
and species with the different solvent molecules in
micro- or nanovolumes of the well-stirred bulk solu-
tion, then this number can be a function of the time
𝑁(𝑡) that must follow all the changes in a local con-
figuration of solvent molecules with the solute. Thus,
since the folding-unfolding kinetics of most simple
protein macromolecules is well fitted typically as an
all-or-none two-state process [31], there is a valid pos-
sibility of allowing for the number 𝑁(𝑡) to perform
statistically independent stochastic displacements in
time between its maximum 𝑁max and minimum 𝑁min

values presenting a discrete (dichotomous) random
process. The latter occurs because of sudden changes
in the instantaneous local configurations of solvent
molecules happened by virtue of the conformational
transformations of some protein molecule present in
the bulk [32]. This protein does not directly influ-
ence the two-stage absorbing Markov chain as such
but, causing random changes in the number of sol-
vent molecules readily accessible for the forward chain
reaction, indirectly affects its transition probabil-
ity. Adapting that situation to the absorbing Markov
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chain (14) infers a simplification of relations (15) as
follows:

𝑊𝑁𝑁−1 = 𝑊𝑁−1𝑁 = ... = 𝑊32 = 𝑊23 ≡𝑊 ;

𝑊 ≫𝑊21,𝑊12,𝑊10; 𝑊01 = 0.
(17)

In these relations, all transient states in (14) but
state |1⟩ are supposed nearly equipopulated at ev-
ery time instant and quasidegenerate in their energy
with matching them to the same levels of 𝑝2(𝑡) =
= 𝑝𝑗=3,...,𝑁 (𝑡) and 𝐸2 = 𝐸𝑗=3,...,𝑁 , respectively. The-
refore, for such a joint sequence of those states, being
in fact the ergodically mixed ones, we can introduce
their aggregated population

𝑝{2}(𝑡) = 𝑝2(𝑡)[𝑁(𝑡)− 1] (18)

and then combine all of these states in a single effec-
tive state |{2}⟩ represented by

|𝑁⟩
𝑊
−→
←−
𝑊

|𝑁 − 1⟩...|3⟩
𝑊
−→
←−
𝑊

|2⟩ ⇔ |{2}⟩. (19)

Consequently, taking (18) and (19) into account in
the master equation (11) in approximation (17) trans-
forms a complex linear absorbing Markov chain prob-
lem (14) to a much simpler problem of the two-stage
decay

|{2}⟩
𝑎+𝛼(𝑡)
−→
←−
𝑏

|1⟩ 𝑘−→, (20)

which is equipped, however, with the addition of a
stochastic process to its forward transition probabil-
ity. Henceforth, to shorten the description, the fol-
lowing notations are used:

𝑎+𝛼(𝑡) ≡𝑊21[𝑁(𝑡)−1]−1; 𝑏 ≡𝑊12; 𝑘 ≡𝑊12. (21)

Here, 𝛼(𝑡) is a symmetric dichotomous stochastic pro-
cess that has a zero mean 𝛼(𝑡) = 0 and is exponen-
tially correlated as 𝛼(0)𝛼(𝑡) = exp(−2𝜈 𝑡) (an over-
bar designates a stochastic averaging over the macro-
scopic fluctuations). It performs random jumps be-
tween the discrete values ±𝜎 at the mean frequency
𝜈 to obey the exact equalities [33, 34]

[𝛼(𝑡)]2 = 𝜎2; �̇�(𝑡) = −2𝜈𝛼(𝑡). (22)

Given these equalities, as well as inequalities for the
mean stochastic amplitude 𝜎 ≤ 𝑎 and the fluctuating

number of states 𝑁min ≤ 𝑁(𝑡) ≤ 𝑁max, it is appro-
priate to arrive at the inequality

𝜎 =
𝑊21

2

(︂
1

𝑁min
− 1

𝑁max

)︂
≤ 𝑎 =

=
𝑊21

2

(︂
1

𝑁min
+

1

𝑁max

)︂
. (23)

Note that a stochastic process 𝛼(𝑡) involved in the
two-stage Markov chain (20) to represent random dis-
crete dichotomous fluctuations in its forward tran-
sition probability belongs to macroscopic fluctua-
tion processes. These fluctuations characterize the
stochastic behavior of the sequence of ergodically
mixed states (19) that are strictly in a local thermo-
dynamic equilibrium. With respect to fluctuations,
such a sequence exhibits immediate jumps between
two different realizations of the number of ergodic
states intrinsic in its two locally equilibrium configu-
rations at random times. A flight time of the jump
itself is extremely fast, being close to the macro-
scopic diffusion/encounter/scattering time, that is,
the time of the establishment of a local macroscopic
equilibrium with the highest physical speed [27, 28,
35, 36]. On the other hand, each such equilibrium
remains thermodynamically unchanged during every
elapsed time between two successive jumps. Formally,
for a sequence, this represents a single ergodic com-
partment, which avoids any memory effects. In this
regard, the macroscopic fluctuations differ signifi-
cantly from the microscopic ones, since the latter are
nonlocal in nature and operate not with the fluctu-
ating numbers of states in the locally equilibrium er-
godic sequences, but rather with the energy differ-
ences between different states in nonequilibrium se-
quences. This leads, in turn, to the non-Markovianity
of microscopically fluctuating kinetic systems (for a
discussion of non-Markovian effects in the condensed
phase systems, see, e.g. [20, 21, 27, 37–39]). At the
same time, this demands that, in the case of macro-
scopic fluctuations, we must solve the master equa-
tion involving the stochastic additions to determinis-
tic kinetic coefficients strictly exactly, without using
any approximations throughout the derivation of a
closed-form equation for the kinetics of stochastically
averaged populations. In the next section, we present
a straightforward way of how to solve this problem
analytically, which is the main goal of the paper.
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4. Stochastically Averaged
Differential Equation

Consider the temporal behavior of the two-stage ab-
sorbing Markov chain (20). According to the results
of Sections 2 and 3, it should obey the stochastic mas-
ter equation (11) conditioned by relations (17), (18),
(21)–(23). So, the problem reduces to finding a solu-
tion to a system of two linear stochastic differential
equations of the first order, which read as follows:{︂
�̇�1(𝑡) = −(𝑏+ 𝑘)𝑝1(𝑡) + [𝑎+ 𝛼(𝑡)]𝑝{2}(𝑡);

�̇�{2}(𝑡) = 𝑏𝑝1(𝑡)− [𝑎+ 𝛼(𝑡)]𝑝{2}(𝑡).
(24)

To integrate these equations in a physically relevant
way implies to provide their averaging over a stochas-
tic process and then to solve the resulting equations
with respect to all unknown averages. Denoting, by
𝑃1,2(𝑡) = 𝑝1,{2}(𝑡), the average population of states
|1, {2}⟩ and considering the commutativity between
the averaging and differentiating operations, we get
the following averaged stochastic equations:{︃
�̇�1(𝑡) = −(𝑏+ 𝑘)𝑃1(𝑡) + 𝑎𝑃2(𝑡) + 𝛼(𝑡)𝑝{2}(𝑡);

�̇�2(𝑡) = 𝑏𝑃1(𝑡)− 𝑎𝑃2(𝑡)− 𝛼(𝑡)𝑝{2}(𝑡).
(25)

Since these equations contain the unknown stochastic
correlation functional 𝛼(𝑡)𝑝{2}(𝑡), they are not closed
with respect to average populations 𝑃1,2(𝑡) and can-
not be solved without specifying the differential equa-
tion for 𝛼(𝑡)𝑝{2}(𝑡). For the latter, however, we can
use the Shapiro–Loginov formula [33] for the differ-
entiation of exponentially correlated stochastic func-
tionals as follows:

∙
𝛼𝑝1,{2}(𝑡)=𝛼�̇�1,{2}+�̇�𝑝1,{2}=𝛼�̇�1,{2}−2𝜈𝛼𝑝1,{2},

(26)

where the notation of time dependence (𝑡) is

dropped for brevity. But using (26) for
∙

𝛼𝑝{2} af-
ter the differentiation of (25) leads to the unknown
𝛼�̇�{2}. Multiplying the second equation in (24) by 𝛼
and averaging it with the use of (22) and (25), we get{︃
�̇�2 = −�̇�1 − 𝑘𝑃1;

𝛼�̇�{2} = 𝑏𝛼𝑝1−𝑎�̇�1−𝑎(𝑏+𝑘)𝑃1+(𝑎2−𝜎2)𝑃2.
(27)

Then, applying the second differentiation to the
first equation in (25) with the use of (26) and (27)
yields

𝑃1 + (2𝑎+ 𝑏+ 𝑘 + 2𝜈)�̇�1 + [𝑎(𝑏+ 2𝑘)+

+2 𝜈(𝑏+ 𝑘)]𝑃1 = 𝑏𝛼𝑝1 + [𝑎(𝑎+ 2𝜈)− 𝜎2]𝑃2. (28)

As we see, in the two-stage absorbing Markov chain
(20), there emerge the unknown 𝑃2 and one more
unknown stochastic correlation functional 𝛼𝑝1. After
the differentiation of (28), this leads to the following
third-order equation:
...
𝑃 1 + (2𝑎+ 𝑏+ 𝑘 + 2𝜈)𝑃1 + [(𝑎+ 𝑏)(𝑎+ 2𝜈)+

+2𝑘(𝑎+𝜈)−𝜎2]�̇�1+𝑘[𝑎(𝑎+2𝜈)−𝜎2]𝑃1 = 𝑏
∙

𝛼𝑝1 . (29)

According to (26), this equation is equivalent to
the emergence of another unknown functional 𝛼�̇�1.
However, the latter may be considered as a nui-
sance. Indeed, if to use the first equation in (24) mul-
tiplied by 𝛼 and then averaged, and the second equa-
tion in (25), we arrive at the auxiliary equation
∙

𝛼𝑝1=−(𝑏+𝑘)𝛼𝑝1+𝑎�̇�1+𝑎(𝑏+𝑘)𝑃1+
(︀
𝜎2−𝑎2

)︀
𝑃2. (30)

Differentiating (30) with regard for the first equation
in (27) gives the equation
∙∙
𝛼𝑝1 +(𝑏+ 𝑘 + 2𝜈)

∙
𝛼𝑝1 =

𝑎𝑃1 + [𝑎(𝑎+ 𝑏+ 𝑘)− 𝜎2]�̇�1 + 𝑘(𝑎2 − 𝜎2)𝑃1. (31)

Multiplying this equation by 𝑏 and accounting, on its
left-hand side, for the left-hand part of (29), we de-
rive the fully closed fourth-order differential equation
for 𝑃1. In result, the sought solution to problem (20)
finally reads

𝑘{2
...
𝑃 1(𝑡) + [2(𝑎+ 𝑏+ 2𝜈) + 𝑘]𝑃1(𝑡)+

+2[(𝑎+ 𝑏)(𝑎+ 2𝜈) + (𝑘 + 2𝜈)(𝑎+ 𝜈)− 𝜎2]�̇�1(𝑡)}+

+ 𝑘{𝑘[𝑎(𝑎+2𝜈)−𝜎2]+2𝜈[𝑎(𝑎+ 𝑏+2𝜈)−𝜎2]}𝑃1(𝑡)+

+
𝑑

𝑑𝑡

[︂(︂
𝑑

𝑑𝑡
+ 2𝜈

)︂
𝐷(2)

]︂
𝑃1(𝑡) = 0, (32)

where

𝐷(2) ≡ 𝐷(2)(𝑎, 𝑏, 𝜈, 𝜎) =
𝑑2

𝑑𝑡2
+ 2(𝑎+ 𝑏+ 𝜈)

𝑑

𝑑𝑡
+

+ [(𝑎+ 𝑏)(𝑎+ 𝑏+ 2𝜈)− 𝜎2] (33)

is the second-order differential operator acting on the
populations 𝑃1,2(𝑡) of states |1, {2}⟩ in (20) inter-
changeably with respect to the permutation 𝑎 ↔ 𝑏
and independently of 𝑘.

Equation (32) is a linear homogeneous ordinary dif-
ferential equation of the fourth order with constant
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positive coefficients. Its exact solution is found by
standard methods and has the form

𝑃1(𝑡) =

4∑︁
𝑗=1

𝑐𝑗 exp(𝜆𝑗𝑡), (34)

where 𝜆𝑗 are the eigenvalues corresponding to the dif-
ferent exponential modes of evolution of the two-stage
absorbing Markov chain (20), and 𝑐𝑗 are the coeffi-
cients determined by the initial conditions. Since, due
to the Hurwitz theorem [40], the exponents 𝜆𝑗 are
nonpositive in the case of (32), (33), solution (34) is
Lyapunov-stable. Moreover, if all modes 𝜆𝑗 are differ-
ent, it is overcritically damped and is damped criti-
cally only with coincident 𝜆𝑗 . In general, even for the
simplest initial conditions

𝑃1(𝑡 = 0) ≡ 𝑃 ∘
1 = 0; �̇� ∘

1 = 0;

𝑃 ∘
1 = 𝑓1 = const;

...
𝑃

∘
1 = 𝜙1 = const

(35)

and a trivial steady-state boundary condition 𝑃1(𝑡→
→ ∞) ≡ 𝑃∞

1 = 0, the specific form of solution (34)
is very complicated and inappropriate for providing
the comprehensive analysis. However, for the limiting
cases considered in the following section, it can be
analyzed analytically.

5. Limiting Cases for Reversible
and Irreversible Processes

There are at least two cases of simplified stochastic
evolution of the two-stage absorbing Markov chain
(20) which are worth noting. The first important case
is the reversible one-stage stochastic process

|{2}⟩
𝑎+𝛼(𝑡)
−→
←−
𝑏

|1⟩ (36)

with the normalized state’s populations 𝑝1(𝑡)+
+ 𝑝{2}(𝑡) = 1. This process corresponds to the case
𝑘 = 0 in (20), by leading to the stochastic master
equation

�̇�1(𝑡) = −[𝑎+ 𝑏+ 𝛼(𝑡)]𝑝1(𝑡) + 𝑎+ 𝛼(𝑡). (37)

Averaging (37) and substituting the result for
𝛼(𝑡)𝑝1(𝑡) in (28) with 𝑃2(𝑡) = 1 − 𝑃1(𝑡) yield the
second-order equation

𝐷(2)𝑃1(𝑡) = 𝐹1. (38)

Here, 𝐹1 = 𝑎(𝑎+ 𝑏+ 2𝜈)− 𝜎2 is the initial force that
acts on a stochastically averaged population 𝑃1(𝑡) at-
tained at equilibrium to establish its stationary mean
value

𝑃∞
1 =[𝑎(𝑎+𝑏+2𝜈)−𝜎2]/[(𝑎+𝑏)(𝑎+𝑏+2𝜈)−𝜎2]. (39)

An analogous stationary value for 𝑃2(𝑡) is 𝑃∞
2 =

= 𝑏(𝑎+𝑏+2𝜈)/[(𝑎+𝑏)(𝑎+𝑏+2𝜈)−𝜎2]). The same re-
sult follows from the fourth-order equation (32), (33)
at 𝑘 = 0 too, given the normalization condition. This
implies that the tetra-exponential evolution of (32)
is divided into two parts – the fully reversible part
(33), (38) governing the establishment of the local
equilibrium between the states provided the values
of their equilibrium populations are shifted and the
irreversible part, given in the braces in (32), respon-
sible for the decay of these populations to zero with
a decay transition probability proportional to 𝑘. For
the initial conditions 𝑃 ∘

1 = �̇� ∘
1 = 0;𝑃 ∘

1 = 𝐹1 and the
stationary condition (39), solving (38) is trivial and
gives the bi-exponential solution

𝑃1(𝑡) =
𝑎(𝑎+ 𝑏+ 2𝜈)− 𝜎2

(𝑎+ 𝑏)(𝑎+ 𝑏+ 2𝜈)− 𝜎2
×

×
[︂
1− 𝜆1 exp(𝜆2𝑡)− 𝜆2 exp(𝜆1𝑡)

𝜆1 − 𝜆2

]︂
, (40)

where 𝜆1,2 = −(𝑎 + 𝑏 + 𝜈) ∓
√
𝜈2 + 𝜎2 are the two

nonpositive modes.
The second case corresponds to the entirely irre-

versible stochastic two-stage decay

|2⟩ 𝑎+𝛼(𝑡)−→ |1⟩ 𝑘−→ . (41)

Setting 𝑏 = 0 in Eq. (28) and differentiating it with
the use of the first equation in (27) yield
...
𝑃 1(𝑡) + [2(𝑎+ 𝜈) + 𝑘]𝑃1(𝑡)+

+ [𝑎(𝑎+ 2𝑘 + 2𝜈) + 2𝑘𝜈 − 𝜎2]�̇�1(𝑡)+

+ 𝑘[𝑎(𝑎+ 2𝜈)− 𝜎2]𝑃1(𝑡) = 0. (42)

According to (34), for the initial conditions

𝑃 ∘
1 = �̇� ∘

1 =0; 𝑃 ∘
1 =−

...
𝑃

∘
1[2(𝑎+ 𝜈) + 𝑘]−1= 𝑓1 = const,

(43)

where 𝑓1 = 𝑎(𝑎+2𝜈)−𝜎2 is a spontaneous initial force
virtually acting on the population evolving in time
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𝑃1(𝑡) owing to fluctuations in the forward transition
probability, the emerging tri-exponential solution to
(42) reads

𝑃1(𝑡) = [𝑎(𝑎+ 2𝜈)− 𝜎2]

[︂
exp(𝜆1𝑡)

(𝜆1 − 𝜆2)(𝜆1 − 𝜆3)
+

+
exp(𝜆2𝑡)

(𝜆2 − 𝜆1)(𝜆2 − 𝜆3)
+

exp(𝜆3𝑡)

(𝜆3 − 𝜆1)(𝜆3 − 𝜆2)

]︂
. (44)

This solution is overcritically damped with three non-
positive modes obeying the characteristic equation

𝜆3 + [2(𝑎+ 𝜈) + 𝑘]𝜆2 +

+ [𝑎(𝑎+ 2𝑘 + 2𝜈) + 2𝑘𝜈 − 𝜎2]𝜆+

+ [𝑎(𝑎+ 2𝜈)− 𝜎2]𝑘 = 0. (45)

In the limit of frequent stochastic fluctuations

2𝜈 ≫ 𝑎, 𝑘, 𝜎, (46)

solution (44) becomes independent of the both
stochastic fluctuation parameters, 𝜎 and 𝜈, and,
hence, comprises essentially the deterministic expres-
sion of the bi-exponential form

𝑃1(𝑡) =
𝑎

𝑎− 𝑘
[exp(−𝑘𝑡)− exp(−𝑎𝑡)]. (47)

Expression (47) represents the well-known two-
exponential equation typical of the description of
the various deterministic two-stage decay processes
ranging from two-step kinetics [41, 42] to ligand-
controlled reactions [43] and the radioactive de-
cay [44]. Therefore, limit (46) can be considered as
a sufficient condition for the transformation of the
stochastic two-stage decay model (20) into its deter-
ministic counterpart lacking a stochastic process in
the forward transition probability. Nevertheless, the
same does not come into effect in the case of mak-
ing the stochastic amplitude small without setting
the stochastic frequency large. Indeed, solving (45)
with 𝜎 → 0, we obtain 𝜆1 = −𝑘;𝜆2 = −𝑎;𝜆3 =
−(𝑎 + 2𝜈). Accounting for these modes in (44) leads
to the tri-exponential solution

𝑃1(𝑡) =
𝑎(𝑎+ 2𝜈)

2𝜈(𝑎+ 2𝜈 − 𝑘)

{︂
exp[−(𝑎+ 2𝜈)𝑡] +

+
2𝜈

𝑎− 𝑘

[︂
exp(−𝑘𝑡)− 𝑎+ 2𝜈 − 𝑘

2𝜈
exp(−𝑎𝑡)

]︂}︂
(48)

that shows the anomalous dependence on the stochas-
tic frequency 𝜈. Really, solution (48) reduces to the

common deterministic two-exponential equation (47)
in limit (46), as before. In the opposite limit of rare
stochastic fluctuations,

2𝜈 ≪ 𝑎, 𝑘, 𝜎, (49)

it is described by the uncommon two-exponential
equation with a time-dependent coefficient

𝑃1(𝑡) = [𝑎/(𝑎− 𝑘)]2 {exp(−𝑘𝑡)−

− [1 + (𝑎− 𝑘)𝑡] exp(−𝑎𝑡)}. (50)

Solution (48) differs in its irreversible behavior from
that of the reversible solution (40): at 𝜎 = 𝑏 = 0,
solution (40) reduces to the one-exponential behavior
𝑃1(𝑡) = 1 − exp(−𝑎𝑡), which does not depend on 𝜈,
whereas solution (48) does depend on 𝜈 and is tri-
exponential.

The effect of low-frequency stochastic fluctuations
(49) is even more apparent, when, instead of tend-
ing to zero 𝜎 → 0, the stochastic fluctuation ampli-
tude reaches its maximum such as 𝜎 ∼= 𝑎. In this so-
called “infrequent fluctuation resonance amplitude”
limit, we have

2𝜈 ≪ 𝜎 ∼= 𝑎 (51)

provided the stochastic frequency 𝜈 to be independent
of the decay transition probability 𝑘, the order, in
which the turning of 𝜈 to zero with respect to 𝑘 is
made, appears to be of importance. Thus, for a finite
nonzero 𝑘 in limit (49) of (48), the non-typical bi-
exponential solution is as follows:

𝑃1(𝑡) = [2𝑎/(2𝑎− 𝑘)] [exp(−𝑘𝑡)− exp(−2𝑎𝑡)]. (52)

This solution is distinct from that of (40) for the
reversible process (36), as well as from the solu-
tions of (47) and (50) for the irreversible process
(41) with frequent (46) and rare (49) low-amplitude
fluctuations in its forward transition probability, re-
spectively. However, passing to the limit 𝑘/2𝑎 → 0
in (52) leads to the natural result 𝑃1(𝑡) = [1−
− exp(−2𝑎𝑡)] −−−→

𝑡→∞
1, by implying the eventual ulti-

mate absorption of system (41) in state |1⟩ at 𝑎 ̸= 0.
On the contrary, taking firstly 𝑘 = 0 and then 𝜈 = 0
for (44) yields the solution 𝑃1(𝑡) = 1− [𝜆1 exp(𝜆2𝑡)−
−𝜆2 exp(𝜆1𝑡)]/(𝜆1 − 𝜆2) with the modes 𝜆1,2 =
= −(𝑎 + 𝜈) ∓

√
𝜈2 + 𝑎2 leading to 𝑃1(𝑡)|(𝜈/𝑎)→0

∼=
∼= [1 − exp(−𝜈 𝑡) + (𝜈/2𝑎) exp(−2𝑎𝑡)] −−−→

𝑡→∞
0 at
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𝜈 = 0. This signifies the immobilization of the two-
state system (41) conditioned by 𝑘 = 0 in its initial
state |2⟩ due to the presence of zero-frequency fluc-
tuations (𝜈 = 0), but resonant in amplitude (𝜎 = 𝑎)
in the forward transition probability. During the im-
mobilization, the system is pulled stochastically into
its initial state every time, as it is about the trans-
fer to another state. Indications for the stochastic
pulling effects are found in telecommunication fibers
and electron devices [45, 46]. Other examples of simi-
lar stochastic resonance processes in macroscopic two-
state systems such as those displayed by a particle in
the two-well potential are the diffusion in crystals,
conformational transformations in macromolecules,
activated chemical reactions, etc. (see, e.g. [47] and
references therein).

So, for a randomly perturbed two-stage system in
the limit (51), we can say about the emergence of a
stochastic resonance point in it, where the eigenvalues
of its two principal modes coincide with one another
so that the direction of a preferential relaxation pro-
cess – forward or backward – is indeterminate, and
the resulting overall transition probability is zero,
given the appropriate initial conditions. Formally, a
stochastic resonance point corresponds to a consistent
zero-point implicit in the zeroth- and first-order time
derivative terms of the differential equation. With re-
spect to the bi-exponential equation (40) of the re-
versible one-stage model (36) and the tri-exponential
equation (44) of irreversible two-stage model (41),
both with the nonzero forward deterministic tran-
sition probability 𝑎 > 0, setting the corresponding
terms to zero leads jointly to the identities

𝑎(𝑎+ 2𝜈) + 2𝑏(𝑎+ 𝜈)− 𝜎2 = 0;

𝑎(𝑎+ 2𝑘) + 2𝜈(𝑎+ 𝑘)− 𝜎2 = 0.
(53)

The union of these identities is compatible with only
a single stochastic resonance point

𝜎 = 𝑎; 𝜈 = 0; 𝑏 = 0; 𝑘 = 0 (54)

that is consistent with a zero point of the tetra-
exponential equation (32) for the irreversible two-
stage Markov chain (20) as well. Due to criterion of
matching the forward transition probability 𝑎 and
fluctuation amplitude 𝜎, this point comprises the nec-
essary stochastic resonance condition. On the other
hand, point (54) is a critical point. In its vicinity,
three additional sufficient conditions are realized to
allow for the overcritically damped tetra-exponential

equation (32) to be damped critically in the bimodal
fashion (47), (50), (52). While a resonant coincidence
between 𝑎 and 𝜎, three other parameters, namely, the
backward transition probability 𝑏, the decay transi-
tion probability 𝑘, and the stochastic fluctuation fre-
quency 𝜈, turn out to be almost insignificant with
respect to 𝑎 at that point. In this context, requiring
for the decay transition probability to be the first in
the turning to zero is equivalent to reducing the two-
stage absorbing Markov chain (20) to its reversible
one-stage counterpart (36), whose equilibrium pop-
ulations (39) obey the relations 𝑃∞

1 = 0; 𝑃∞
2 = 1

for 𝜎 = 𝑎, 𝑏 = 0, and 𝜈 = 0. From the physical
point of view, this directly corresponds to creating
the conditions of a stochastic immobilization for the
irreversible two-state system (20) in its initial state
|2⟩, as is set forth above with applying firstly 𝑘 = 0
and then 𝜈 → 0 for it.

6. Discussion and Conclusions

In the present paper, the nonequilibrium density ma-
trix approach is used to explicitly describe the tem-
poral behavior of populations of the two-stage ab-
sorbing Markov chain (20) subject to discrete macro-
scopic fluctuations in its forward transition probabil-
ity represented as a symmetric dichotomous stochas-
tic process, given the presence of microscopic fluctua-
tions (7) in the energy levels of chain’s states. The
equation for the kinetics of a transient-state pop-
ulation averaged over the stochastic process is de-
rived in a closed analytical form (32). It is shown
that the solution of this equation, which is tetra-
exponential (34) in the general case, reduces to its tri-
exponential (44), (48) and bi-exponential (40), (47),
(50), (52) forms for the corresponding irreversible
two-stage (41) and reversible one-stage (36) kinetic
models, respectively. Such reduction is accurate in
the full transition probability space for (20), but a
stochastic resonance point (54). At this point, the for-
ward transition probability 𝑎 is resonantly coincident
with the stochastic amplitude 𝜎, while the backward
transition probability 𝑏, decay transition probability
𝑘, and fluctuation frequency 𝜈 are negligible with re-
spect to 𝑎. However, in a vicinity of the stochastic
resonance point, the order of vanishing 𝑘 and 𝜈 be-
comes important. Thus, if we set firstly 𝑘 and then 𝜈
to zero, the irreversible two-stage Markov chain (41)
demonstrates the effect of stochastic immobilization
(39) in its initial state typical of the reversible one-
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stage Markov chain (36). Rather, if we do so in the
opposite order, firstly 𝑣 = 0 and only then 𝑘 → 0, the
attraction of the absorbing Markov chain to its final
state occurs.

One reason for this discrepancy is that the two-
state decaying system (20) becomes nonergodic at a
very low, but finite 𝑘, since the first equation for the
populations of states in (27) breaks down the nor-
malization condition of these populations typical of
the two-state reversible system (36). Moreover, dif-
ferent types of stochastic motion in the two-state sys-
tem (20) can appear. In general, one indicates the
relaxation motion, which reversibly takes the sys-
tem toward its stationary state with the forward 𝑎
and backward 𝑏 rates, whose decaying motion irre-
versibly degrades it away this state with the rate
𝑘, and the fluctuation motion. The role of the latter
is two-fold. First, it stochastically changes the posi-
tion of the microscopic energy levels of system (7)-
(9). In the Markovian approximation, this leads to
the energy level broadening with the width propor-
tional to the intensity of those intrinsic microscopic
fluctuations (13). Second, it randomly perturbs sys-
tem’s conventional rate constants by means of extrin-
sic macroscopic fluctuations, whose mean amplitudes
and frequencies are comparable with the determinis-
tic rates. In the two-state system (20), all types of
motion can be in the distinction between using them
for the description of a temporal behavior of popu-
lations. Especially, such a distinction is apparent in
the case of resonant and rare fluctuations, i.e. in a
vicinity of the stochastic resonance point. The latter
is typical of many nonstationary nonequilibrium sys-
tems such as analog electrical circuits [48], bistable
optical devices [49], and bistable macromolecular re-
actions [50]. Therefore, in terms of its temporal be-
havior, the simple two-state decaying system (20) can
be considered as the first approximation to the kinet-
ics of those more complex systems, which reveal the
lack of both the detailed balance condition for their
relaxation rates and the normalization condition for
populations and demonstrate the breaking of symme-
try between relaxation and fluctuation phenomena,
which is particularly seen under the stochastic reso-
nance conditions [48].
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ДИФЕРЕНЦIАЛЬНЕ РIВНЯННЯ ЧЕТВЕРТОГО
ПОРЯДКУ ДЛЯ ДВОСТАДIЙНОГО АБСОРБУЮЧОГО
ЛАНЦЮГА МАРКОВА IЗ СТОХАСТИЧНОЮ
ЙМОВIРНIСТЮ ПРЯМОГО ПЕРЕХОДУ

Р е з ю м е

Надано точного розв’язку проблемi усереднення кiнетики
двостадiйного абсорбуючого ланцюга Маркова за випад-
ковими флуктуацiями ймовiрностi прямого переходу, що
апроксимується симетричним дихотомiчним стохастичним
процесом. Показано, що часова поведiнка заселеностi пере-

хiдного стану ланцюга задовольняє диференцiальне рiвнян-
ня четвертого порядку, чий розв’язок має чотириекспонен-
цiйний вигляд за скiнчених частоти та середньої амплiтуди
флуктуацiй. У границi частих флуктуацiй цей чотириекспо-
ненцiйний розв’язок зводиться до простого двоекспоненцiй-
ного вигляду, що є типовим для детермiнiстичного процесу
двостадiйного загасання, якому бракує флуктуацiй у ймо-
вiрностi переходу. Проте у границi рiдких флуктуацiй чо-
тириекспоненцiйний розв’язок, хоча й набуває спрощеного
вигляду три- чи двоекспоненцiйного розв’язку, стає перева-
жно специфiчним у вiдношеннi як до низько амплiтудних,
так i до резонансно амплiтудних флуктуацiй. Бiльше того,
iснує точка стохастичного резонансу, де ймовiрнiсть пря-
мого переходу збiгається з середньою амплiтудою флукту-
ацiй, тодi як ймовiрностi загасання i зворотного переходу,
а також частота флуктуацiй є незначними. Як результат, в
цiй точцi здiйснюється стохастична iмобiлiзацiя двостадiй-
ного абсорбуючого ланцюга Маркова у його початковому
станi.
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