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FLEXOELECTRIC EFFECT IMPACT
ON THE HYSTERETIC DYNAMICS OF THE LOCAL
ELECTROMECHANICAL RESPONSE OF MIXED
IONIC-ELECTRONIC CONDUCTORS

PACS 62.20.F-, 77.65.-j,
84.32.Ff

Strong coupling among electrochemical potentials, concentrations of electrons, ions, and strains
mediated by the flexoelectric effect is a ubiquitous feature of moderate conductors, in par-
ticular, MIECs, the materials of choice in devices ranging from electroresistive and mem-
ristive elements to ion batteries and fuel cells. Corresponding mechanisms that govern bias-
concentration-strain changes (Vegard expansion, deformation potential, and flexoelectric ef-
fect) are analyzed. Notably, that the contribution of the flexoelectric coupling to a local surface
displacement of the moderate conductors is a complex dynamic effect which may lead to the
drastic changing of the material mechanical response, depending on the values of flexoelectric
coefficients and other external conditions. Numerical simulations have shown that the flexo-
electric impact on the mechanical response ranges from the appearance of additional strain
components, essential changes of a hysteresis loop shape and orientation, and the appearance
of complex twisted hysteresis loops.
K e yw o r d s: flexoelectric effect, mixed ionic-electronic moderate conductors, thin films,
nanoparticles, electrochemical strain microscopy.

1. Introduction

Mixed ionic-electronic moderate conductors (MIEC)
such as solid electrolytes with rechargeable ions or
vacancies, which also can be mobile, free electrons
and/or holes, can display a reversible dynamics of the
space charge layers that leads to a pronounced resis-
tive switching between metastable states with high
and low resistances [1–6] and unique dynamic prop-
erties (including hysteretic one) of the electro-me-
chanical response [7–14]. Though MIECs are promis-
ing candidates for the nonvolatile memory devices,
the physical principles of the phenomena are yet not
clear. In general, memristive systems cannot store en-
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ergy, but they “remember” the total charge transfer
due to the metastable changes of their conductance
[15, 16]. Strukov et al. [17, 18] demonstrated that the
memristive behaviour can be inherent to thin semi-
conductor films, when the drift-diffusion kinetic equa-
tions for electrons, holes, and mobile donors/accep-
tors are strongly coupled. In this case, the memory
resistance depends on the thickness ratio of the doped
and pure regions of a semiconductor. Note that the
space charge dynamics in MIEC thin films were stud-
ied theoretically mostly in the framework of the linear
drift-diffusion Poisson–Planck–Nernst theory and di-
luted species approximation [17–20].

One can expect a strong correlation between the
electrophysical and electromechanical responses in
MIECs [2]. Actually, the dynamic redistribution of
the mobile species (ions, vacancies, and electrons)
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concentrations caused by the electromigration (elec-
tric field-driven for charged species) and diffusion
(concentration gradient-driven for both charged and
neutral species) mechanisms can change the lattice
molar volume [21]. The changes in the volume result
in local electrochemical stresses, the so-called “Veg-
ard stress” or “chemical pressure” [22, 23]. The Veg-
ard mechanism plays a decisive role in the origin and
evolution of local strains caused by the point defect
kinetics in solids [24, 25].

Spatially confined and especially nanosized MIECs
(such as thin films and nanoparticles) are intrinsi-
cally inhomogeneous in space and often possess in-
herent strains, chemical inhomogeneities, and/or po-
larization gradients, which are inevitably present near
the surfaces, interfaces, and point and topological de-
fects. According to experiments, as well as to phe-
nomenological and microscopic theories, the flexo-
electric effect [26–30], which can be spontaneous in
nanosystems [31, 32], strongly influences the broad
spectrum of their polar, electromechanical, electro-
chemical, and electrophysical responses [33–38].

2. Dynamics of Electromechanical Response
in the Presence of Mobile Charged Impurity

In order to study the dynamics of the electrochemi-
cal strain microscopy (ESM) response, which appears,
when the frequency of the ac voltage applied to a tip
is higher or at least comparable with the inverse relax-
ation time of charge carriers, we need to consider ki-
netic equations for ionized impurity centers and elec-
tron fluxes. The problem becomes rather complex, if
several factors, e.g. the impurity centers mobility and
recharging rate are considered, mainly due to the ap-
pearance of hopping and generation terms in kinetic
equations [39]. For the simplified analyses presented
below, we will consider a situation where only mobile
ionic defects and electrons are present in MIEC. We
will assume that the hopping conduction and the ions
recharging can be neglected. So, mobile defects re-
mained fully ionized all the time.

Despite the evident oversimplifications of the model
in comparison with physical reality, it can describe
the main features of, e.g., the kinetics of pro-
tons or Li ions in solid electrolytes [7–14]. Actually,
works [7–14] proposed analytical models of the lin-
earized drift-diffusion kinetics in solid electrolytes
with mixed electronic-ionic conductivity. These lin-

Fig. 1. Elliptic loops of the local ESM response calculated
in the linear drift-diffusion theory for different dimensionless
frequencies 𝑤 (labels near the loops), (Adapted with permission
from [8]). The dimensionless frequency 𝑤 = 𝜔𝜏 , where 𝜔 is the
applied frequency in s−1, is the Maxwellian relaxation time of
the space charge

ear models, utilizing the decoupling approximation to
solve the elastic problem and the diluted electrolyte
approximation for mobile charge species, proved that
the Vegard stresses can give rise to a local mechano-
electrochemical response in Li-containing MIECs and
quantum paraelectrics with oxygen vacancies.

It appears instructive to analyze the ESM dy-
namic response in terms of the hysteretic loop be-
havior, providing a direct link to the observables in
the ESM experiment [9]. In the linear drift-diffusion
regime, the complex quantities, namely the normal
component of the surface displacement, �̃�3(𝜔, 𝑡) =
= 𝑢3(0, 𝜔) exp (𝑖𝜔𝑡), and the ac voltage applied to
a tip, 𝑈0(𝜔, 𝑡) = 𝑈 exp (𝑖𝜔𝑡), describe the elliptic
loop in the complex plane. The parametric depen-
dence of the observable quantity Re[𝑢3(𝜔) exp (𝑖𝜔𝑡)]
on Re[𝑈(𝜔) exp (𝑖𝜔𝑡)] describes the elliptic loop at a
fixed frequency 𝜔 (see Fig. 1).

However, the analytical results of the linear drift-
diffusion model are not applicable for MIEC film re-
gions, where the electron accumulation and the strong
accumulation of mobile defects are pronounced. As a
result, the ESM loop shape is not elliptic, but pro-
nounced hysteresis-like [9, 10]. Such regions usually
originate near the film interfaces under the increase
of an applied electric field to the values higher than
the thermal activation field; the corresponding volt-
age is typically not more than several tens mV for
∼100-nm films. Naturally, the expected correlation
between the electrophysical and electromechanical re-
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Fig. 2. Vertical component of the electromechanical response (displacement �̃�3 ) calculated for different frequencies: 𝜏𝑀𝑓 ,
film thickness ℎ, asymmetric (a–c) and symmetric (d–f) boundary conditions. Maxwellian relaxation is 𝜏𝑀 , linear frequency
𝑓 = 𝜔/2𝜋, 𝑅𝑆 is the screening radius. The film surface 𝑧 = 0 is almost defect blocking, while the film surface 𝑧 = ℎ is almost
defect transparent (a–c). Both interfaces are defect blocking (d-f). (Adapted from [14])

sponses of MIEC films cannot be studied adequately
within the linear drift-diffusion theory and the diluted
electrolyte and decoupling approximations [12].

Appeared that the model, in which the concentra-
tion of mobile charged defects is restricted by the
steric limit, predicts a great variety of dynamic elec-
tromechanical responses of MIEC films [10, 14]. In
particular, the shape of local electromechanical re-
sponse hysteresis loops demonstrates a crossover
from the loops with pronounced memory window to
butterfly-like loops depending on the boundary condi-
tions and film thickness ℎ (see Fig. 2). Different loops
in Fig. 2 correspond to different values of maximal
voltage 𝑈 . At low frequencies 𝑓𝜏𝑀 6 0.01, the re-
sponse curves are strongly asymmetric with respect
to the voltage sign as anticipated from the asymme-
try of the interfaces ionic conductivity. For the case,
the total changes of the ionized defect amount con-
tribute into the MIEC film surface displacement. The
loops become noticeably open and almost symmetric
with the frequency increase 𝑓 𝜏𝑀 > 0.01. The infla-
tion becomes much stronger with the thicknesses in-
crease, and the loop shape becomes elliptic for small
voltages 𝑈 < 𝑘B𝑇/𝑒. For the high maximal voltage 𝑈,
the loop shapes demonstrate a pronounced size effect:

the transition from a slim hysteresis to the ellipse ap-
pears with the film thickness increase. The transition
most probably originates from the electric field de-
crease with the film thickness increase: the thicker
the film, the closer to linear is its response.

Some of the strain-voltage loop shapes shown in
Fig. 2 can be, indeed, encountered in ionic semicon-
ductors like correlated oxides, strontium titanate, and
resistive switching materials. Consequently, the SPM
measurements of the MIEC film surface displacement
could provide important information about the local
oxidation level, electron-phonon interactions via the
deformation potential, and even Jahn–Teller distor-
tions in films. Below, we concentrate on some ex-
amples with a special attention to the flexoelectric
coupling.

3. Dynamics of ESM
Response: Flexoelectric Effect Impact

To get insight into the mechanisms of local mecha-
nic-electro-chemical response, in fact, the ESM im-
age formation, we consider a cylindrical problem of
the nonlinear drift-diffusion kinetics allowing for the
Vegard mechanism, electrostriction flexoelectric ef-
fect, steric limit for the mobile ions concentration,
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and Fermi–Dirac distribution function for the elec-
tron density, thus, including the most common form
of a charge species nonlinearity inherent to the sys-
tem. The finite-element modeling performed for the
cylindrical geometry at different frequencies and bias
voltage amplitudes provides the concentration and
strain distributions registered by ESM microscopy [4].

A typical geometry of ESM microscopy with axially
symmetric tip is shown in Fig. 3. All physical quan-
tities depend only on the distances 𝑧 from the tip-
surface interface and the polar radius 𝑟 (2D-problem).
Mobile positively charged defects such as oxygen va-
cancies or impurity ions and free electrons are inher-
ent to the film.

The mobile charge carriers redistribution creates
the internal electric field, whose radial and normal
components, 𝐸𝑟 = −𝜕𝜙/𝜕𝑟 and 𝐸𝑧 = −𝜕𝜙/𝜕𝑧, are
determined from the Poisson equation for the elec-
tric potential 𝜙 written in the cylindrical coordinate
frame:

𝜀0𝜀

(︂
𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2

)︂
= −𝑒

(︀
𝑍𝑑𝑁

+
𝑑 (𝜙)− 𝑛(𝜙)

)︀
.(1)

Here, 𝜀0 = 8.85 × 10−12 F/m is the dielectric per-
mittivity of vacuum; 𝜀 is a dielectric permittivity of
MIEC, 𝑒 = 1.6× 10−19 C is the electron charge, elec-
tron density is 𝑛, positively charged defect concen-
tration is 𝑁+

𝑑 , and 𝑍𝑑 is their charge in the units
of electron charge. For the particular case of the
electroded film ℎ in thickness, the electric potential
satisfy fixed boundary conditions at the electrodes,
𝜙|𝑧=0 = 0, 𝜙|𝑧=ℎ = 𝑈(𝑟, 𝑡), 𝜙|𝑟→∞ = 0. The pe-
riodic voltage 𝑈 is applied to the tip electrode. For
demonstration, we use the Gaussian form, 𝑈(𝑟, 𝑡) =
= 𝑈0 exp

(︀
−𝑟2

⧸︀
𝑟20
)︀
sin (𝜔𝑡), and regard for that the

tip lateral size 𝑟0 is much smaller than the size of a
computation cell.

The continuity equation for the mobile charged de-
fect concentration 𝑁+

𝑑 is

𝜕 𝑁+
𝑑

𝜕 𝑡
+

1

𝑒𝑍𝑑

(︂
1

𝑟

𝜕(𝑟𝐽𝑑
𝑟 )

𝜕𝑟
+

𝜕𝐽𝑑
𝑧

𝜕𝑧

)︂
= 𝐺𝑑(𝑁

+
𝑑 , 𝑛). (2)

The defect current radial and normal components are
proportional to the gradients of their electrochemical
potentials 𝜁𝑑, namely 𝐽𝑑

𝑟 = −𝑒𝑍𝑑𝜂𝑑𝑁
+
𝑑 (𝜕𝜁𝑑/𝜕𝑟) and

𝐽𝑑
𝑧 = −𝑒𝑍𝑑𝜂𝑑𝑁

+
𝑑 (𝜕𝜁𝑑/𝜕𝑧), where 𝜂𝑑 is the mobility

coefficient that is regarded constant. The boundary
conditions for the defect are blocking 𝐽𝑑|𝑧=0 = 0;

Fig. 3. Typical geometry for ESM microscopy. Definite
electrical and mechanical boundary conditions are labeled.
(Adapted from [40])

𝐽𝑑|𝑧=ℎ = 0;𝐽𝑑|𝑟=𝑅 = 0. The function 𝐺𝑑

(︀
𝑁+

𝑑 , 𝑛
)︀
∝

∝ −𝛾𝑑𝑁
+
𝑑 𝑛 + 𝛾𝑇

(︀
𝑁0

𝑑 −𝑁+
𝑑

)︀
describes the electron

trapping by ionized defects and their generation by
non-ionized ones. The function will be neglected in
numerical simulations, primarily because its specific
form and the values of trapping coefficients are typi-
cally unknown.

The electrochemical potential level 𝜁𝑑 is defined as

𝜁𝑑=−𝐸𝑑 −𝑊 𝑑
𝑖𝑗𝜎𝑖𝑗+𝑒𝑍𝑑𝜙+𝑘B𝑇 ln

(︂
𝑁+

𝑑

𝑁𝑆
𝑑 −𝑁+

𝑑

)︂
, (3)

where 𝐸𝑑 is the impurity level, the elastic stress ten-
sor is 𝜎𝑖𝑗 , 𝑇 is the absolute temperature, 𝑘B is the
Boltzmann constant, and 𝑊 𝑑

𝑖𝑗 is the Vegard strain
tensor. For the case of diagonal Vegard strain tensor,
we have 𝑊 𝑑

𝑖𝑗𝜎𝑖𝑗 ≡ 𝑊𝜎, where the first stress invariant
is introduced as 𝜎 = 𝜎𝑧𝑧+𝜎𝑟𝑟+𝜎𝜙𝜙. The absolute val-
ues of 𝑊 for ABO3 compounds can be estimated from
Refs. [41, 42] as |𝑊 | ∝ (1–50) Å3. The maximal stoi-
chiometric concentration of defects (𝑁𝑆

𝑑 ) in Eq. (3) in-
volves steric effects [10]. For numerical estimates, one
should assume that 𝑁𝑆

𝑑 ≡ 𝑎−3, where 𝑎3 is the min-
imal volume allowed per defect center. The steric ef-
fect limits the defect accumulation in a vicinity of the
film surface. Actually, from Eq. (3), the concentration
of defects is 𝑁+

𝑑 = 𝑁𝑆
𝑑 𝑓 (−𝐸𝑑 −𝑊𝜎 + 𝑒𝑍𝑑𝜙− 𝜁𝑑),

where 𝑓(𝑥) = (1 + exp(𝑥/𝑘B𝑇 ))
−1 is the Fermi–

Dirac distribution function. Note that it is not clear
whether the concentration of donor atoms 𝑁0

𝑑 and
the maximal stoichiometric concentration of defects
𝑁𝑆

𝑑 (introduced here) should coincide. In fact, they
should not.

The continuity equation for the electron current is
as follows:
𝜕 𝑛

𝜕 𝑡
− 1

𝑒

(︂
1

𝑟

𝜕(𝑟𝐽𝑒
𝑟 )

𝜕𝑟
+

𝜕𝐽𝑒
𝑧

𝜕𝑧

)︂
= 𝐺𝑒(𝑁

+
𝑑 , 𝑛). (4)
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The electron current components are 𝐽𝑒
𝑟 = 𝑒𝜂𝑒 ×

×𝑛 (𝜕𝜁𝑒/𝜕𝑟) and 𝐽𝑒
𝑧 = 𝑒𝜂𝑒𝑛 (𝜕𝜁𝑒/𝜕𝑧), where 𝜂𝑒 is

the electron mobility coefficient, and 𝜁𝑒 is the elec-
trochemical potential. The function 𝐺𝑒

(︀
𝑁+

𝑑 , 𝑛
)︀

=

= 𝐺𝑑

(︀
𝑁+

𝑑 , 𝑛
)︀
− 𝑛/𝜏𝑛 describes the electron trap-

ping by an ionized defect and includes its finite life-
time. For the above-mentioned reasons, the function
will be neglected in numerical simulations.

The boundary conditions for the electrons are
taken in the linearized Chang–Jaffe [43] form,
(𝐽𝑒

𝑧− 𝜉0(𝑛− 𝑛𝑏))|𝑧=0= 0, (𝐽𝑒
𝑧+ 𝜉ℎ(𝑛− 𝑛𝑏))|𝑧=ℎ= 0,

𝐽𝑒|𝑟→∞ = 0, where 𝜉0 and 𝜉ℎ are positive rate con-
stants related to the surface recombination veloc-
ity. The boundary conditions contain the continuous
transition from the “open” electrodes (𝜉0,ℎ → ∞) to
the interface limited kinetics (0 < 𝜉0,ℎ < ∞) and the
“completely blocking” electrodes (𝜉0,ℎ = 0).

Note that electrons are regarded sizeless, and the
continuous approximation for their concentration in
the conduction band is consistent with the following
expression for electrochemical potential:

𝜁𝑒 ≈ 𝐸C − Ξ𝑖𝑗𝜎𝑖𝑗 + 𝑘B𝑇 𝐹−1
1/2

(︂
𝑛 (𝜙)

𝑁C

)︂
− 𝑒𝜙. (5)

The electrochemical potential 𝜁𝑒 tends to the Fermi
energy level 𝐸F in equilibrium, 𝐸C is the conduc-
tive band bottom, Ξ𝑖𝑗 is a deformation potential ten-
sor also regarded diagonal for numerical estimates,
𝐹−1
1/2 is the function inverse to the Fermi integral

𝐹1/2 (𝜉) = 2√
𝜋

∫︀∞
0

√
𝜁𝑑𝜁

1+exp(𝜁−𝜉) ; the effective density

of states in the conductive band 𝑁C =
(︀
𝑚𝑛𝑘B𝑇
2𝜋~2

)︀3/2
,

and the electron effective mass is 𝑚𝑛. The elec-
tron density can be calculated from Eq. (5) as 𝑛 =
= 𝑁C𝐹1/2((𝑒𝜙+ 𝜁𝑒 − 𝐸C + Ξ𝜎)/𝑘B𝑇 ). The expres-
sion gives the thermodynamic distribution of the elec-
tron density under the condition 𝜁𝑒 = −𝐸F.

Using the dependences of the concentrations of
charged defects and electrons on the electrochemi-
cal potentials 𝜁𝑑,𝑒 derived directly from Eqs. (3) and
(5), namely 𝑁+

𝑑 = 𝑁𝑆
𝑑 𝑓 (−𝐸𝑑 −𝑊𝜎 + 𝑒𝑍𝑑𝜙− 𝜁𝑑)

and 𝑛 = 𝑁C𝐹1/2((𝑒𝜙+ 𝜁𝑒 − 𝐸C)/𝑘B𝑇 ), one can
express the potentials as the functions of mobile
charged defects and electron chemical potentials 𝜇𝑑 =
= 𝑒𝑍𝑑𝜙 − 𝜁𝑑 − 𝑊𝜎 and 𝜇𝑒 = 𝑒𝜙 + 𝜁𝑒 − Ξ𝜎 in
the following way: 𝑁+

𝑑 = 𝑁𝑆
𝑑 𝑓 (𝜇𝑑 − 𝐸𝑑) and 𝑛 =

= 𝑁C𝐹1/2((𝜇𝑒 − 𝐸C)/𝑘B𝑇 ). Then the continuity
equations (2) and (4) become [40]
𝜕 𝑓 (𝜇𝑑 − 𝐸𝑑)

𝜕 𝑡
− 1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝐹𝑑

𝜕𝑟

)︂
− 𝜕

𝜕𝑧

(︂
𝜕𝐹𝑑

𝜕𝑧

)︂
= 0, (6a)

𝜕

𝜕𝑡
𝐹1/2

(︂
𝜇𝑒 − 𝐸C

𝑘B𝑇

)︂
− 1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝐹𝑒

𝜕𝑟

)︂
− 𝜕

𝜕𝑧

(︂
𝜕𝐹𝑒

𝜕𝑧

)︂
= 0,

(6b)

where the functions 𝐹𝑑 = 𝜂𝑑𝑓(𝜇𝑑 − 𝐸𝑑)(𝑒𝑍𝑑𝜙− 𝜇𝑑 −
−𝑊𝜎) and 𝐹𝑒 = 𝜂𝑒𝐹1/2

(︁
𝜇𝑒−𝐸𝐶

𝑘B𝑇

)︁
(𝜇𝑒 − 𝑒𝜙) are intro-

duced.
The electrochemical strain can be calculated as fol-

lows. We used generalized Hooke’s law Eq. (6) for a
chemically active elastic solid media relating the con-
centration deviation from the average to the mechan-
ical stress tensor 𝜎𝑖𝑗 and elastic strain 𝑢𝑖𝑗 , where we
suppose that only two kinds of species contribute to
the elastic field and denote 𝑊𝑖𝑗 ≡ 𝑊 𝑑

𝑖𝑗 , Ξ𝑖𝑗 ≡ Ξ𝐶
𝑖𝑗 .

Since the typical intrinsic resonance frequencies of
the material are in the GHz range, well above the
practically important limits both in terms of the ion
dynamics and the AFM-based detection of localized
mechanical vibrations, one can use the static equa-
tion of mechanical equilibrium, 𝜕𝜎𝑖𝑗/𝜕𝑥𝑗 = 0, for
the modeling of mechanical phenomena (here, we ne-
glected the first and second time derivatives). This
leads to the equation for the mechanical displacement
vector 𝑢𝑖 in the film bulk:

𝑐𝑖𝑗𝑘𝑙

(︂
𝜕2𝑢𝑘

𝜕𝑥𝑗𝜕𝑥𝑙
−𝑊𝑘𝑙

𝜕𝛿𝑁+
𝑑

𝜕𝑥𝑗
− Ξ𝑘𝑙

𝜕𝛿𝑛

𝜕𝑥𝑗
−

−𝐹𝑘𝑙𝑚𝑛
𝜕2𝑃𝑚

𝜕𝑥𝑗𝜕𝑥𝑛
−𝑄𝑘𝑙𝑚𝑛

𝜕 (𝑃𝑚𝑃𝑛)

𝜕𝑥𝑗

)︂
= 0. (7)

Here, we introduced 𝛿𝑁+
𝑑 (r, 𝑡) = 𝑁+

𝑑 (r, 𝑡)−𝑁+
𝑑0 and

𝛿𝑛 (r, 𝑡) = 𝑛 (r, 𝑡) − 𝑛𝑒, 𝑄𝑘𝑙𝑚𝑛 is the electrostriction
tensor, and 𝐹𝑘𝑙𝑚𝑛 is the flexoelectric effect tensor,
and 𝑃𝑛 is the electric polarization component that
satisfies the corresponding (linear dielectric or non-
linear para- or ferroelectric ) equation of state and
boundary conditions, if the gradient term is included.

The boundary condition on the free surface 𝑧 = 0
of the film is 𝜎3𝑗 (𝑧 = 0, 𝑡) = 0. The surface 𝑧 = ℎ is
clamped to a rigid substrate. Thus, 𝑢𝑘|𝑧=ℎ = 0.

The hysteresis loops presented in Fig. 4 correspond
to the deformation appearing in the ionic material
under the action of an externally applied electrical
field changing in time in a sinusoidal manner. Loops
were computer-simulated on the base of the follow-
ing assumptions: both electrodes are assumed to be
blocking for donors and electrons; voltage is applied
between the probe and the bottom electrode; verti-
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Fig. 4. (a), (b) Electromechanical response �̃�3 (𝑉, 𝑓) calculated for different fre-
quencies: (magenta: 𝜔𝑡𝑒 = 0.157, red: 𝜔𝑡𝑒 = 0.104 and blue: 𝜔𝑡𝑒 = 0.052) and zero
(dashed curves), positive (solid curves) and negative (dash-dotted curves) flexoelec-
tric coefficients. (c). The shape profile deviation from the empty rectangle shows
the surface deformation

cal displacement of MIEC is measured directly un-
der the probe. The different colors of the curves cor-
respond to the different frequencies of the external
field. Simulations are performed in the framework of
the decoupling approximation, which means that the
redistribution of charge carriers leads to the appear-
ance of the local strain and displacement, while the
strain itself does not affect the charge carrier distri-
bution. Figure 4 illustrates the impact of the flexo-
electric effect on the material mechanical response in
the ESM response. The solid and dash-dotted curves
correspond to the model involving the Vegard mech-
anism and the flexoelectric effect of different signs,
while the dashed curves take only the Vegard mech-
anism into account. Note that the dashed and solid
curves slightly change their orientation and become
more asymmetric, as the frequency increases. A more

detailed comparison of these curves shows that ones
representing only the Vegard mechanism have an
ellipsoid-like form with a center shifted relative to
the origin (possibly explained by the non-equivalence
of the characteristics of donors and electrons), while
the solid curves have more complex and asymmetric
shape, which is not ellipsoid-like, strictly speaking.

Additional information regarding the impact of
the flexoelectric effect can be found from the series
of the donor distribution profiles, Fig. 4, c, plotted
for the different applied voltages during one period,
i.e. different moments of time inside the period, indi-
cated in Fig. 4, a by numbers 1–8.

In particular, contour maps 1–4 and 5–8 show the
donors distribution and surface deformations at the
different moments of time for positive and zero flex-
oelectric coefficients, correspondingly. For the sake of
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clearness, only the actual area of the electromechani-
cal response under the probe is shown. It can be con-
cluded from the comparison of distributions 1 and
5 (as well as 3 and 7) that the flexoelectric effect
causes a measurable additional strain. Since the in-
verse effect of the strain influence on the charge car-
riers distribution is neglected in the decoupling ap-
proximation, mapping pairs 1 and 5 (as well as 3
and 7) have the same donor redistribution and dif-
ferent surface displacements; pairs 2 and 6 (as well as
4 and 8) correspond to different donor distributions
and strains. Maximal positive and negative surface
strains correspond to the moments, when donors are
highly localized or almost absent in the area under
the probe. Zero strain occurs at the moments, when
donors start moving inside or outside the area un-
der the probe. The flexoelectric effect leads to the
appearance of an additional delay in the carriers
relaxation.

Complex effects take place with changing the sign
of flexoelectric coefficients. The comparison of the
curves in Fig. 4, a calculated for positive 𝐹𝑖𝑗 with the
curves in Fig. 4, b calculated for negative ones shows
that the curves have totally different forms. The loop
has changed its orientation and no more has any sim-
ilarity with elliptic shape. Another challenging effect
is the twisting of the curves, which strongly depends
on the frequency of the external field. Such a complex
transformation of the behavior of curves with 𝐹𝑖𝑗 sign
change can be probably explained in the terms of dy-
namic effects.

4. Summary Remarks

The performed analytical and numerical calculations
show that the dynamic electromechanical response
of the MIEC film is caused by the local changes
of the concentration of mobile charged defects (ions
or vacancies) (conventional stoichiometry contribu-
tion); concentration of free electrons (holes) (electron-
phonon coupling via the deformation potential), and
flexoelectric effect. Estimations performed for corre-
lated oxides show that the strengths of all three con-
tributions appeared comparable.

Note that the contribution of the flexoelectric cou-
pling to the local surface displacement of moderate
conductors is a complex dynamic effect, which may
lead to an essential changing of the material mechan-
ical response, depending on the values of flexoelec-

tric coefficients and other external conditions. The
numerical simulation has shown that the flexoelectric
impact on the mechanical response may vary from
the simple appearance of an additional deformation
leading to relatively slight changes of the shape and
orientation of a hysteresis loop up to the appearance
of the complex twisting of hysteresis loops.
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ВПЛИВ ФЛЕКСОЕЛЕКРИЧНОГО
ЕФЕКТУ НА ГIСТЕРЕЗИСНУ ДИНАМIКУ
ЛОКАЛЬНОГО ЕЛЕКТРОМЕХАНIЧНОГО
ВIДГУКУ НАПIВПРОВIДНИКIВ
З IОННО-ЕЛЕКТРОННОЮ ПРОВIДНIСТЮ

Р е з ю м е

Сильний зв’язок мiж електрохiмiчними потенцiалами, кон-
центрацiєю електронiв, iонiв i деформацiй, зпричинених
флексоефектом є поширеною ознакою напiвпровiдникiв з
iонно-електронною провiднiстю – матерiалiв, якi вибирають
для пристроїв, починаючи вiд елементiв опору та пам’ятi i
до iонних батарей i паливних елементiв. В статтi аналiзую-
ться вiдповiднi механiзми, якi регулюють змiни концентра
та змiщення (розширення Вегарда, деформацiйний потен-
цiал i флексоефект). Цiкаво, що внесок флексоелектрично-
го зв’язку в локальне змiщення поверхнi напiвпровiдникiв
є складним i динамiчним ефектом, який може призвести
до рiзкої змiни механiчного вiдгуку, залежно вiд значень
флексоелектричних коефiцiєнтiв i iнших зовнiшнiх умов.
Чисельне моделювання показало, що вплив флексоелектри-
чного ефекту на механiчний вiдгук може змiнюватися вiд
простого, до появи додаткової деформацiї, що призводить
до порiвняно невеликої змiни форми петлi гiстерезису i змi-
ни орiєнтацiї, i до появи складних скручених петель гiсте-
резису.
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