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1. Introduction

Recent theoretical studies of the influence of the magnetoelectric effect on the physical prop-
erties of nanosized ferroics and multiferroics have been reviewed. Special attention is focused
on the description of piezomagnetic, piezoelectric, and linear magnetoelectric effects near the
ferroid surface in the framework of the Landau—Ginzburg—Devonshire phenomenological the-
ory, where they are considered to be a result of the spontaneous surface-induced symmetry
reduction. Therefore, nanosized particles and thin films can manifest pronounced piezomag-
netic, piezoelectric, and magnetoelectric properties, which are absent for the corresponding
bulk materials. In particular, the giant magnetoelectric effect induced in manowires by the
surface tension is possible. A considerable influence of size effects and external fields on the
magnetoelectric coupling coefficients and the dielectric, magnetic, and magnetoelectric suscep-
tibilities in nanoferroics is analyzed. Particular attention is paid to the influence of a misfit
deformation on the magnetoelectric coupling in thin ferroic films and their phase diagrams,
including the appearance of new phases absent in the bulk material. In the framework of the
Landau—Ginzburg—Devonshire theory, the linear magnetoelectric and flexomagnetoelectric ef-
fects induced in nanoferroics by the flexomagnetic coupling are considered, and a significant
influence of the flecomagnetic effect on the nanoferroic susceptibility is marked. The mani-
festations of size effects in the polarization and magnetoelectric properties of semiellipsoidal
bismuth ferrite nanoparticles are discussed.

Keywords: ferroics, multiferroics, nanoferroics, Landau—Ginzburg—Devonshire theory, mag-
netoelectric effect.

schematically illustrated in Fig. 2.1. Till the begin-
ning of the 21st century, magnetoelectrics and mul-

A considerable growth of the interest in materials
demonstrating a correlation between ferromagnetic
and ferroelectric properties has been observed in the
last decade. Magnetoelectric (ME) materials [1, 2]
with the coexisting ferromagnetic (FM) and ferroelec-
tric (FE) orderings belong to multiferroics, which is
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tiferroics were only interesting to a narrow circle of
specialists, because ME effects could be observed only
at low temperatures, so that there was no talking
about the practical application of those effects. A re-
cent burst in the research activity in this area is asso-
ciated with the discovery of materials that have ME
properties at room temperature and moderate mag-
netic fields.

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11



Renowvation of Interest in the Magnetoelectric Effect in Nanoferroics

2. Linear Magnetoelectric Effect

The physics of ME phenomena, which is actively
developed, belongs to the fundamental problems
dealing with the interrelation between the electric
and magnetic fields. Similarly to electromagnetism,
it is described by Maxwell’s equations. However, de-
spite their external resemblance, the ME phenom-
ena are effects of different nature. Electromagnetic
fields are intrinsically connected with electrodynam-
ics; i.e. they arise only when electric charges move. At
the same time, the ME effects are not reduced to dy-
namic phenomena. Even the static electric field gen-
erates a magnetization, and the static magnetic field
generates an electric polarization.

First assumptions about the existence of substan-
ces whose molecules become magnetized by the elec-
tric field and electrified by the magnetic one were
made as long ago as by Pierre Curie [4]. However, no
ME materials, neither in the form of composites nor
in the form of single-phase media, have been created
till the middle of the 20th century.

In 1956, L.D. Landau and E.M. Lifshitz [5] made
the notion of ME materials more accurate. Namely,
those substances were classed to magnetoelectrics,
whose symmetry allows the existence of linear ME
effects, i.e. the emergence of the electrical polariza-
tion proportional to the magnetic field (direct ME ef-
fect), and the magnetization proportional to the elec-
tric field (inverse ME effect):

&

M=—E 2.1

= (212)
&

P=—H 2.1b
oH, (2.1b)

where M is the magnetization vector, E the elec-
tric field vector, P the polarization vector, H the
magnetic field vector, and & the tensor of the linear
ME effect. Note that formulas (2.1) couple vectors
with different transformation properties with respect
to the space (P) and time (T') inversion operations:
the polar vectors P and E change their direction at
the space inversion and remain invariable at the time
inversion (i.e. they are P-odd and T-even vectors),
whereas the axial vectors M and H are T-odd and
P-even ones. Thus, a necessary condition for the ex-
istence of the linear ME effect in a substance is the
separate violation of the P- and T-parity with the
preservation of the combined PT-parity, which dras-
tically narrowed the search scope for magnetoelect-
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Fig. 2.1. Ferroics, multiferroics, and magnetoelectrics (repro-
duced from Ref. [3])

rics. In 1959, 1.LE. Dzyaloshinskii theoretically pre-
dicted the ME effect in CroOg [6]. In a year, D.N. As-
trov registered a magnetization induced by the elec-
tric field [see Eq. (2.1a)] [7]. Soon, V. Folen, G. Rado,
and E. Stalder [8] changed the electric polarization
induced in Cry0O3 by a magnetic field.

New materials with the ME effect as a cornerstone
of new physical properties are the topic of this re-
view. Their search is carried out very intensively, be-
cause ME materials open up broad prospects for their
application in information and energy-saving tech-
nologies. They can serve as a basis for the creation
of magnetic sensors, capacitance electromagnets, el-
ements of magnetic memory, microwave filters, and
other devices free of direct electric currents giving rise
to heat losses. Some applications, e.g. sensors, are al-
ready at the practical implementation stage, the oth-
ers are under development, whereas some things exist
in the form of ideas.

Magnetic sensors are the most obvious and the
most developed idea of the practical application of
the ME effect. On the basis of composite ME materi-
als, sensors of dc and ac fields are created with a sen-
sitivity that far exceeds the sensitivity of sensors on
the basis of the Hall effect and the giant magnetic re-
sistance in the frequency interval 1072103 Hz [9]. At
the same time, they are much cheaper than SQUIDs,
which makes it possible to talk about the application
of those magnetic sensors even in such domains as
magnetoencephalography and magnetocardiography.

In this review, special attention is paid to nanos-
tructured materials. These materials renew interest
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in the ME effect in ferroics. Here, the existence of
the surface plays a crucial role in the emergence of
abnormal properties that are not observed in bulk
materials.

2.1. Analysis of the symmetry
of piezomagnetic, piezoelectric, and linear
magnetoelectric effects induced by the surface

From the viewpoint of both fundamental and applied
physics, the most interesting properties of nanoma-
terials are those, which are absent in bulk materi-
als: antiferroelectric, ferroelectric, antiferromagnetic,
and size-induced ferromagnetic ones. Since the trans-
lational symmetry is violated at any surface or in-
terface, the structural modifications and the modi-
fications in the polarization, magnetic, and electron
states usually take place in thin films and nanoparti-
cles [10, 11, 15-17].

The ME effect in nanomaterials has attracted a
keen attention in the recent years [18]. The magni-
tude of the ME effect turned out much larger than
that in the bulk. The evidence in favor of this as-
sertion follows from the measurements of ME coeffi-
cients in bulk crystals and epitaxial BiFeOg films on
the SrTiOg3 substrate. This effect is associated with
the influence of boundary conditions [19]. Using the
theory of symmetry, Eliseev et al. [20] determined
how the surface-induced symmetry violation results
in the appearance of spontaneous suface piezomag-
netic, piezoelectric, and magnetoelectric effects in
nanomaterials.

2.2. Surface piezomagnetic,
piezoelectric, and linear magnetoelectric
effects in nanosystems

For any spatially confined system, the inversion cen-
ter disappears in the direction normally to the sur-
face; only the symmetry axis and the planes normal
to the surface survive. Hence, the magnetic and spa-
tial symmetry group should be reduced to one of its
subgroups consisting of the transformation matrices
Afj that satisfy the relation niAfjnj = 1, where n;
are the components of the unit vector normal to the
surface.

The transformation law for the components of the
linear ME-effect tensor %Sj near the surface looks like

75 = (=1 det (A%) AZ A7,
1008

with ;yisj = %_Sj for nonzero components. This law dif-
fers from the corresponding law for the bulk material,

iy = (—1)"" det (A) A Au i,

by the form of transformation matrices Afj # Aij.
The ME effect was demonstrated to exists in 58 mag-
netic classes of bulk materials [14]. Our analysis of the
piezomagnetic tensor [20, 21| showed that the ME ef-
fect exists in nanosystems belonging to 90 magnetic
classes.

The following formulas describing the size effect on
the ME coupling in nanosystems were derived in work
[20]:

¢ a thin film A in thickness on a rigid substrate,

I

R __ . e .
73] = 73; + A + h2 (811 +812)7

e a wire of radius R,

2
R S.
Vij = Yij + i’

® a sphere of radius R,

3

R S

Vij = Vig T R

2.3. Giant magnetoelectric effect

induced in nanowires by the surface tension

Let us consider ferroics in the form of nanowires with
two order parameters, the magnetization M and the
electric polarization P. These order parameters can
be either inherent to the bulk material or induced by
the nanowire surface. Taking into account that fer-
romagnetism was observed at room temperature in
nanoparticles 7-30 nm in diameter [10], whereas the
ferroelectric state appears at a size of about 50 nm
[11], nanowires of about 5-50 nm in size are usu-
ally studied. For such small dimensions, the influence
of surfaces and boundary conditions associated with
them, including the surface tension, is known to be
strong. Therefore, the expected properties should be
closer to those observed near the surface than to the
bulk ones. Although with the growth of a specimen
size, the properties gradually change from the sur-
face (shell) to the bulk (core) ones (see, e.g., works
[22, 23]), they can be considered uniform and sub-
jected to a strong action of the surface tension, if the
specimen size does not exceed 50 nm. The study of
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ferroelectric nanoparticles with the use of the elec-
tron spin resonance (ESR) method showed [24] that
the shell size varies from a few to tens of nanome-
ters. A characteristic feature of the shell is the ab-
sence of spatial symmetry inversion. Therefore, the
piezoelectric effect is possible even in the case of cu-
bic symmetry in the bulk. In the general case, the
existence of the piezomagnetic effect is not excluded.

Now, let us consider long cylindrical ferroic nano-
wires (h > R) electrically polarized along their
axis z and magnetized along one of three equivalent
axes. Let a nanowire with mechanically free side walls
(p = R) be clamped between a plate (z = —h/2) and
an upper electrode (z = +h/2) (see Fig. 2.2). The ex-
ternal electric and magnetic fields are applied along
the axes z and z, respectively. In this geometry, there
is no depolarization field. The demagnetization field
can also be made low [5]. This geometry is typical of
the majority of experiments. Under those conditions,
a single-domain state is the most beneficial energe-
tically. The electro- and magnetostriction effects, the
mechanical strain tensor, and the boundary condi-
tions at the curved nanoparticle surface have to be
taken into account. The nanowires are assumed to be
well separated from one another and do not interact
electrically or magnetically.

The expansion of the Gibbs energy in a series of
the uniform polarization Ps, magnetization M7, and
mechanical stress o;; looks like [13]

R
GR:27rh/pdp><
0

X Gllpgz + a1 Py + a1 Py — (Quio33 +

+ Q12 (011 + 022)) Ps +

- % (1102 + A1102y + Assols) PP+
*ggjkgjkPS + b1M12 + bllMiL + (1111M16 -
— (Z11033 + Z12 (011 + 022)) ]\/-[12 -

- % (B1107, + Bi103, + Basogs) M7 + ... —
— gikoiM1 — %311 (07 + 035 + 033) —

— 512 (011092 + 011033 + 033022) —

- %&944 (033 + Uf?, + 0%2) +

+ fijmoiioR — MiHo — P3E0)- (2.2)
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Fig. 2.2. A long cylindrical nanowire: x is one of three equiv-
alent axes of weak magnetic anisotropy, and z is the axis od
ferroelectric polarization. An external electric field is applied
along the polarization axes, and the magnetic one along the
z-axis (Reproduced from [[13]], with the permission of AIP
Publishing)

Here, subscripts 1, 2, and 3 correspond to the Carte-
sian coordinates x, y, and z, respectively. Below, we
will use the Voight or matrix notation, if necessary:
zx=1,yy=2,22=3, zy =4, zo =5, and zy = 6.
In the framework of the Landau—Ginzburg approach,
the coefficients a1(T") and by (T) depend linearly on
the temperature 7. All higher-order coefficients are
assumed to be temperature-independent. We also as-
sume that the order parameters and the spatial distri-
bution of elastic stresses are uniform in a nanowire,
so that the gradient energy can be neglected. Note
that, in the case of the film-on-substrate geometry,
this assumption is valid, if the film thickness does
not exceed the critical thickness of the misfit defor-
mation emergence, which is known to reach tens of
nanometers [25].

The quantities Q;; and Z;; in Eq. (2.2) are the co-
efficients of the electro- and magnetostriction tensors,
respectively; and s;; are the components of the elas-
tic compliance tensor [26]. Below, we assume that the
symmetry of the piezoelectric, 951> and piezomagne-
tic, g3y, tensors differs from the cubic one due to the
surface effect: ggjkajkPg = g5 (0111 022) Ps+ 955033 P,
and g77, 05 M1 = g7} (0114 022) M1+ g4033 M.

The distribution of stresses o;; must satisfy me-
chanical equilibrium conditions and boundary condi-
tions at the curved nanoparticle surface,

Gaij

=0
6xi ’ "
Upp|p:R:_E7 Gp¢|p:R:O7 (2.3)
g,,z|p:R =0, wus(z==%h/2)=0.
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where p;; = pd;; are coefficients of the surface stress
tensor at the nanowire surface [27, 28|. The surface
tension p substantially depends on the nanowire ma-
terial.

The minimization of the free energy with re-
spect to the components o;; brings us to the equa-
tions 0GRr/00;; = —u;j, where u;; are components
of the strain tensor. By neglecting the components
~ fijklafja,%l and higher-order ones, we obtain the fol-
lowing homogeneous solution for the stresses tensor
components o;; in the Cartesian coordinates [13]:

0112022=—E7 012 = 013 = 023 = 0, (2~4)
on = 51220/ R) = QuuPF— Z1 M7 — g5 Py — 913 M,

% s11 + AssP§ + BsgM3 .
(2.5)

As a rule, the shell thickness Ahy ~ 550 nm. In

what follows, we consider a situation where R < Ahg,
i.e. all particles are in the shell, because it is the most
important factor for the surface and size effects to
manifest themselves.

We would like to emphasize that the considered
mechanical boundary conditions are related to one of
the possible experimental situations. The correspond-
ing calculations showed that there is no ME coupling
in mechanically free rods. At the same time, if a rod
is partially clamped, the results obtained are qualita-
tively similar to those discussed below.

Furthermore, we assume that the quantities
Ay;0% P2 and Bj;;02 M?# are small, and we may neglect
their higher powers. Substituting Eqs. (2.4), (2.5)
into Eq. (2.2), we obtain the Gibbs energy with renor-
malized coefficients [13]:

R

Gr = 27rh/pdp<a1(T, R)P32 —|—0111P§l _
0

— Py (Ef Ep(R)) + B1(T, R)M7 +

+ 811 My + My (Hf Hy(R)) + gME(P?an))- (2.6)

The renormalized coefficients in front of P§ and M?
in the free energy (2.6) read

e 12
a1(T,R) = a1(T) + (933) +
2s11
2 S 2 2
+ ﬁu (Qn - Q1112) ,u (Au + Ags ) (2.7a)
S11 11

1010

Bi(T, R) = b:(T) + (g{ni?’)—l—

S
L2 2\ 24 51
Zis— 2
R<12 115)

) w (Bn +B33

). (2.7b)

11

The internal “built-in” fields induced by the piezo-
electric and piezomagnetic effects look like

S12 e e 4,LL
Ep(R) = <933 - 931) R’

S11

512 du
HSR) = (22gm — gm) 22
p ) (Sugm 911) R

The magnetoelectric energy density equals

(2.8)

gme = (Y11 M1 Ps+7y12 My P§ 721 M} P3+72: M P5),
(2.9)

where the linear and quadratic coefficients of ME cou-
pling look like

€ m
M = 935913 (2.10a)
_ Q11 | 2p 512433
Y12 = 913 s11 R 8%1 )

(2.10D)

ot = g (Zn 21L812B33>
33 s11 R 5%1 ’

_ (Qule Ass (913)” + Bas (g5,)°
Y22 = -
S11 2511

+

2p 812
o

4
(Q11Bs3 + Z11A33) + % 12 333A33>

(2.10c)

For the coefficient of linear coupling to be non-
zero, y11 # 0, both the piezoelectric, g$3, and piezo-
magnetic, g74, coefficients have to differ from zero,
which is possible in a few special cases. For instance,
g5 =1.2x1078 Wb/N and ¢7% = —5.8x 1072 Wb/N
in the bulk of Terfenol-D [29].

2.4. Influence of size effects
on the MFE coupling coefficients

Let us rewrite Egs. (2.10) in the form [13]:

R
M2(R) =1y (1 + }%2)
R
(R = (14 5). (2.11)

R
Y22(R) ~ ¥4 (1 + ;2)
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where
b m @11 s12A33 b e 211
v =913— > R12 = 2“ ) =9g33—,
12 1 S11 S11Q11 2 3 S11
512833 b Q117211
Ry = 2p——+—, = ——
s11211 2 511
2 2
 Ass (913)” + B33 (953)
252, '

As a rule, the magnetoelectric constants in a bulk
material are small or equal to zero, depending on the
symmetry.

The coefficients of linear ME coupling do not de-
pend on the nanoparticle radius, whereas the quadra-
tic coefficients are reciprocal to this parameter. Thus,
the latter coefficients strongly increase as the nano-
particle radius decreases. The linear ME coupling,
711, violates the symmetry P —- —P and M — —M
and also smears the transition point even in the zero
magnetic and electric fields. Hence, Egs. (2.11) mean
the renormalization and do not exclude a possibil-
ity induced by the surface tension that 7;;+11 will
change its sign, because the typical values of the pa-
rameters R;; can be positive or negative. According
to estimates [13], those values usually vary from 1 to
100 nm.

2.5. Calculation of susceptibilities

In terms of the renormalized coefficients, the free en-
ergy density g(R,T) can be rewritten as follows:

(R, T) = (a1P32 + BLM? 4 a1 P§ + By M} —

—(Ep + Eo) P3 — (Hy, + Ho) My +y11 M1 P3 +

—|—’)/12M1P32—|—’}/21M12P3+’}/22M12P32) (212)
The coefficients oy and 3; depend on the temperature
and nanoparticle radius according to Eqgs. (2.7). They
can be rewritten in the form

B1 = pr (T — Tem(R)).

The R-dependences of the Curie temperature for the
ferroelectric, Tog(R), and ferromagnetic, Tom(R),
transitions can be found in works [13,15].

The conditions for the free energy minimum,

a1 = ar (T — TCE(R))

8§/0P; =0, 0§/OM, = 0,
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give rise to the system of equations of state

201 Py + 11 My + 2719 My P yoy ME +
+ 2792 PsME + 40y, Py = E, + Ej,
281 My + v11 Ps + v12P5 +

+ 2721 My P3 + 2729 P3 My + 45811 M3 = H, + Ho,

(2.13)

from which the order parameters can be determined.
After elementary transformations of Egs. (2.13), the
susceptibilities can be written in the form [13]

0Py 2(B1+v21Ps + 722 PF 4 6611 M)
= B9E, A (M, Py) ’
(2.14a)
0Py OM;
ME=5H, — 0By
Y11 + 27123 + 2701 My + 4y00 M1 Ps
= - 2.14b
A (M, Ps) ’ ( )
oMy 2(ar +yi2My 4y M7 4 6011 P3)
M= 5H, A (M, Py) )
Where (2140)

A (M;P3) = (4 (o1 + y12 My + Y22 M7 + 6011 P5) x

x (B1 4+ 721 Ps + y22 P5 + 6811 M7) —
_ (’Yll -+ 2’)/12P3 + 2’)/21M1 + 4’}/22M1P3)2>. (215)

Let us analyze the simplified equations (2.13) and
(2.14), which determine the polarization, magneti-
zation, and susceptibility. Taking into account that
those parameters are standard for the ferroelectric
(FE) and ferromagnetic (FM) phases, we will fo-
cus our attention on the multiferroic ferroelectric-
ferromagnetic (FEFM) phase. In the considered case
of non-zero quadratic ME effect, Egs. (2.13) are sim-
plified to the form

{2041P3 + 40411P33 + 2’)/22M12P3 = O, (2 16)

261 My + 4811 M} + 2729 M, P§ = 0.

From whence, the following expressions are obtained
for the order parameters in the FEM phase:

—201 811 + Biy22

Pey = :
FEM 4on1 P11 — V3, (2.17)
M2 —201181 + o122 '
FEM do1 i1 — V3
1011
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The positiveness of the susceptibilities

5 = P11
2 (=21 611 + Biv22)’
XM = a1
M — )
2 (—2a1181 + a1722)
Y22
XME = — =

4 (4a11 811 — 735) Mrem Prem
Y22
= 5  A2——VXEXM
2v/Brionn
is a necessary condition for the FEFM phase to be

stable.
Using expressions (2.17), we obtain

A (Mypgwm, Prev) =

=16 (4011811 — 732) PeemMeem

so that Egs. (2.14) can be rewritten as follows:

B11
_ , 2.18
XB= 5 (—2a1B811 + B1y22) (2.18)

i1
_ , 2.19
M= (—2a1181 + a1y22) ( )

YME = — V22 _
4 (4011811 — 735) Mrem Prenv
V22

S B v 2.20
2\/511@11 ( )

One can see that, at the points where P2gy; or MZpy
equals zero, the susceptibility xyg diverges. It should
be emphasized that formula (2.18)—(2.20) for xmm
coincides with that obtained in work [11], v22 <
< 24/B110a11, which follows from the FEFM phase
stability.

The coefficients a; and [3; depend on the temper-
ature and nanoparticle radius; namely,

ar =ar [T —Tce(R)], p1=p0r[T —Tcm(R)].

Substituting these dependences into Eqgs. (2.18), we
obtain

Cg
XB= 2.21
5 Ty - 1) (220)
Cwum
DY p—— — 2.22
M Ty - 1) (222)
Vo2 CeCwm
= . 2.23
AME 2v/o1B11 \/(T(*;T =T)(Tgy —T) ( )

1012

In expressions (2.21)-(2.23), we introduced the
Curie-Weiss temperatures and constants renormal-
ized due to the ME coupling,

2011a7Ta(R) — BryaeTem(R)

T = , 2.24a
oE 2Bnar — Bryze ( )
. 2a118rTom(R) — ary2eTa(R)

T, = , 2.24b
oM 2011871 — ary22 ( )

B11

Cr = : 2.24¢
" 2(2arf11 — Bryez) ( )

Ca = an (2.24d)

2(2011 81 — arya2)
Equations (2.17) can be rewritten in the form

PI?EM = AE(TéE - T)v
MgEM = AM(TéM - T)7

(2.25a)
(2.25b)

where the constants

Ap — 2007 B11 — Bryes A

~ 201181 — ary2e
4o P11 — W%z ’

4o P11 — W%z
(2.26)

were introduced. Therefore, we obtain a standard
formula for the order parameters and susceptibili-
ties, but with the magnetoelectric coupling, transi-
tion temperature, and other coefficients renormalized
by the size effect. Note that the variants of the EE
and FM phases can be obtained from Egs. (2.23)—
(2.26) by putting 29 — 0.

2.6. Influence of external fields
on the polarization and susceptibility

The polarization Pj3 is a ferroelectric order parame-
ter. In Fig. 3.1, a, this is shown for the zero electric
field (E = 0) and a few magnetic fields Hy (nor-
malized to the coercive field) for the positive coef-
ficient T'a2(R) > 0 and two values of the nanowire
radius R/Rg = 10 (curves 1) and 3 (curves 2). The
temperature dependences of the susceptibilities xg
and xmg are exhibited in Fig. 3.1, b and 3.1, ¢, res-
pectively. Figure 3.1, d demonstrates the tempera-
ture dependence of the dielectric susceptibility dxg =
= (xe(H) — x(0))/xe(0).

From Fig. 3.1, a, one can see that, as the mag-
netic field grows, the ferroelectric order parame-
ter decreases, and the phase transition at low tem-
peratures (cusps in the solid curves) is smeared. If
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the magnetic field induced by the ME coupling
is sufficiently large, it can suppress the ferroelec-
tric polarization, which occurs under the condition
a1 + YoM > 0, ie. when the binding energy
Y22 M?P? suppresses the FE phase, as is shown by
curves 2. Additional calculations testify that the tran-
sition into the FEFM phase takes place at a negative
Yoo-value. At the same time, the transition tempera-
ture between the ferroelectric and paraelectric phases
changes weakly.

Figure 3.1, b demonstrates that the dielectric sus-
ceptibility xg increases with Hy, as one should expect
in the case of decreasing polarization.

As follows from Fig. 3.1, ¢, the magnetoelectric sus-
ceptibility has a singularity at the transition point be-
tween the FEFM and FE phases in the zero magnetic
field (the solid curves).

Finally, Fig. 3.1, d illustrates that the dielectric sus-
ceptibility increases, as the magnetic field grows. Its
gigantic value at small nanoparticle radii is associ-
ated with the FEFM-FM transition; the latter is in-
duced by the ME coupling and takes place at pos-
itive 9o -values. Narrow peaks (singularities) of the
susceptibility at high temperatures emerge due to the
weak dependence of the high-temperature susceptibil-
ity peaks on the magnetic field (see Fig. 3.1, b). The
dielectric susceptibility grows enormously (by a fac-
tor of 10 and more) near the phase transitions (cf. the
500%-effect shown in work [16]). Those effects are
not observed in the bulk material, which allows the
small coefficients of ME coupling in the bulk to be
neglected.

3. Influence of a Misfit
Deformation on the Magnetoelectric
Coupling in Thin Ferroic Films

As was reported in works [30, 31], thin deformed
hetero-epitaxial BiFeOg films demonstrate the much
higher ME coefficients and spontaneous polarization
in comparison with the bulk material. Similar ef-
fects were also observed in thin polycrystalline films
[19, 32].

In this section, we demonstrate that the misfit de-
formation, which arises owing to the mismatch of
crystal lattices at the film-substrate interface, can
strongly change the ME coupling coefficients, the
surface energy parameters, and the polar and mag-
netic phase diagrams of antiferromagnetic ferroelec-
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Fig. 3.1. Temperature dependences of the polarization P3 (a),
dielectric susceptibility xg (b), magnetoelectric susceptibility
xME (¢), and dielectric tunability dxg (d) in the zero electric
field and various magnetic fields Ho/Hc = 0 (solid curves),
0.3 (dotted curves), and 1 (dashed curves) for nanowires with a
large (R/R¢g = 10, curves 1) and asmall (R/Rg = 3, curves 2)
radius (Reproduced from [13], with the permission of AIP Pub-
lishing)

tric films. This effect makes it possible to extend the
interval of the electrical and magnetic properties of
the films, which opens ways to their new applications.

3.1. Free energy functional

Let us consider an antiferromagnetic ferroelectric film
that was epitaxially grown on a thick rigid sub-
strate. The film has the thickness [ and occupies the
space region —[/2 < z <1/2. It is in a perfect electri-
cal contact with thin electrodes. For simplicity, we as-
sume that the piezomagnetic effect is absent, whereas
magnetostriction does exist inside the film.

In accordance with the phenomenological Landau—
Ginzburg-Devonshire theory, the Gibbs free energy
looks like o

AG= 1 / dzgy (2) + G (g) 4+ G <—;) (3.1)

—1/2

where gy and Gg are the bulk and surface, respec-
tively, densities of the film free energy. When describ-
ing the phase transitions in antiferromagnetic ferro-
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electric films, we assume that their substance has
two magnetic sublattices with the magnetization vec-
tors M, and M. The polarization Ps; and the elec-
tric field Ey are directed along the polar axis z. The
axis x is considered to be the axis of weak magnetic
anisotropy. When analyzing the size effects on the
phase transitions in thin films, the dependence of the
polarization P3 and the magnetizations M, ; of two
sublattices on the depth z should be taken into con-
sideration [14,25]. The expansion of the Gibbs energy
density gy in a power series of the quantities P3 and
M, looks like [33]:

2 4 6 dPs\’
gy = a1 P35 +an Py +a111 P35 + v )

ok Pi-Pi{B+ )

2
— Qijss0 Py — D) 5 g TiiTkl X

x b (M2 +M;) + cM,M,; +d (M2 +M;) +

dM, \2 dM, \
+/cM§M§+5( )+5< b—) -
dz dz

— (M1 + My1) Ho + by (Mfl + szl) + c1Ma1 Mpr —
(3.2)

— Zij1104j (Mfl + Mb21) - WijllaijMalel)

Subscripts 1, 2, and 3 correspond to the Cartesian
coordinates x, ¢, and z, respectively. We assume that
the bulk material has a cubic symmetry in the para-
phase. Equation (3.2) makes allowance for the po-
larization, magnetic, and correlation energies, the
interaction with the external field FEj, the electro-
and magnetostriction energies, the elastic energy, and
the energy of depolarization field F,;. The coefficients
a1 (T) = ap (T - Tg) and b(T) = anm (T - Tf\}) are
explicit functions of the temperature 7', whereas all
other coefficients in the expansion are assumed to
be temperature-independent. The parameters Tg and
T}, are the Curie and Neél transition temperatures,
respectively; o;; are components of the elastic stress
tensor; Qijki, Zijki, and Wijk; are components of the
electro- and magnetostriction tensors, respectively;
and s are components of the elastic strain ten-
sor. Note that the demagnetization field is absent, if
(Map); = 0. As a rule, [b] > |¢| > [b1] + |e1|. For
the antiferromagnetic (AFM) phase to be stable in
the bulk specimen, the inequalities 2b; — ¢; < 0 and
2b1 — ¢1 > 0 must be satisfied.

In the case of a single-domain insulated film with
perfect electrodes, the depolarization field E; =

1014

4 [P3 — P3(2)], where the bar means the average

value over the film thickness, P3 = 1]1/52 Ps(2) dz.

The equilibrium equation can be obtained by vary-
ing the Gibbs energy with respect to the stress oy;,
i.e. Gy /00, = —ujk. The misfit deformation uqq =
= Uge = U, # 0 takes place at the film-substrate in-
terface z = —1/2. The top surface of the film is free, so
that the normal components o3; = 0 at z = [/2. The
non-zero uniform stresses equal

Um
5+
s1111 + s1122 + A Py

o11 =

s s 2
n Us51122 — U (81111 + A11P3)
22 2
(s1111 + A11P5)" — 57199
and
Um
5 1
s1111 + S1122 + A11 P

022 =

s s 2
U7 S1122 — Usy (81111 + A11P3)

212 2
(s1111 + A11P§)" — 57199

)

where the spontaneous bulk deformations

upy = Q2P+ Zu11n (M2 + M) + W11 Mo Mys,

UQSQ = Q1122P§ + Z1122 (M31 + Mb21) + Wi12o Ma1 My

were introduced. This homogeneous solution of the
elastic problem is valid, if the film thickness does
not exceed the critical thickness [; of the disloca-
tion appearance, which is known to amount to tens
of nanometers. The effective misfit strain ), (I) =
= umld/l [34]

The inversion center disappears near the surface,
and the near-surface piezoelectric effect 9iik has to
be taken into account in the surface free energy [15],

DN_1(90 e
Gs <i2> =7 (AM (M3 +M3) +

e

+ 2 (M2, + M) +
Ap

AMA

P; — ggjkajkPB)

where A,, A, and Ayia are ferroelectric and mag-
netic, respectively, extrapolation lengths [34], with
AMA > Am, which corresponds to the weak magnetic
anisotropy conditions.
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3.2. Influence of a misfit
deformation on phase diagrams

Let us introduce the ferromagnetic, Mp = M, + M,
and antiferromagnetic, M4 = M, — M,, order
parameters for two equivalent magnetic sublattices
(M2 = M? = M?) [35]. Substituting the stress o;;
into the Gibbs energy (3.1), performing the Legen-
dre transformation, and using the direct variational
method for the solution of the Euler-Lagrange equa-
tions, which was proposed in work [36], we obtain the
Helmholtz free energy for various phases [33]:

FPP [Py, 11,0) ~ <ap (T = TFE (1)) P2 + oy Pl —

— (B + Eo) P3+16d- M* +2an (T — TEP (1)) M? +

4P () P2 + AFPP (I, 9]), (3.42)
AFATM =0
AFF™ = _2H,M, (3.4b)

AF" ~ (2¢ + 4¢,) M?cos 0 - 2HoM cos 6.

Here, the superscript DP denotes the AFM, FM, or
mixed ferrimagnetic (FI) phase, respectively.

Expressions for renormalized coefficients in
Egs. (3.4) are quoted in work [33]. In the AFM
phase, the non-zero magnetization component is
Ma1(z) = 2M(z), whereas the component Mpy(z) =
= 2M (z) vanishes in the FM phase. The dependence
of the order parameters on the depth z is taken into
account for the FI phase. In particular [5,33], for the
case of one domain and large extrapolation length
AMaA,

(2M (z) cos 0(z),0, 0),

A(2) = (0,2M(2)sind(z), 0),
Hy

20 (c+ 26y + 2fMP})

|

—
N

~—
Il

cosf ~

Provided the zero magnetic field, Hy = 0, and the
angle § = 7/2, the absolute stability conditions are
satisfied in the FI phase at the axes and the planes of
weak magnetic anisotropy.

The averaged magnetization M depends on the po-
larization Ps through the ME coupling fDP,

M2 = - (aM (T — T2F (1)) + 2fDPP§)/16J. (3.5)
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Therefore, the phase transitions induced by the ME
coupling can take place. In the zero total field, E,, +
+ Ey = 0, each of phases (3.4) can be either para-
electric (PE) at P; = 0 or ferroelectric (FE) at
P5 # 0. The evaluation of material parameters shows
that the size effects and misfit deformations signifi-
cantly renormalize the free energy coefficients. Misfit
deformations can considerably increase the values of
the quadratic ME coupling coefficients fAFM:FM(]) in
comparison with the bulk values f..

It should be emphasized that the misfit deforma-
tion u,, and the film thickness [ can change the order
parameters M = M(T,l,u,,) and Py = P3(T, 1, up,).
As a result, the phase transitions associated with the
size effects and ME coupling can take place. For more
details, see work [33].

4. Linear Magnetoelectric
Coupling Induced by the Flexomagnetic
Effect in Nanoferroics

4.1. Brief review of the state-of-art

Non-uniform deformations and electric fields that can
be induced by external forces or can spontaneously
arise in systems with a non-uniform polarization dis-
tribution (e.g., the polarization change in a vicinity
of the surface) bring about the flexoelectric coupling.
The flexoelectric effect is a typical example, which is
a result of the coupling between the polarization and
the elastic deformation gradient (direct effect) and
between the polarization gradient and the elastic de-
formation (inverse effect). The flexoelectric effect was
theoretically studied in detail by Tagantsev [37]. The
components of the flexoelectric tensor were experi-
mentally measured in bulk perovskite crystals by Ma
and Cross [38-42| and Zubko et al. [43]. The interest
in the theoretical description of flexoelectric phenom-
ena in various nanostructures was renewed by Cata-
lan et al. [44, 45], Sharma et al. [46-48], and Kalinin
and Meunier [49]. The spontaneous manifestation of
the flexoelectric effect in ferroelectric nanoparticles
owing to the internal gradients of the order parame-
ter was considered by Eliseev et al. [50].

The flexomagnetic coupling is much less studied
than the flexoelectric one. Only a few relevant articles
have been published [51, 52]. In particular, proceed-
ing from the first principles, Lukashev and Sabirianov
managed to calculate a value of 1.95up A for the flex-
omagnetic coefficient of antiperovskite MnzGaN as
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the coupling parameter between the electric voltage
gradient and the magnetic dipole moment of the Mn
atom.

It is worth emphasizing that the validity of only the
time and /or spatial inversion operation is not enough
for the flexomagnetic effect to exist. For the latter to
take place, those operations must be related to each
other in the material symmetry group. The study of
a symmetry taking the flexomagnetic effect into ac-
count was carried out in the framework of the sym-
metry group theory, as was earlier done for the piezo-
magnetic [20,21, 53] and ME [54-56] effects.

In this section, a new mechanism governing the
appearance of the linear ME effect in multifer-
roics and (induced) ferroelectrics-(anti)ferromagnets
is proposed It is associated with the existence of the
flexomagnetic effect. Ferro-(anti)ferromagnetic mul-
tiferroics are extremely rare in the nature, especially
as bulk materials. The proposed mechanism, besides
the fundamental interest, may give rise to new tech-
nologies and, therefore, may be very important for
various applications.

4.2. Linear flecomagnetic coupling
in ferroelectric-ferromagnetic nanosystems

While describing the flexomagnetic coupling in spa-
tially confined ferroelectric-ferromagnetic systems,
the phenomenological Landau—Ginzburg—Devonshire
approach is used [57-63]. In the framework of this ap-
proach, we can calculate the surface and gradient en-
ergies, the depolarization and demagnetization fields,
the mechanical pressure, the flexoelectric and flexo-
magnetic effects. The bulk and surface contributions
to the total free energy look like [64]:

Fy = /(QFE + gFM T+ Gelast +

14
~+ Gstriction T Gexo + gME)dBT,

5
Fg = / d*r (‘gpf + Ky (Mn)Z),
S

where P is the polarization vector, M the magne-
tization vector, and n a normal to the surface. The
constant Kg in the surface energy is responsible for
the surface magnetic anisotropy (see work [63]). The
coefficient a; is considered to be positive. The de-
pendence of the Gibbs energy density on the order
parameters P and M are shown below.

1016

(4.1)

(4.2)

The ferroelectric component of the free energy is
equal to

(e) (e)
a;’ (T a, -
JrE = Y ( )PZPJ-‘F%MPJDJP]@H"‘F“F
g”kl 0P 6Pk
2 (91] 3171 ( )

Where E is the electric field component, and the ten-

sor gZ ; kl determines the energy contribution of the po-
larization gradient and is assumed to be positive. The
ferromagnetic component is equal to

a™
grM = <(T)MM + K (Mb)? +

g”klaM 0 M,
2 Oz; Oz

— HM), (4.4)
where K is the uniaxial anisotropy constant, b a unit
vector directed along the magnetic anisotropy axis,
H the magnetic field vector, and the tensor 91(;’13’
which is sometimes referred to as the “heterogeneous
exchange interaction”, determines the contribution of
the magnetization gradient to the free energy. The
elastic component to the free energy equals

Cijkl
Gelast = l; Uij UKL, (45)
where w;; is the strain tensor, and c;ji; the elas-
tic modulus tensor. The piezoelectric, piezomagnetic,
electro-, and magnetostriction components are

(e)
Jstriction = dljkp‘ujk dlﬂf Miujk —

qz(]kluUPkPl qz]klulele; (46)

where d( ik and dg;z) are components of the tensors
of the plezoelectrlc and piezomagnetic effects, respec-
tively; and qf,)cl and qz(j",zg are components of the ten-
sors of the bulk electro- and magnetostriction effects,
respectively.

The contribution of the flexomagnetic and flexo-
electric couplings to the energy equals

ngkl O uj o M,
exo — — M, — -
g8 2 <6xk LT axk> +
QZ Ougs 0P
+ 2jkl (a J ]Dl Ui arlcl)’ (47)

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11



Renowvation of Interest in the Magnetoelectric Effect in Nanoferroics

where Qg’,?l and Q(JM are the tensors of flexomag-
netic and flexoelectric couplings, respectively. Note
that the flexoelectric effect is not observed in the
paramagnetic phase, although it exists for all types
of symmetry.

The contribution of the magnetoelectric coupling
to the free energy looks like

gME = fijMin + ’wi]‘kMinPk —+ ... (48)

This expression includes the bilinear term f;; M;FP;,
which is relevant for 58 bulk magnetic classes and al—
most all surface magnetic classes inherent to nanosys-
tems. The quadratic terms proportional to M;M; Py,
and M;M; P, P, are usually small in comparison with
the bilinear term.

In order to study the influence of flexolectricity
and flexomagnetism on magnetoelectricity, we neglect
the depolarization and demagnetization fields. For in-
stance, we consider prolate particles, in which the
magnetization and polarization are directed along the
same axis.

Let us demonstrate the influence of a deformation
and consider the case of a mechanically free system;
i.e. the boundary conditions are o;;n;] g = 0. We as-
sume that the field of mechanical stresses in nanosys-
tems with a characteristic size of 10 nm is similar to
the surface one, i.e. it can be taken to equal zero ev-
erywhere. Therefore, the surface tension can be easily
determined explicitly. Substituting the solutions for
the strain tensor into the free energy (4.1) and using
the Legendre transformation, we obtain new terms in
the ME and FMFE energies [64],

gME = (fij + Squsdﬁgvdgsq)) MiPj +

+ (wijk + Squsdi;ngquzk) MinPIm
. OMLOP

JFrME = Sz]qu”leés)np 81’ 8x:
oM,

oxy,
+5170sQM gl p P,k
ijqs 'ijqusnp .

(4.9a)

e 0P,
+ SZJQSQEﬂ)eldnqu 87 +

+ Sijqs QE;Z)Z dnes)qp

(m) ( 0P,
+81Jq5Qz]quqsnp 6$lp My, +

+ sl]q5q2]k Qqsnp a

p
(e) oM
+Sz]qu7,]equqsin Mk 8

(4.9b)

xp

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11

Attention should be paid to that the flexomagnetic
term in Eq. (4.9b) is absent from the expression for
the initial free energy (4.1). The most important term
is the linear flexomagnetoelectric term

s (m) O M 0P,
9FME = SiquQijlet(zi)nP dx; O,
(m) 8 Ml ) a H
+ leqSQz]kldnSqP 8 + S”quljkld"SqM al'k ’

which exists in the absence of external factors — in
particular, magnetic, electric, and elastic fields — due
to the existence of the spontaneous magnetization
and polarization gradients. The linear flexomagneto-
electric coupling is not associated with the piezoelec-
tric effect and equals [64]

FME _

klnp — SzquQz]leqsnp (410)

It is proportional to the product of the flexolectric,
ng,ll, and flexomagnetic, QE;’,?Z, tensors, whose val-
ues can be determined experimentally [39-42, 44] or

calculated from the first principles [52] The term
P (9Mk

givE, as well as the terms NQUM and

QEZLC)ZPTL axp My, that are linear in the magnetlza—
tion, are relevant for materlals with the nonzero flex-
omagnetic tensor QZ jki- Those terms are responsible
for the appearance of the non-uniform polarization
and magnetization in spatially inhomogeneous ferro-
magnets. The terms proportional to the magnetiza—
tion and its gradient, ~P, My %5 dMl and ~ "Mle,

are relevant for materials with an arbltrary symmetry,

because the flexoelectric tensor QS;LZ and the magne-
(m)

tostriction tensor Qijnp have non-zero components in
any case.

In Table 4.1, the symmetry groups of ferroelectrics-
ferromagnets with the non-zero flexomagnetic effect
(ngkz # 0) are counted. It should be noted that
all 13 ferromagnetic-ferroelectric groups in the ta-
ble can be surface groups. All groups of ferroelectric-
ferromagnets quoted in Table 4.1 are linear flexomag-
netoelectrics, magnetoelectrics piezomagnets, and
piezoelectrics (d(e # 0 and duk # 0) both in the
bulk and near the surface. It should be emphasized
that the number of non-zero tensor components is
always several times larger than the number of non-

trivial components.

1017



M.D. Glinchuk, V.V. Khist

Table 4.1. Ferromagnets-ferroelectrics with the flexomagnetic effect (multiferroics of type I [64])

Number of non-trivial (non-zero) tensor components
Point Magnetic
symmetry symmetry Flexo- Linear Linear Piezo- Piezo-
group group magnetic ﬂexomagfleto- magne?o- magnetic electric
electric electric
1 1 54 54 9 18 18
2 2 28 28 5 8 8
2/ 26 26 4 10
m m 26 26 4 8 10
m/ 28 28 5 10
mm2 m/'m/2 15 15 3 5 5
mm'2’ 13 13 2 3
4 4 14 14 2 4 4
4mm 4m'm/ 8 8 2 3 3
3 3 18 18 2 6 6
3m 3m/’ 11 11 1 2 4
6 6 12 12 2 4 4
6mm 6m’m’ 7 7 2 3 3

The flexomagnetic and flexoelectric effects change
the gradient terms in expressions (4.8) and (4.9);
namely,
~(m) _ _(m) (m)
gl!lr;;n - gkrl?;m - Qi;r;clsijs‘?@g:;;)n’

~(e) _ (e) (e) e
gk’;pn - gk(;pn - Qi;klsijqugq)P"'

(4.11)
At the same time, the piezomagnetic and piezoelec-
tric couplings renormalize the expansion coefficients
in formulas (4.8) and (4.9):

~(m m 1 m
g™ = o™ — fdglp)slpkm

(m)
17 (%) 9 d

jkm>

(4.12)

1

) = 9~ L),

In order to study the linear FMFE coupling in fer-
roelectrics-ferromagnets, let us consider a model for
one-dimensional distributions of the one-component
polarization and magnetization in an ultrathin nan-
otube with the internal radius R; and the external
radius R,. The tube thickness h = R, — R; is as-
sumed to be very small as compared with the average
tube radius R = 0.5 (R, + R;) (see Fig. 4.1, a). This
simple model makes it possible to carry out analytical
calculations for the average properties, which can be
measured, by using the standard experimental meth-

1018

ods. As an example, let us estimate the average gra-
dient for thin tubes (h < R):

R,
37P37MN1/8P(56)8M(93)d
ox dxr  h ox ox v
R;
N 2rerm M P (4.13)

(re +7m) (re + Ae) (T + Ay) B

where the electrical and magnetic correlation lengths
are introduced as

g(m)
T'm = )
\ K]

and A, = 3 /a® and A,, = §'™/Kg are the
electric and magnetic extrapolation lengths, respec-
tively. For ferroelectrics, the extrapolation length cal-
culated from the first principles equals Af ~ 1 nm
[65]. Since the extrapolation length is proportional to
the gradient coefficient, its renormalization due to the
flexoeffect has also to be taken into account [64].

As follows from Eq. (4.13), the linear flexomagne-
toelectric coupling induced by the surface stimulates
an additional size dependence of the linear ME effect
in nanosized multiferroics. The flexomagnetoelectric
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coupling affects the magnetization and polarization
distributions (see Figs.4.1, b and 4.1, ¢).

The energy of linear flexomagnetoelectric coupling
that is typical of nanosystems and was calculated, by
using the averaged expressions (4.13), looks like [64]

1
QEME = v /ggMEdST ~
174
2rerm QM Q)

S ((re +Tm) (Te + Ae) (Tm +Am) *

rm@Q™d©) QMmN MP
(rm + Am) (re + Ae) ) h

(4.14)

In this formula, the tensor indices at the compliance,
flexoeffect, piezomagnetic, and piezoelectric tensors
are omitted to simplify the understanding. As one
can see from Eq. (4.14) and Fig. 4.2, a, the flex-
omagnetoelectric coupling depends rather strongly
on the system size. Namely, its value is recipro-
cal to the tube thickness h. The coupling magni-
tude decreases with the growth of extrapolation
lengths A,, and A., because the gradients of order
parameters decrease, as A.,, increases. For larger
Acm, the linear flexomagnetoelectric coupling is
smaller.

The following dimensionless parameters were intro-
duced and used in numerical calculations:

QE;Z) CI44 I

Q(e) (m) MOPO f _
Krp,’

Caq g(m) ’ Cq4

{7 ()| P2
K-MZ

£=

(4.15)

Gem =

For ferromagnetic bulk materials, My is the spon-
taneous magnetization, Py the temperature-depen-
dent spontaneous polarization of a bulk material at
a(le) (T') < 0 (intrinsic ferroelectric) or a certain char-

acteristic polarization of the material at ale) (T)>0
(extrinsic ferroelectric), £ is the dimensionless linear
coefficient of flexomagnetoelectric coupling propor-
tional to QELZ)QZ(LT), f the dimensionless nonlinear co-
efficient of flexomagnetoelectric coupling proportional
to Q% ¢\™, and G.., the ratio between the polariza-
tion and magnetization energies. At temperatures far
from the bulk ferroelectric and magnetic transitions
(Curie or Neél), the magnitudes of those parameters

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11

P(x)
M(x)
M

N g g .
Ami Am L TH T A
=0 x

\_JP \_/
_Ro 'Ri Rl Ro

a

Fig. 4.1. One-dimensional distributions of the polarization
and magnetization (solid curves) in a nanotube; A. and Ay,
are the corresponding extrapolation lengths, i.e. the distances
along the axis X confined by the tangent lines drawn from the
points ¢ = £R; , (a). The spontaneous magnetization M 2(x)
(b) and spontaneous polarization P2 (z) (c) in a ferromagnet-
ferroelectric nanotube. The solid curve P>(z) and the dashed
curve Pj(z) were obtained in the cases where the flexomag-
netic effect exists (Q(™) # 0) or not (Q(™) = 0), respectively.
The dashed curve P;(z) was obtained in the case without the
flexomagnetic effect (Q(™) = 0). The extrapolation lengths A
and Ay, equal zero (Reproduced from [64], with the permission
of AIP Publishing)

are as follows: ¢ ~ 1076=107', f ~ 107%+1072,
Gem =~ 0.1+10, Py =~ 0.1=1 C/m2 for the extrin-
sic ferroelectric and 0.01+0.1 C/m2 for the intrin-
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Fig. 4.2. Dependences of the relative flexomagnetoelectric effect coefficients Q(wgfsi

the extrapolation magnetization length Ay, (b). The characteristic length rg =
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b
“ﬁ%(e) on the nanotube thickness h (a) and
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Crotroy: The curves correspond to various values
€ m

of the ratio Ay, /rm (indicated near the curves). The other parameters are (a) d(¢) = 0, d™) = 0, Ac/re = 0 and (b) h = rg

(Reproduced from [64], with the permission of AIP Publishing)

sic ferroelectric. The electric and magnetic correla-
tion lengths equal

g . 47/ gm)

Those lengths vary within the intervals r.(T) ~
~0.5+5nm and r,(T)~1+10 nm. The values
of the parametersfor numerical calculations were
selected according to the estimates of parame-
ters (4.16).

It is worth emphasizing that the linear flexomagne-
toelectric energy described by expression (4.14) may
appear in bulk inhomogeneous systems with the ex-
ternally induced non-zero flexomagnetic effect.

(4.16)

4.3. Linear flexomagnetoelectric coupling
in nanosized antiferromagnets-ferroelectrics

Below, we consider ferroelectrics-antiferromagnets
with two sublattices a and b. The antiferromagnetic
order parameter L = (M(“) —M(b)) /2 is trans-
formed as a pseudovector at symmetry operations
applied to each sublattice and changes its sign at
the a <> b operation. The sign of the piezomagnetic
effect is known [66] to be determined by the sign
of L. This means that the non-zero components of
(M) Jetermine the con-
ijk
tribution dgﬂ)LiuJ—k or &E;';?Hiujk to the free en-
ergy. The contributions from the linear magnetoelec-

the piezomagnetic tensor d

tric effect can be written in the form Qgﬂ)l %Z’: L; or
QZT,?Z BBZZ" H;. They are linear in L.
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Below, the magnetic field H and the electric field
E are assumed to be absent. Therefore, the ferromag-
netic order parameter M = (M@ + M®) /2 is also
absent, and the free energy components of a spatially
confined antiferromagnet look like [64]

Fy = /(QFE + garm +
14
+ Gelast + Jstriction + gﬂexo)dBTa

Fg = / d&2r (Cfpf + (2KS - f(s) (Ln)2>, (4.18)
S

(4.17)

where n is a normal to the surface, Kg the surface in-
tralattice anisotropy, and Kg the surface interlattice
anisotropy [67, 68]; the ferroelectric contribution grg
is expressed by formula (4.8) at E = 0. The antifer-
romagnetic contribution to the free energy equals

garn = —J L2+ (2K — K) I3+

N ( (m) _ ~(m>) 9Li 9Ly (4.19)

g.: g.
ikl 7kl axj arl’

(ng and gf;’,g are components of the intra-

where 9ij
and interlattice inhomogeneous exchange tensors, re-
spectively; K and Ky the intra- and interlattice bulk
anisotropies, respectively; and J the intralattice ex-
change interaction constant. The condition J > 0
is necessary for the antiferromagnetic state to exist,
with the equality M(®) = —M® being valid in zero
and low magnetic fields.
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The elastic contribution gelast to the free energy is
described by formula (4.10). The piezoelectric, piezo-
magnetic, electro-, and magnetostriction contribu-
tions equal

Gstriction = (_dgjl)cpiujk - dg;r;?Liujk - QEjj)cluiijPl -

- (2‘11(31@2 - qukz) Uz‘ijLz), (4.20)

(m)

where 4;;; are components of the sublattice elec-

(

trostriction tensor, and (j”",zg are components of the in-
terlattice bulk electrostriction tensor. The flexomag-
netic and flexoelectric energies equal

i g L
Jflexo = Q Jkl <8U J Ll uijg l) +
T

2 oxy,
QX (Ous; 0P,
4 2jkl (a kal ”&vkl)' (4.21)

Unlike the free energy of ferroelectrics-ferro-
magnets, which was considered in the previous sec-
tion, we now discuss ferroelectrics-ferromagnets with
a definite symmetry. We assume that, near the sur-
face, the surface symmetry group is 4m’m’ at high
temperatures, which corresponds to the m’3m’ bulk
symmetry group and allows both the flexomagnetic
and linear ME couplings to exist. Let us consider
the case where the components P; of cferroelectric
polarization, two components L; 3 of the vector of
antiferromagnetic order parameter, and the mag-
netic anisotropy axis are directed along the z-axis
(Fig. 4.3, a).

Below, we consider ultrathin antiferromagnetic-
ferroelectric films on a substrate that provides a neg-
ligibly small misfit deformation at the film-substrate
interface. In this case, w11 = w99 = us3 = 0 and 013 =
— 0923 = 033 — 0, ie.

1 e m
uzz = e <q§2)P12 + dz(gg )L3 +

L
+ (207 - @) L3+ QY a;), (4.22a)

3

1 O P
Uz = —— <dgg>p1 +QY Tt 4 dtm™r,
Cq4 6
i yOL

+ (2(]4(14 v - qu )) LyLs + Q44 O 1) (4.22b)
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Fig. 4.3. One-dimensional distributions of the antifer-
romagnetic order parameter L and the polarization P in-
side the film (a).
ized sublattice magnetizations mq1,3 (23) = Ma1,3 (x3) /Mo,
mp1,3 (€3) = My 3 (x3) /Mo (b), and the polarization Pi(x)
in an antiferromagnetic-ferroelectric film (¢). The antimagne-
tization components are L1 = Mo(mg1 — mp1)/2 and L3 =
= Mo(ma3 —myp3)/2. The solid and dashed curves P; (z) were
obtained in the cases where the flexomagnetic effect is present
(Q(™) £ 0) or absent (Q(™) = 0), respectively. The dashed
and solid curves for the magnetization practically coincide (b).
Ae and A,, are extrapolation lengths.
rameters are & = 0 (dotted curves) and —0.2 (solid curves),
£ =001, Gem = 0.5, 7e/rm = 0.5, and al”(T) < 0. The
extrapolation length equals zero (Reproduced from [64], with
the permission of AIP Publishing)

Non-uniform distributions of the normal-

The dimensional pa-

By substituting strains (4.22) into the free energy
and performing the Legendre transformation, we ar-
rive at the following expression for the free energy:

F= / (§FE + Garm + guE + GrvE) O +
%
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(4.23)

2 af 2 - 2
+/dr 7PZ.+(2KS—KS) (nL)?).
S

The ferroelectric component of the free energy ac-
quires the form

2
(e)
~ Ll (o (d15 ) 2 aﬁ) (qg?) 4
S X2 | p2y - P
JFE ay 1+ ) 21t 1+

2 Cq4

(4.24)

2

. ()

ot g5 B (Q44) 2P
2 2044 8%3 ’

For the 4m’m’ symmetry, the antiferromagnetic con-
tribution to the free energy equals

~ (d(m))2
garn = (—J(L3 + L3) + (2K — K — ~2— ) L} -
2c11
(2qim) c’iiT)) e oL, Q“”)
— 1L3 _
Cq4 axg C11

(m) ¥ )
3333 44 2044 3333

(m) _ ~(m) _ (%n))Q (3L3>2

+ 1911 — 911 %11 o3

Q44
L
Cq4 8%3

The contribution of the ME coupling to the free en-
ergy,

(4.25)

dg; dlgl P L g;)dggl) P12L3 _
C44 C11
(24" - a3
Cq4
afy (27 - ay)
- Pl L3v
C11

9gME =

)iy
P/ LiLs—

(4.26)

contains a new term associated with the flexomagne-
toelectric coupling,

( Qg ol @_% ™,

JFME =
44 61‘

8.1‘3
1022

oP

e m aL m
_dlo)Q( ) 1P +Q <(I44)

‘]12 Qn P28L3>

(m) () B
2 )(6%‘3) L1L3

C11 ! 6.133

Note that new linear and nonlinear terms can appear
in expression (4.27) in the case of ferroelectrics-anti-
ferromagnets with the increasing of the polarization
P gradient and/or the antiferromagnetic order pa-
rameter L gradient. The flexomagnetolectric coupling
affects the spatial distribution of the order parame-
ter, as is shown in Figs. 4.3, b and c. In particular,
there appear pronounced maxima in the polarization
distribution plot, in the sections, where the gradient
of L takes place, i.e. near the film surface, where L
and L3 change their values owing to the rotation of
the vector L.

For a thin film with thickness h, we calculated the
average values

. /2
@ 0L\ 1 / 0Py (x) 0 Ly (ac)d N
or dr ] h Ox ox v

_—h/2
~ (re +7m) (i:imAPJz;m T AR (4.28a)
—h/2
(aaPl) Ll — apl ) L (o) e
—h/2
~ % (4.28b)

Using the mean values (4.28), we obtained that
the spontaneous linear flexomagnetoelectric coupling
gives rise to the following additional energy in nano-
systems:

QEME = é/ggMEdST ~
1%
1 —2rerm Py L 1Q(€) (m)
- hcyy <(re +7m) (re + Ae) (rm —|— Am) B

Qg el peyom _rmPily
? (re +Ae) B (rm + An)
m) _ g, (m)\ Telilils
+Q47 (q44 = 2444 ) ot h)) (4.29)

As one can see from Eq. (4.29), the flexomagnetoelec-
tric energy strongly depends on the film thickness h,
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being inversely proportional to this parameter. One
can also see that the influence of the flexomagneto-
electric effect decreases, as the film thickness h or the
extrapolation length increases.

As was done for spatially confined bulk antiferro-
magnets-ferroelectrics, in order to generalize the re-
sults discussed above onto the case of other symme-
try, all classes of antiferromagnets-ferroelectrics with

QE;,?Z # 0 were determined [64].

4-4. Influence of flexomagnetoelectric
coupling on susceptibility

Let a thin antiferroelectric film of the 4m’m’ sym-
metry be subjected to the action of external mag-
netic, H, and electric, E, fields in the geometry
shown in Fig. 4.4, a (the magnetic anisotropy axis
is directed along the axis x3). The expressions for
the ferromagnetic and antiferromagnetic order pa-
rameters look like M = (M(“) + M(b)) /2 and L =
= (M(“) — M(b)) /2, respectively. Using the solutions
of elasticity theory in the linear approximation, we
can exclude non-trivial strain components from the
free energy functional making use of the Legendre
transformation and obtain the following expression
for the renormalized free energy [64]:

Fy = /(gFE + garM + GuE + Grug) AP, (4.30a)

J

_ s _

Fg = / &2y (‘;PE + (QKS + KS) (Mn)? +
S

n (QKS - f(s) (nL)2>, (4.30D)
where the ferroelectric component equals
©Y
(e) (e) q

- a3 ' (T) 2 a1 ( 12 ) 4

=—"P e Pl + ..

E s 1Ty 211 Lt

e (Qii))Q a P\

1 (=—) -PFE 4.31
+ 2 2644 (81‘3) 1= ( )

and the antiferromagnetic component equals

garm = J (M? —L?) —2(HM) + 2K (M3 + L3) +

(m) ( 51;”))
K (M2 — 2 9 Jaa =
I (M - L5) +2 | 7 2% |
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. (m) Y
X aMl ’ + % ’ + 2 ﬁ _ M X
Oxs Oxs 2 2c11
(m)
% 8M32+ 8L32 T ~(m)_ ( 44 ) y
8173 8933 Jaa C11
(m)Y’
(oMY _ (oL ~<m>_(11> "
O3 Oxs 1 C11
dMs\ (9 L3\
(- (22 .

The condition J > 0 has to be satisfied for the anti-
ferromagnetic state (M = 0, L # 0) to be stable in
the zero magnetic field. On the other hand, the con-
dition J < 0 is necessary for the ferromagnetic state
(L =0, M # 0) to be stable in arbitrary magnetic
fields.

The magnetoelectric and flexomagnetoelectric
components of the free energy equal

(e) (m)

gumE = 2fu1 M1 Py + 2’LU111M1P12 — 2% >
11
q(e)q(m)
< PE(M 4+ 15) - SUU-PE (MG - 15) (439
11
and
o — (202 QT p20Ms
JFME = 2 Py
C11 Oxs3
QP OM, Q) (. 0P
~20n o dyjs My—— —
cas Oxgz Or3  cCaa O3
— Y15 1 — X
Ca4 0xs caa \Oz3

() + ) amdta+ (o - a”) LiLa)),
(4.34)

respectively. Attention should be paid to that
the terms quadratic in the magnetization vector,

~M;M; %1:’; and ~L;L; %I;’;, are rel(e;/ant to all ma-
e

terials, because the flexoelectric, Qijkl’

and magne-

(m)

tostriction, Qjjnp> tensors have non-zero components

at an arbitrary symmetry. The terms linear in the
. : 8P1 8M1 2 8M3
magnetization vector, ~ -t 5 and ~Pf .

pear in the free energy, if the magnetic fields are
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Fig. 4.4. Scheme of the non-homogeneous external stress

(bend) and the internal stress (e.g., near the domain walls
of an object or other possible surfaces), which cause the
flexomagnetic effect in ferromagnetics (@), non-homogeneous
normalized components of the nagnetization mi 3(z3) =
= M 3(x3)/Mp induce the polarization Pj(z3) in ferromag-
netics (b). The solid curve P; (z3) is obtained in the case where
the flexomagnetic effect exists Q(m) # 0. Dotted lines of the
polarization correspond to the case without flexomagnetic ef-
fect Q(m) = 0. The dimensionless parameters are as follows:
€& =0,—0.1 (myskrupHi i cyninsui ainil Bignosinno) f = 0.01,
Gem = 0.2, Te/rm = 0.5, and age)(T) > 0. The extrapolation
length equals zero. (Reproduced from [64], with the permission
of AIP Publishing)

higher than the critical value of the spin-flop phase
transition in an antiferromagnetic nanomaterial with
the non-zero flexomagnetic effect (Qgﬂ)l #0).

The free energy (4.30) can be used to describe a
number of different cases; namely,

oL # 0 and M = 0 in the magnetic fields below
the critical one; in this case, P and L are non-zero;

oL # 0 and M # 0 for the magnetic fields above
the critical one, but lower than the spin-flop transi-
tion field; in this case, P, L, and M are non-zero;

oL # 0 and M # 0 for the ferromagnetic phase
in a strong magnetic field above the spin-flop phase-
transition value; in this case, P and M are non-zero.

Experimental methods [34] are applied mostly of-
ten to study the magnetoelectric properties of a
material, its dielectric constant and magnetoelectric
susceptibility. The average magnetization, polariza-
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Fig. 4.5. Dependences of the linear dielectric constant (a,b)
and magnetoelectric susceptibility (c,d) on the relative mag-
netic field magnitude H/(MK) = 0, 0.1, 0.2, 0.5, and 0.7 (in-
dicated near the curves) in the cases with no flexomagnetic
effect (a,b) and with it (¢,d). The dotted curves correspond
to the zero magnetic field. The dimensional parameter £ = 0
(dashed curves) and —0.2 (solid curves), f = 0.01, Gem = 0.5,
re/Tm = 0.5, and ale)(T) > 0 (Reproduced from [64], with the
permission of AIP Publishing)

tion, linear dielectric permeability in various mag-
netic fields, and magnetoelectric susceptibility can be
calculated from the free energy functional. The de-
pendences of the dielectric constant and the mag-
netoelectric susceptibility on the magnetic field are
shown in Fig. 4.5. One can see that the flexomag-
netoelectric coupling between the polarization and
magnetization substantially affects the susceptibil-
ity and dielectric permeability. In particular, in the
absence of flexoeffects, the susceptibility by means
of the quadratic ME coupling cannot exceed 1%
(Fig. 4.5, b), whereas the flexomagnetoelectric cou-
pling results in the susceptibility change by 10-30%
(Fig. 4.5, ¢).

5. Size Effect
of the Magnetoelectric Coupling
in Bismuth Ferrite Nanoparticles

Bismuth ferrite (BiFeOgs) is one of the most promis-
ing multiferroics with rather high ferroelectric and
antiferromagnetic transition temperatures, as well as

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11



Renowvation of Interest in the Magnetoelectric Effect in Nanoferroics

a relatively high ME coupling coefficient at room
temperature. Thus, bismuth ferrite is quite sensi-
tive to the influence of external electric and mag-
netic fields. In this section, the influence of the size
of semiellipsoidal BiFeO3 nanoparticles attached to
a rigid substrate on the phase diagram and the
FE and ME properties is considered. The spatial
distribution of the spontaneous polarization vec-
tor in a nanoparticle, the phase diagram, and the
paramagnetoelectric (PME) coefficient were calcu-
lated in the framework of the Landau-Ginzburg—
Devonshire (LGD) theory. The analytical expressions
were derived for the dependences of the ferroelec-
tric transition temperature, the average polariza-
tion, the linear dielectric susceptibility, and the
PME coefficient on the particle size in the gen-
eral case of a semiellipsoidal nanoparticle with three
different semiaxes a, b, and ¢ (height). The analy-
sis of the results obtained testifies that the phase
diagrams, the spontaneous polarization, and the
PME coefficient are very sensitive to the ratio be-
tween the particle sizes in the polarization direc-
tion and are less sensitive to the size magnitudes
per se.

5.1. BiFeOs multiferroic
in fundamental researches

Multiferroics, which are characterized by two or
more long-range order parameters, are perfect sys-
tems for fundamental researches of the relation be-
tween the ferroelectric polarization, structural anti-
ferrodistortion, and antiferromagnetic order parame-
ter [69-72]. This relation is responsible for the unique
physical properties of multiferroics [73]. For exam-
ple, the biquadratic and linear ME couplings re-
sult in an impressive effect known as the giant
megnetoelectric effect in multiferroics [74]. The bi-
quadratic coupling between the structural, polariza-
tion, and dielectric order parameters was consid-
ered in works [75-77]. It is responsible for an un-
usual behavior of the physical properties of ferroe-
lastics, quantum paraelectrics. The linear-quadratic
PME effect has to exist in the paramagnetic phase
of ferroics at a temperature below the paraelectric-
ferroelectric phase-transition one, where the electric
polarization differs from zero. This effect was ob-
served in NiSOy4- 6H20 [78], Mn-doped SrTiO3 [79],
Pb(Fe1/2 Nb1/2)03 [80*82], and Pb(Fel/ngl/Q)O?,-
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PbTiO3 solid solution [83]. Note that the PME ef-
fect can be expected to take place in many nano-
sized ferroics that become paramagnetic at the
temperature elevation owing to the induced tran-
sition from the ferromagnetic or antiferromagnetic
phase.

BiFeOs3 is one of the most interesting multiferroics
with a strong ferroelectric polarization, antiferromag-
netism at room temperature, and enhanced elec-
tric transport along the domain walls. [84-89]. Bulk
BiFeO3 is antiferrodistortive at temperatures be-
low 1200 K. This is a ferroelectric with a high
spontaneous polarization below 1100 K and an an-
tiferromagnet below the Neél temperature Ty =
650 K [90, 91]. Well-pronounced multiferroic prop-
erties were observed in BiFeOgs thin films and het-
erostructures [30, 92-95]. There are a lot of ex-
perimental and theoretical studies concerning the
physical properties of bulk BiFeOz and BiFeOg
thin films [68, 7779, 96-102]. Nevertheless, plenty
of other important issues concerning the appear-
ance of the polarization, magnetic, and other elec-
trophysical properties of BiFeOs nanoparticles re-
mained practically beyond the scope of researches
[103,104].

5.2. Multiferroic
nanoparticles. The state of art

According to modern requirements to the miniatur-
ization of the nanotechnology for a storage of the
information packed to super-high densities in non-
volatile memory cells, it is very important that the
nanoparticle size in self-ordered arrays should be di-
minished without substantial worsening of their ME
properties. A promising example of the preservation
of polar and dielectric properties of a material is the
application of ferroelectric nanoparticles of various
modifications. In particular, Yadlovker and Berger
[105-107] reported unexpected experimental results
concerning the enhancement of polar properties in
cylindrical nanoparticles of Rochelle salt. Frey and
Payne [108], Zhao et al. [109], and Erdem et al. [110]
demonstrated a possibility to control the tempera-
ture of a ferroelectric phase transition, as well as
the magnitude and position of a dielectric permittiv-
ity maximum, for BaTiO3 and PbTiO3 nanopowders
and nanoceramics. The research of KTa;_,Nb,O3
nanopowders [111] and ceramic nanograins [112-114]
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Fig. 5.1.
nanoparticle attached to a conductive substrate (e.g., Pt). The
one-component ferroelectric polarization is directed along the
X-axis. The semiellipsoid height is equal to ¢; the lateral semi-
axes to a and b (Adapted from [128], with the permission of
AIP Publishing)

Semiellipsoidal uniformly polarized ferroelectric

revealed the emergence of new polar phases and a
shift of the phase transition temperature with respect
to that in bulk crystals. The size effects were detected
in SrBisTas Og nanoparticles by Yu et al. [115] and Ke
et al. [116], by using Raman spectroscopy.

The list of experimental results can be contin-
ued. Therefore, new theoretical researhes of ferroelec-
tric nanoparticles are important from the viewpoint
of both the fundamental science and the technological
applications. In particular, the influence of the sur-
face and confinement effects on the phase diagrams,
the polar and electrophysical properties of BiFeOg
nanoparticles have not been studied enough. Such
a research can be very useful for the science itself
and for advanced applications, because the theory
of size effects in nanoparticles allows us to deter-
mine the physical origin of polar and other anoma-
lies in physical properties, the change in the tem-
perature of a phase transition in nanoparticles with
a decrease of their size. In particular, by using the
phenomenological approach, Niepce [117], Huang et
al. [118, 119], Ma [120], Eliseev et al. [50], and Mo-
rozovska et al. [11,121-124] showed that the transi-
tion temperature variations and the enhancement or
weakening of polar properties in spherical and cylin-
drical nanoparticles are governed by various physical
mechanisms, such as the correlation effect, depolar-
ization fields, flexolectricity, electrostriction, and sur-
face tension.

5.3. Motivation and formulation
of the problem

Semiellipsoidal nanoparticles can be considered as
a model for studying the influence of size effects
on the physical properties of ferrite nanoislands.
BiFeO3 nanoislands and their self-ordered arrays can
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be formed on anisotropic substrates making use of
various methods [125-127]. The particles usually pos-
sess different axial sizes in the substrate plane ow-
ing to the anisotropy of the substrate conductiv-
ity. Recent progress in the production technology of
such nanoparticles made the synthesis of nanopar-
ticles that are currently used to manufacture mi-
crodrives, microwave phase shifter, infrared sensors,
transistors, energy-collecting devices, and others eco-
nomically efficient. The mechanism of correlation be-
tween the sizes, geometry, and physical parameters
of nanoparticles, as well as the related phenomena,
such as spontaneous polarization, antiferromagnetic
and antiferrodistortive ordering, the width of domain
walls, and the stability of domains, must be studied
experimentally and simulated theoretically. Among of
the most important fundamental tasks to be solved,
there are the evaluation of the polarization stability
limit and the study of the mechanisms that govern the
domain wall motion and the polarization switching in
nano-scaled volumes.

All that stimulated us to study the influence of size
effects on the FE, AFE, and ME properties of semiel-
lipsoidal BiFeOs nanoparticles theoretically, in the
framework of the Landau—Ginzburg—Devonshire ap-
proach, classical electrostatics, and elasticity theory
[128]. Ferroelectricity is known to be a phenomenon
associated with the long-range ordering of dipole mo-
ments. This ordering is characterized by a certain
transition temperature, which depends on some fac-
tors such as the size, material, structural homogene-
ity, and so forth. The size effects are assumed to be
connected with either internal (mainly, this is the
atomic polarization) or external (stresses, microstruc-
ture, polarization, screening, and others) factors.

Let us consider ferroelectric nanoparticles in the
form of semiellipsoidal islands, which were deposited
onto a rigid conductive substrate. An ellipsoid is char-
acterized by different values of its semiaxis lengths a,
b, and c measured along the axes X, Y, and Z, respec-
tively. Let ¢, and ¢, denote the dielectric permittiv-
ity inside and outside the ferroelectric nanoparticle,
respectively. A one-component ferroelectric polariza-
tion in the particle is directed along the crystallo-
graphic axis 3, i.e. in parallel to the interface z = 0
(Fig. 5.1).

Let us assume that the dependence of the lon-
gitudinal components “1” and “2” (in the crystal-
lographic coordinate system) of the electric polar-
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ization on the internal electric field E? is linear,
ie. Py = eo(ej—1)Ef and P, = & (e} — 1) Ei,
where gy = 8.85 x 10'2 F/m is the universal dielec-
tric constant (the dielectric permittivity of vacuum)
and the isotropic background dielectric constant e
is relatively small (¢} < 10) [129]. The perpendicular
component “3” of polarization contains the ferroelec-
tric and background components:

Py (r,E3) = P (r, B3) + ¢ (g, — 1) E3.

The electric displacement vector equals D? = e} E'+
+ P inside the particle and D¢ = ¢ye°E° outside it,
where ¢ is the relative dielectric permittivity of ex-
ternal carriers. Hereafter, the superscripts ¢ and e de-
note the electric field or the potential inside and out-
side the particle, respectively.

The non-uniform spatial distribution of the fer-
roelectric component of the polarization Ps(r, E3)
can be determined from the Landau—Ginzburg—
Devonshire equation for the nanoparticle interior,

apP; + ﬁppg’ + ’}/ppg’ —
2

_g33mn% — 2Qki30r P3 = Ej, (5.1)
where the coefficient ap (T') = ag) (T —Tc), T is the
absolute temperature, T the Curie temperature of
the paraelectric-ferroelectric phase transition, Sp and
~vp are the coefficients of the LGD potential expan-
sion in a series in the polarization, and oy and Q;jm.
are the tensors of elastic stresses and electrostric-
tion, respectively. The flexoeffect is considered to be
small. The boundary conditions for the polarization
Ps at the particle surface S are assumed to be stan-
dard, i.e. (OP3/0n)g = 0.

The electric field is determined, as usually, through
the electric potential, E; = —0p/dx;. For the combi-
nation ferroelectric-insulator, the electric potential ¢
can be found from the Laplace equation outside the
nanoparticle, ege®Ayp, = 0, and the Poisson equation
inside it,

I3

where e is the background dielectric permittivi-

ty. There are no free charges inside the particle.
The continuity equation (p. —¢i)g = 0 is a re-
quired boundary condition for the electric potential
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at the particle surface. The boundary condition for
the normal components of the electric displacement
vector should involve the surface screening of the en-
vironment from free charges on the particle surface
S: [(De —D;)n+ 60%} g = 0, where A is the screen-
ing length. The potential is constant at the particle-
electrode interface: ¢;|,_, = 0. The surface screen-
ing reduces the influence of an external field and di-
minishes the depolarization field associated with the
polarization gradient.

In the framework of the phenomenological ap-
proach, the contribution of the linear and bi-
quadratic ME couplings to the free energy of the
system is described by the quantities u; ;P M; and
&ij k1P PyMy M;, where P is the polarization and M
the magnetization vector, p;; and &; j,; are the ten-
sors of corresponding ME effects [130-133]. The con-
tribution of the PME effect is described by the term
Nijk, Pis M, My, [127,131]. To calculate the PME co-
efficients, the phenomenological LGD model is used
[134, 135]. If the magnetization M is proportional to
the applied magnetic field H, i.e. M =~ xpm (T) H,
the PME coefficient 7 has the form [128]

n(T) = =Ps (T) xre (T) (xm (7)) e, (5:3)

where Pgs (T') is the spontaneous polarization P (r)
averaged over the volume, which is calculated from
Eq. (5.1) at H = 0 and F = 0; and the functions
xum (T) and xpg (T) are the linear magnetic suscep-
tibility and the dielectric permittivity, respectively,
of the ferroelectric phase averaged over the particle
volume. The ferroelectric susceptibility can be calcu-
lated by formula (5.1) with the help of the equation

0 (Ps)
0FE5 EB:OI

xrE (1) = (5.4)

The approximate expression for the magnetic suscep-
tibility obtained in work [128] reads

Mo
(T —0) + &omL? + &up P2 (T) '

XM (T) =T (55)
M

Equations (5.3) and (5.4) are valid for the ferroelect-
ric-antiferromagnetic phase with a nonzero antifer-
romagnetic long-range order parameter (i.e. at L #
# 0) and for the magnetically disordered ferroelectric-
paramagnetic phase (i.e. at M = L = 0). The param-
eters £r,m and &yp are biquadratic ME coefficients for
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the polarization and magnetic order parameters in the
ME energy

1
GME = 3 (mpM? + &LpL?) P2.

Note that only two coefficients in the magnetic energy

T T
Gy = aL2( )L2+%L4+O‘M2( SV

T %MM‘* — oM H + ’ELTMLQM2

are temperature-dependent; namely, these are

(T

ar(T) = o{I(T - Tx)

and
an(T) = aif (T - 6),

where Ty and 60 are the Neél and Curie temperatures,
respectively.

5.4. Analytical solutions

Using the finite-element method, the spatial distribu-
tion and the average electric field inside particles can
be calculated. The material parameters of BiFeOg
used in calculations [128] were as follows: the sponta-
neous polarization Ps = 1 m/C, the electrostriction
coefficient Q12 = —0.05 m*/C?, the electrostriction
coefficient Q17 = —0.1 m*/C?, the background dielec-
tric constant €, = 10, the external dielectric constant
ge = 1, the gradient coefficient v;; = 10719 m3/F,
the LGD coefficient ag = 107% m?/F, the LGD
coefficient 3 = 107 J m5/C4, the LGD coefficient
a = —10"m/F (at T = 300 K), the ferroelectric Curie
temperature T = 1100 K, the temperature coefli-
cient ar = 0.9 x 105 m/(C F), the Neél temperature
Tx = 650 K, the screening length A = 1073+-10% nm,
and the dielectric constant g9 = 8.85 x 1072 F/m.
The calculated numerical results were approxi-
mated analytically. The expression obtained for the
electric field at the distance A from the surface is as

follows:

> _ Px A (a,b0)
X ey N Rnos (a,b,c)’

(5.6)

where n, is the depolarization factor of the system
in bulk (the limit A — oo) making no allowance for
the charge screening, and R is a characteristic length
along the particle semiaxis a. Using Eq. (5.6), the
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effective depolarization factor ng (a,b,c¢) = —eq b;;f
can be introduced, so that

AN (a, b, c
ng (a,b,c) = o ( ) (5.7)

A+ Rneo (a,b,¢)

Formula (5.7) allows the parameters no and R to be
determined for a large variety of nanoparticle sizes
a, b, and ¢, which are the lengths of ellipsoid semi-
axes. The specific values of those parameters were
found, by using the following approximations:

Neo (a,b,¢) &

b ¢?
epb+eca \ 2 +0-7a0+a2b+0% ’
(5.8a)

R(a,b,c) ~a (0.62 + 0.19% + 0.25%). (5.8b)

Note that the first multiplier in formula (5.8a) is an
exact expression for the depolarization coefficient of
the elliptic cylinder with the semiaxes a and b. A
high accuracy of approximations (5.8) becomes evi-
dent from Figs. 5.2, b—d.

Taking Eqs. (5.6)—(5.8) into account, the transition
temperature into the paraphase, Tt (a,b,¢), can be
determined analytically from the condition onr:—s =
[128]; namely, na (a.b. )

T (a,b,¢) = T — 241929

5.9
o (5.9)

This formula gives rise to analytical expressions for
the average spontaneous polarization,

% (Ter (a,b,¢) = T) for T < Ty,

Pg = (5.10)
0 for T > T,,,
1
for T < Ty,
207 (T (a,b,¢) — T
N
for T > T,,.
ar (T —Ta(abo) 07
(5.11)

Furthermore, Egs. (5.3), (5.5), (5.10), and (5.11)
bring us to an analytical expression for the PME co-
efficient in the form

—&ne (o (T))°

for T < T¢,,
n(T) = {2v/arfB (Te (a,b,c) — T)
0 for T > T,..
(5.12)

As follows from formulas (5.9)—(5.12), the depolar-
ization fields considerably affect the polar and PME
properties of ellipsoidal nanoparticles.
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5.5. Influence of size effects
on phase diagrams, average polarization,
and PME coefficient

The phase diagrams of semiellipsoidal BiFeO3 nano-
particles in the relative temperature T'/T¢ (T¢ is the
Curie temperature in bulk) — semiaxis length a coor-
dinates are shown in Fig. 5.2, a. The boundary be-
tween the PE and FE phases, i.e. the actual phase
transition temperature T, (a,b,c), depends on the
semiellipsoid sizes a, b, and c. The size effects man-
ifest themselves in the disappearance of the ferro-
electric phase at a critical size, which is followed by
a monotonic growth of the transition temperature,
as a increases, and its saturation at ¢ > 100 nm.
The curves in Fig. 5.2 were calculated for various
length values of the semiaxis b = 3, 10, 30, and
100 nm and the fixed particle heights ¢ = 10 nm
(Fig. 5.2, a) and 100 nm (Fig. 5.2, b). The crit-
ical size monotonically decreases, and the PE-FE
phase boundary shifts from left to right with the
growth of b at a fixed c. The critical sizes calcu-
lated for ¢ = 10 nm are considerably smaller than
those calculated for ¢ = 100 nm and the same b-
values [cf. the curves in Figs. 5.2, a and 5.2, b]. At
¢ = 10 nm, the critical size varies in a narrow in-
terval of 10-12 nm, and the curves calculated for
different b-values are located very close to one an-
other. At ¢ = 100 nm, the critical size changes in
a wider interval of 15-45 nm, and the curves calcu-
lated for different b-values are well separated from one
another.

The analysis of the calculation results depicted in
Fig. 5.2 makes it possible to draw a conclusion that
the influence of the size effect on the phase diagrams
is considerable for the ratio bc/a? between the par-
ticle sizes and less sensitive to separate size magni-
tudes. The smaller this ratio, the lower is the depo-
larization field and, consequently, the higher is the
transition temperature and the smaller is the critical
size. This result seems to be non-trivial.

The dependences of the spontaneous polarization
on the semiellipsoid length a calculated for room tem-
perature and the semiaxis length ¢ = 100 nm are
shown in Fig. 5.2, b. The lengths of another semi-
axis b are indicated near the curves. The polarization
curves calculated for different b-values are well sep-
arated from one another. The spontaneous polariza-
tion appears at the critical size ae, (b, ¢) and increases

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 11

1.0
PE
, 08
S
o 06
—
>
2
o
504
Q.
5
0.2
= ¢ =100 nm
0.0
10 20 50 100 200 500 1000
Semiaxis a (nm)
a
1.0
—
Eos
S)
2’06
c
§e]
504
N c =100 nm
So2 T=300 K
o
0.0
10 20 50 100 200 500 1000
Semiaxis a (nm)
b
5

IS

PME coefficient
w

N

10 20 50 100 200 500
Semiaxis a (nm)

c

Fig. 5.2. Phase diagrams in the temperature 7' — ellipsoid
semiaxis length a coordinates calculated for the semiaxis length
¢ = 100 nm and various semiaxis lengths b = 3, 10, 30, and
100 nm (indicated near the curves) (a). Dependences of the
spontaneous polarization on the ellipsoid semiaxis length a at
room temperature calculated for ¢ = 100 nm and various semi-
axis lengths b = 3, 10, 30, and 100 nm (indicated near the
curves) (b). The same as in panel b, but for the PME coeffi-
cient (c). The screening length A = 1 nm, the other parameters
corresponding to BiFeOgs are quoted in section 5.2 (Adapted
from [128], with the permission of AIP Publishing)
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with a. The polarization saturates at a value of about
1 C/m? at a >> 100 nm.

The dependences of the PME coefficient on the
semiaxis length a calculated for room temperature
and the semiaxis length ¢ = 100 nm are shown in
Fig. 5.2, c¢. The lengthsof another semiaxis b were cho-
sen the same as in the previous figures (b = 3, 10, 30,
and 100 nm). The plotted dependences were normal-
ized by the main PME coefficient value. The PME
coefficient equals zero, if a < a¢ (b, ¢) owing to the
spontaneous disappearance of the polarization, ap-
pears at a < aer, has a singularity at a = ac (b, ¢),
then decreases, as the size a grows, and saturates at
a > 100 nm. The singularity testifies to a possibil-
ity to obtain a giant PME effect in BiFeO3 nanopar-
ticles near the size-induced FE-PE phase transition
point. In particular, the normalized PME coefficient
significantly exceeds 1 for the sizes within the interval
aer (b, ¢) < a < 2ae (b, ¢). The behavior of the PME
coeflicient reproduces that of the dielectric suscepti-
bility described by Eq. (5.11) in the framework of our
model. The dependences of the PME coefficient cal-
culated for various b-values are well separated from
one another.

To summarize, in this section we considered the in-
fluence of nanoparticle sizes on the phase diagrams
and the ferroelectric and magnetoelectric properties
of semiellipsoidal BiFeO3; nanoparticles attached to
a rigid conductive substrate. In the framework of
the Landau-Ginzburg-Devonshire method, as well
as the classical electrostatics and elasticity theory,
the spatial distributions of the spontaneous polariza-
tion vector inside the ferroelectric nanoparticles, the
phase diagrams, and the PME coefficient were cal-
culated. Analytical expressions were obtained for the
dependences of the ferroelectric transition tempera-
ture, average polarization, linear dielectric suscepti-
bility, and PME coefficient on the particle sizes in
the general case of semiellipsoidal nanoparticles with
different semiaxes a and b, and the height c. Since
the depolarization field for nanoparticles with small c-
values is substantially lower, the energy-beneficial are
nanoparticle orientations along the spontaneous po-
larization plane ¢ < a. As follows from the analysis of
the results obtained, the phase diagrams, the sponta-
neous polarization, and the PME coefficient are quite
sensitive to the ratio bc/a? between the particle sizes
and are less sensitive to the size magnitudes. This cir-
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cumstance opens a way to control the nanoparticle
properties by choosing the proper value of this ratio.

6. Conclusions

Theoretical researches of the influence of the magne-
toelectric effect on the physical properties of nano-
sized ferroics and multiferroics are very challeng-
ing. The interest in them has grown significantly
within the last decade. The Landau—Ginzburg—De-
vonshire phenomenological theory can successfully
describe the appearance of the piezomagnetic, piezo-
electric, and linear magnetoelectric effects near the
ferroic surface as a result of the surface-induced spon-
taneous reduction of a symmetry of the system. As
a consequence, nanosized particles and thin ferroic
films can manifest pronounced piezomagnetic, piezo-
electric, and magnetoelectric properties, which are
absent in the corresponding bulk materials. In par-
ticular, there may appear the giant magnetoelectric
effect in nanowires induced by the surface tension. A
significant influence of size effects and external fields
on the magnetoelectric coupling coefficients, the di-
electric, magnetic, and magnetoelectric susceptibili-
ties in nanoferroics was considered. The special atten-
tion was paid to the influence of misfit deformations
on the magnetoelectric coupling in thin ferroic films
and the corresponding phase diagrams, including the
emergence of new phases absent for the bulk material.

In the framework of the Landau—Ginzburg—Devon-
shire theory, the mechanisms giving rise to the ap-
pearance of the linear magnetoelectric and flexomag-
netoelectric effects in nanoferroics induced by the
flexomagnetic coupling are considered. A substantial
influence of the flexomagnetoelectric effect on the sus-
ceptibility of nanoferroics is revealed. In particular,
the sizes of semiellipsoidal bismuth ferrite nanopar-
ticles strongly affect their polar and magnetoelectric
properties.
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M. . I'nuwwyx, B.B. Xicm

BIZIHOBJIEHHS{ IHTEPECY
1O MATHITOEJIEKTPIIYHOI'O

EDPEKTY Y HAHO®EPOIKAX
Pezmowme

ABTOPCBHKUI OIJIsA]] TPUCBIYEHO OCTAHHIM TEOPETUYHUM JI0-
CIIIIPKEHHSIM BIUIMBY MAarHITOEJIEKTPUYIHOrOo edekry Ha di-
3uuni BracTuBOCTi HamHOpOo3MipHUX depoikiB i MmymbTHOEPO-
ikiB. OcobiuBy yBary HNPHUIIJIEHO 3aCTOCYBaHHIO (DEHOMEHO-
noriunol Teopil Jlammay-I'im36ypra—/lesonmupa mjs onwucy
BUHUKHEHHSI 1I'€30MAarHITHOTO, II’€30€JIEKTPUYHOTO 1 JIHIHO-
ro Mar”iToeseKTpu4IHOro edekTiB mobaudy MmoBepxHi ¢epoi-
KiB, IK TAKHX, [0 BUKJIMKAHI CIOHTAHHUM IIOHM>KEHHSIM CH-
Merpil, iHAyKOBaHMM IOBepXHE. fIK HACIiIOK, HAHOPO3MIip-
Hi YaCTMHKM 1 TOHKI INUIIBKM MOXKYTb IPOSABJIATU BHUPaXKe-
Hi 1I’€30Mar”iTHi, 11’€30€JIEKTPUYHI i MarHiTOEJIEKTPUYHI BJja-
cTuBOCTi, BimCcyTHI y BignoBimHux o6’eMHUX MaTepiajiB, 3
AKUX BOHM 3po0JieHi. 30KpeMa MOXKJ/IMBE BUHUKHEHHSI TiraHT-
CbKOTO MAarHITOEJEKTPUYIHOTO edEeKTy y HAHOAPOTaX, IHJIy-
KOBAHOTO IIOBEPXHEBUM HATArOM. PO3IIsiHyTO Ta Big3Hade-
HO 3HAYHUI BIUIMB PO3MIpHUX €@EKTIB Ta 30BHIIIHIX IIOJIB
Ha KOedIIleHTH MarHiTOEJIEKTPUTIHOIO 3B’A3KY, M1€IEKTPHIHY,
Mar”iTHy Ta MarHIiTOEJIEKTPUYHY CHPHUHHATIMBICTHD y HAHO-
depoikax. OcobimBa yBara NpHIijIeHa PO3IJISAY BILUIUBY Jie-
dopmariii HeBiAIOBIAHOCTI HAa MArHITOEJEKTPUYHHUN 3B’SI30K
y TOHKHUX IJIiBKax epoikiB, 1x az30Bi giarpaMu, BKIIOYAIO-
9 BHHOKHEHHsSI HOBHX a3, BiacyTHix B 06’eMHOMY MaTepi-
asni. B pamkax Teopil Jlangay—I'in36ypra—/lesonmmupa posriisi-
HYTO BUHUKHEHHs JIIHITHOTO MarHiTOEJIEKTPUIHOTO Ta (DJIEKCOo-
MAarHiTOeJIeKTPUYIHOIO edeKTiB y HaHOoMEpOIKax, iH/I1yKOBaHO-
ro duekcoMarHiTHUM 3B’A3KOM. BinsHadueHo 3HAYHUN BIINB
direkcoMarsiToeIeKTPUIHOro ePeKTy Ha CHPUNHSATIUBICTD Ha-
HoepoikiB. Orvisy 3aBepIIYyETHCS KOHKPETHUM IIPUKJIAIOM
BIUIUBY PO3MIpHEX e(eKTiB Ha IIOJISPHI Ta MarHITOEJIEKTPH-
9Hi BJIACTUBOCTI HaliBesiNCOIJAJIBHUX HAHOYACTHHOK depiTy
BicMyTa.
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