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HIGH-ORDER NONLINEAR
SCHRÖDINGER EQUATION FOR THE ENVELOPE
OF SLOWLY MODULATED GRAVITY WAVES
ON THE SURFACE OF FINITE-DEPTH FLUID
AND ITS QUASI-SOLITON SOLUTIONSPACS 47.35.Bb

We consider the high-order nonlinear Schrödinger equation derived earlier by Sedletsky
[Ukr. J. Phys. 48(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity
waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat
bottom. This equation takes into account the third-order dispersion and cubic nonlinear disper-
sive terms. We rewrite this equation in dimensionless form featuring only one dimensionless
parameter 𝑘ℎ, where 𝑘 is the carrier wavenumber and ℎ is the undisturbed fluid depth. We show
that one-soliton solutions of the classical nonlinear Schrödinger equation are transformed into
quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into
consideration. These quasi-soliton solutions represent the secondary modulations of gravity
waves.
K e yw o r d s: nonlinear Schrödinger equation, gravity waves, finite depth, slow modulations,
wave envelope, quasi-soliton, multiple-scale expansions.

1. Introduction

The nonlinear Schrödinger equation (NLSE)

𝐴𝜏 = −𝑎1𝐴𝜒 − i𝑎2𝐴𝜒𝜒 + i𝑎0, 0, 0𝐴|𝐴|2 (1.1)

arises in describing nonlinear waves in various phys-
ical contexts, such as nonlinear optics [64], plasma
physics [33], nanosized electronics [12], ferromagnet-
ics [10], Bose–Einstein condensates [73], and hydrody-
namics [15,44,66,69]. Here, 𝜒 is the direction of wave
propagation, 𝜏 is time, 𝐴(𝜒, 𝜏) is the complex first-
harmonic envelope of the carrier wave, and the sub-
scripts next to 𝐴 denote the partial derivatives. NLSE
takes into account the second-order dispersion (term
with 𝐴𝜒𝜒) and the phase self-modulation (term with
𝐴|𝐴|2). The coefficients 𝑎1, 𝑎2, and 𝑎0, 0, 0 take vari-
ous values depending on the particular physical con-
text under consideration.

In the general context of weakly nonlinear disper-
sive waves, this equation was first discussed by Ben-
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ney and Newell [5]. In the case of gravity waves prop-
agating on the surface of infinite-depth irrotational,
inviscid, and incompressible fluid, NLSE was first de-
rived by Zakharov [68] using the Hamiltonian formal-
ism and then by Yuen and Lake [66] using the aver-
aged Lagrangian method. The finite-depth NLSE of
form (1.1) was first derived by Hasimoto and Ono [30]
using the multiple-scale method and then by Stiassnie
and Shemer [57] from Zakharov’s integral equations.
Noteworthy is also the recent paper by Thomas et
al. [61] who derived the finite-depth NLSE for water
waves on finite depth with constant vorticity.

Under certain relationship between the parameters,
when

𝑎2𝑎0, 0, 0 < 0, (1.2)

NLSE admits exact solutions in the form of solitons,
which exist due to the balance of dispersion and non-
linearity and propagate without changing their shape
and keeping their energy [16]. In this case, the uni-
form carrier wave is unstable with respect to long-
wave modulations allowing for the formation of en-
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velope solitons. This type of instability is known as
the modulational or Benjamin–Feir instability [71] (it
was discovered for the first time in optics by Bespalov
and Talanov [7]). In the case of surface gravity waves,
condition (1.2) holds at 𝑘ℎ & 1.363, 𝑘 being the car-
rier wavenumber and ℎ being the undisturbed fluid
depth. In addition to theoretical predictions, enve-
lope solitons were observed in numerous experiments
performed in water tanks [9, 44, 50, 51, 55, 60, 66, 67].

At the bifurcation point 𝑎0, 0, 0 = 0 (𝑘ℎ ≈ 1.363),
when the modulational instability changes to stabil-
ity, NLSE of form (1.1) is not sufficient to describe
the wavetrain evolution since the leading nonlinear
term vanishes. In this case, high-order nonlinear and
nonlinear-dispersive terms should be taken into ac-
count. In the case of infinite depth, such a high-order
NLSE (HONLSE) was first derived by Dysthe [19]. It
includes the third-order dispersion (𝐴𝜒𝜒𝜒) and cubic
nonlinear dispersive terms (|𝐴|2𝐴𝜒, 𝐴2𝐴*

𝜒, asterisk
denotes the complex conjugate) as well as an addi-
tional nonlinear dispersive term describing the input
of the wave-induced mean flow (some of these terms
were introduced earlier by Roskes [46] without tak-
ing into consideration the induced mean flow). This
equation is usually referred to as the fourth-order
HONLSE to emphasize the contrast with the third-
order NLSE. Janssen [34] re-derived Dysthe’s equa-
tion and corrected the sign at one of the nonlinear dis-
persive terms. Hogan [31] followed the earlier work by
Stiassnie [56] to derive the similar equation for deep-
water gravity-capillary waves with surface tension
taken into account. Selezov et al. [49] extended the
HONLSE derived by Hogan to the case of nonlinear
wavetrain propagation on the interface of two semi-
infinite fluids without taking into account the induced
mean flow. Worthy of mention is also the paper by
Lukomsky [41] who derived Dysthe’s equation in a dif-
ferent way. Later, Trulsen and Dysthe [62] extended
the equation derived by Dysthe to broader bandwidth
by including the fourth- and fifth-order linear dis-
persion. Debsarma and Das [14] derived a yet more
general HONLSE that is one order higher than the
equation derived by Trulsen and Dysthe. Gramstad
and Trulsen [25] derived a set of two coupled fourth-
order HONLSEs capable of describing two interact-
ing wave systems separated in wavelengths or di-
rections of propagation. Zakharov and Dyachenko
[17, 18, 72] made a conformal mapping of the fluid
domain to the lower half-plane to derive a counter-

part of Dysthe’s equation in new canonical variables
(the so-called compact Dyachenko–Zakharov equa-
tion [21, 22]).

Original Dysthe’s equation was written for the first-
harmonic envelope of velocity potential rather than of
surface profile. In the case of standard NLSE, this dif-
ference in not essential because in that order the first-
harmonic amplitudes of the velocity potential and
surface displacement differ by a dimensional factor
only, which is not true anymore in the HONLSE case,
as discussed by Hogan [32]. Keeping this in mind,
Trulsen et al. [63] rewrote Dysthe’s equation in terms
of the first-harmonic envelope of surface profile while
taking into account the linear dispersion to an arbi-
trary order.

In the case of finite depth, the effect of induced
mean flow manifests itself in the third order, so that
the NLSE is generally coupled to the equation for
the induced mean flow [6]. However, Davey and Stew-
artson [13] showed that these coupled equations are
equivalent to the single NLSE derived by Hasimoto
and Ono [30]. On the other hand, such an equiva-
lence is not preserved for high-order equations. The
first attempt to derive a HONLSE in the case of fi-
nite depth was made by Johnson [35], but only for
𝑘ℎ ≈ 1.363, when the cubic NLSE term vanishes. The
similar attempt was made by Kakutani and Michihiro
[37] (see also a more formal derivation made later by
Parkes [45]). A general fourth-order HONLSE for the
first-harmonic envelope of surface profile was derived
by Brinch-Nielsen and Jonsson [8] in coupling with
the integral equation for the wave-induced mean flow.
Gramstad and Trulsen [26, 27] derived a fourth-order
HONLSE in terms of canonical variables that pre-
serves the Hamiltonian structure of the surface wave
problem.

Sedletsky [47,48] used the multiple-scale technique
to derive a single fourth-order HONLSE for the first-
harmonic envelope of surface profile by introducing
an additional power expansion of the induced mean
flow. This equation is the direct counterpart of Dys-
the’s equation written in terms of the first-harmonic
envelope of surface profile [63] but for the case of fi-
nite depth. Slunyaev [52] confirmed the results ob-
tained in [48] and extended them to the fifth order.
Grimshaw and Annenkov [29] considered a HONLSE
for water wave packets over variable depth.

The deep-water HONLSE in the form of Dysthe’s
equation was extensively used in numerical simula-
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tions of wave evolution [1–3, 11, 20, 23, 40, 53, 54].
However, no such modeling has been performed in
the case of finite depth because of the complexity of
equations as compared to the deep-water limit. The
equation derived in [47, 48] can be used as a good
starting point for the simulations of wave envelope
evolution on finite depth. The aim of this paper is (i)
to rewrite this equation in dimensionless form suit-
able for numerical integration and (ii) to observe the
evolution of NLSE solitons taken as initial waveforms
in the case when the HONLSE terms are taken into
consideration for several values of intermediate depth.

This paper is organized as follows. In Section 2, we
write down the fully nonlinear equations of hydro-
dynamics used as the starting point in this study. In
Section 3, we formulate the constraints at which the
fully nonlinear equations can be reduced to HONLSE.
Then we briefly outline the multiple-scale technique
used to derive this equation, which is presented in
Section 4. Next, we introduce dimensionless coordi-
nate, time, and amplitude to go over to the dimen-
sionless HONLSE. As a result, only one dimension-
less parameter 𝑘ℎ appears in the equation. The final
step is to pass to the reference frame moving with
the group speed of the carrier wave. In Section 5, we
present the results of numerical simulations and com-
pare the NLSE and HONLSE solutions. Conclusions
are made in Section 6.

2. Problem Formulation

We consider the dynamics of potential two-dimen-
sional waves on the surface of irrotational, inviscid,
and incompressible fluid under the influence of grav-
ity. Waves are assumed to propagate along the hori-
zontal 𝑥-axis, and the direction of the vertical 𝑦-axis
is selected opposite to the gravity force. The fluid is
assumed to be bounded by a solid flat bed 𝑦 = −ℎ
at the bottom and a free surface 𝑦 = 𝜂(𝑥, 𝑡) at the
top (Fig. 1). The atmospheric pressure is assumed to
be constant on the free surface. Then the evolution
of waves and associated fluid flows is governed by the
following system of equations [24, 58]:

Φ𝑥𝑥 +Φ𝑦𝑦 = 0, −∞ < 𝑥 < ∞, −ℎ < 𝑦 < 𝜂(𝑥, 𝑡);

(2.1)

Φ𝑡 +
1

2

(︀
Φ2

𝑥 +Φ2
𝑦

)︀
+ 𝑔𝜂 = 0, 𝑦 = 𝜂(𝑥, 𝑡); (2.2)

𝜂𝑡 − Φ𝑦 + 𝜂𝑥Φ𝑥 = 0, 𝑦 = 𝜂(𝑥, 𝑡); (2.3)

Fig. 1. Sketch of the physical domain occupied by an ideal
incompressible fluid of finite depth

Φ𝑦 = 0, 𝑦 = −ℎ; (2.4)

where Φ(𝑥, 𝑦, 𝑡) is the velocity potential (the velocity
is equal to ∇Φ), 𝑔 is the acceleration due to gravity,
𝑡 is time. Here, (2.1) is the Laplace equation in the
fluid domain, (2.2) is the dynamical boundary con-
dition (the so-called Bernoulli or Cauchy–Lagrange
integral), (2.3) and (2.4) are the kinematic boundary
conditions (no fluid crosses the free surface and the
bottom), the indices 𝑥, 𝑦, and 𝑡 designate the partial
derivatives over the corresponding variables. The po-
sition of the zero level 𝑦 = 0 is selected such that the
Bernoulli constant (the right-hand side of Eq. (2.2))
is equal to zero.

Consider a modulated wavetrain with carrier fre-
quency 𝜔 and wavenumber 𝑘. In this case, a solution
to Eqs. (2.1)–(2.4) can be looked for in the form of
Fourier series with variable coefficients:(︂
Φ(𝑥, 𝑦, 𝑡)
𝜂(𝑥, 𝑡)

)︂
=

∞∑︁
𝑛=−∞

(︂
Φ𝑛(𝑥, 𝑦, 𝑡)
𝜂𝑛(𝑥, 𝑡)

)︂
ei𝑛(𝑘𝑥−𝜔𝑡),

𝜂−𝑛 ≡ 𝜂*𝑛, Φ−𝑛 ≡ Φ*
𝑛,

(2.5)

where * stands for complex conjugate (here, we as-
sume the carrier wave to be symmetric), the functions
Φ(𝑥, 𝑦, 𝑡) and 𝜂(𝑥, 𝑡) are assumed to be real by defi-
nition. Substituting (2.5) in (2.1)–(2.4) and equating
the coefficients at the like powers of exp(i(𝑘𝑥−𝜔𝑡)),
one can obtain a system of nonlinear partial dif-
ferential equations for the functions Φ𝑛(𝑥, 𝑦, 𝑡) and
𝜂𝑛(𝑥, 𝑡). Linearization of these equations at 𝑛 = 1
gives the dispersion relation for gravity waves:

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ). (2.6)

3. Slowly Modulated Quasi-Harmonic
Wavetrains and Multiple-Scale Expansions

Generally the system of equations for Φ𝑛(𝑥, 𝑦, 𝑡)
and 𝜂𝑛(𝑥, 𝑡) is by no means more simple than orig-
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inal equations. It can be simplified when solutions
are looked for in a class of functions with nar-
row spectrum, |Δ𝑘| ≪ 𝑘. In this case, the problem
has a formal small parameter 𝜇 ∼ |Δ𝑘|

⧸︀
𝑘 (quasi-

monochromaticity condition), with Φ𝑛(𝑥, 𝑦, 𝑡) and
𝜂𝑛(𝑥, 𝑡) being slow functions of 𝑥 and 𝑡. Accordingly,
the wave motion can be classified into slow one and
fast one by introducing different time scales and dif-
ferent spatial scales:

𝑇𝑛 ≡ 𝜇𝑛𝑡, 𝑋𝑛 ≡ 𝜇𝑛𝑥. (3.1)

The derivatives with respect to time and coordinate
are expanded into the following series:

𝜕

𝜕𝑡
=

∞∑︁
𝑛=0

𝜇𝑛 𝜕

𝜕𝑇𝑛
,

𝜕

𝜕𝑥
=

∞∑︁
𝑛=0

𝜇𝑛 𝜕

𝜕𝑋𝑛
, (3.2)

the times 𝑇𝑛 and coordinates 𝑋𝑛 being assumed to
be independent variables.

When there are no resonances between higher har-
monics, the amplitudes of Fourier coefficients de-
crease with increasing number (quasi-harmonicity
condition):

𝜂𝑛 ∼ 𝜀𝑛𝐴, 𝑛 > 1, 𝜂0 ∼ 𝜀2𝐴, 𝜀 < 1, (3.3)

where

𝜂1 ≡ 1

2
𝜀𝐴(𝑥, 𝑡). (3.4)

The parameter 𝜀 can be regarded as a formal small
parameter related to the smallness of wave amplitude
as compared to the carrier wavelength 𝜆 ≡ 2𝜋

𝑘 . In this
case, the unknown functions Φ𝑛(𝑥, 𝑦, 𝑡) and 𝜂𝑛(𝑥, 𝑡)
can be expanded into power series in the formal pa-
rameter 𝜀:(︂
Φ𝑛(𝑥, 𝑦, 𝑡)
𝜂𝑛(𝑥, 𝑡)

)︂
=

∞∑︁
𝑚=1

𝜀𝑚

(︃
Φ

(𝑚)
𝑛 (𝑥, 𝑦, 𝑡)

𝜂
(𝑚)
𝑛 (𝑥, 𝑡)

)︃
. (3.5)

Multiple-scale expansions (3.2) and (3.5) allow the
functions Φ𝑛(𝑥, 𝑦, 𝑡) and 𝜂𝑛(𝑥, 𝑡) to be expressed in
terms of the first harmonic envelope 𝐴(𝑥, 𝑡), as de-
scribed in detail in [47]. Note that in the procedure
described in [47] it is essential to set 𝜀 ≡ 𝜇.

In practice, the quasi-harmonicity condition can be
written as

|𝑘𝜂1| ≪ 1, (3.6)

and the condition of slow modulation (quasi-mono-
chromaticity) can be formalized as⃒⃒⃒⃒
𝐴𝑥

𝑘𝐴

⃒⃒⃒⃒
≪ 1, (3.7)

which follows from differentiating the function
𝐴(𝑥, 𝑡) exp

(︀
i(𝑘𝑥−𝜔𝑡)

)︀
with respect to 𝑥. With these

conditions satisfied, the original system of equations
(2.1)–(2.4) can be reduced to one evolution equation
for the first harmonic envelope 𝐴(𝑥, 𝑡) with the use
of small-amplitude expansions (3.2) and (3.5).

4. High-Order
Nonlinear Schrödinger Equation

4.1. Equation derived by Sedletsky

Sedletsky [47, 48] used the above-described multiple-
scale procedure to derive the following HONLSE for
the first-harmonic envelope 𝐴(𝑥, 𝑡) (Eq. (68) in [47]):

i
(︂

𝜕𝐴

𝜕(𝜀𝑡)
+ 𝑉𝑔

𝜕𝐴

𝜕(𝜀𝑥)

)︂
+

+ 𝜀

(︂
1

2
𝜔′′ 𝜕2𝐴

𝜕(𝜀𝑥)2
+ 𝜔𝑘2𝑞3|𝐴|2𝐴

)︂
+

+ i𝜀2
(︂
−1

6
𝜔′′′ 𝜕3𝐴

𝜕(𝜀𝑥)3
+ 𝜔𝑘𝑄41|𝐴|2 𝜕𝐴

𝜕(𝜀𝑥)
+

+𝜔𝑘𝑄42𝐴
2 𝜕𝐴*

𝜕(𝜀𝑥)

)︂
= 0 [m/s]. (4.1)

As compared to the standard NLSE, this equation
takes into account additional nonlinear and disper-
sive terms of order 𝒪(𝜀2). Equation (4.1) was later
re-derived by Slunyaev [52], who confirmed the sym-
bolic computations presented in [47,48] and extended
them to the 𝒪(𝜀3) order. Here, we restrict our atten-
tion to the original equation (4.1). The parameters of
this equation are given by

𝜔 = (𝑔𝑘𝜎)
1/2

, 𝜎 ≡ tanh(𝑘ℎ), (4.2a)

𝜔′ =
𝜕𝜔

𝜕𝑘
≡ 𝑉𝑔 =

𝜔

2𝑘

(︂
1 +

2𝑘ℎ

sinh(2𝑘ℎ)

)︂
=

=
𝜔

2𝑘

(︂
1 +

1− 𝜎2

𝜎
𝑘ℎ

)︂
, (4.2b)

𝜔′′ =
𝜕2𝜔

𝜕𝑘2
=

𝜔

4𝑘2𝜎2

(︁(︀
𝜎2 − 1

)︀ (︀
3𝜎2 + 1

)︀
𝑘2ℎ2 −

− 2𝜎
(︀
𝜎2 − 1

)︀
𝑘ℎ− 𝜎2

)︁
, (4.2c)
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𝜔′′′ =
𝜕3𝜔

𝜕𝑘3
= − 𝜔

8𝑘3𝜎3

(︁(︀
𝜎2 − 1

)︀
×

×
(︀
15𝜎4− 2𝜎2 + 3

)︀
𝑘3ℎ3−3𝜎

(︀
𝜎2− 1

)︀(︀
3𝜎2+ 1

)︀
𝑘2ℎ2 −

− 3𝜎2
(︀
𝜎2 − 1

)︀
𝑘ℎ− 3𝜎3

)︁
, (4.2d)

𝑞3 = − 1

16𝜎4𝜈

(︁(︀
𝜎2 − 1

)︀2 (︀
9𝜎4 − 10𝜎2 + 9

)︀
𝑘2ℎ2 +

+2𝜎
(︀
3𝜎6 − 23𝜎4 + 13𝜎2 − 9

)︀
𝑘ℎ−

−𝜎2
(︀
7𝜎4 − 38𝜎2 − 9

)︀)︁
, (4.2e)

𝑄41 =
1

32𝜎5𝜈2

(︁(︀
𝜎2 − 1

)︀5 ×
×
(︀
3𝜎6 − 20𝜎4 − 21𝜎2 + 54

)︀
𝑘5ℎ5 −

−𝜎
(︀
𝜎2− 1

)︀3 (︀
11𝜎8− 99𝜎6− 61𝜎4+ 7𝜎2+ 270

)︀
𝑘4ℎ4 +

+2𝜎2
(︀
𝜎2 − 1

)︀ (︀
7𝜎10 − 58𝜎8 + 38𝜎6 + 52𝜎4 −

− 181𝜎2 + 270
)︀
𝑘3ℎ3 − 2𝜎3

(︀
3𝜎10 + 18𝜎8 − 146𝜎6 −

− 172𝜎4+183𝜎2−270
)︀
𝑘2ℎ2−𝜎4

(︀
𝜎8−109𝜎6+517𝜎4 +

+217𝜎2+270
)︀
𝑘ℎ+𝜎5

(︀
𝜎6 − 40𝜎4 + 193𝜎2 + 54

)︀)︁
+Δ,

(4.2f)
𝑄42 =

1

32𝜎5𝜈2

(︁
−
(︀
𝜎2 − 1

)︀5 ×
×
(︀
3𝜎6 + 7𝜎4 − 11𝜎2 + 9

)︀
𝑘5ℎ5 +

+𝜎
(︀
𝜎2− 1

)︀3 (︀
11𝜎8− 48𝜎6+ 66𝜎4+ 8𝜎2+ 27

)︀
𝑘4ℎ4 −

− 2𝜎2
(︀
𝜎2 − 1

)︀ (︀
7𝜎10 − 79𝜎8 + 282𝜎6 −

− 154𝜎4 − 𝜎2 + 9
)︀
𝑘3ℎ3 + 2𝜎3

(︀
3𝜎10 − 63𝜎8 + 314𝜎6 −

− 218𝜎4 + 19𝜎2 + 9
)︀
𝑘2ℎ2 + 𝜎4

(︀
𝜎8 + 20𝜎6 − 158𝜎4 −

− 28𝜎2−27
)︀
𝑘ℎ−𝜎5

(︀
𝜎6 − 7𝜎4 + 7𝜎2 − 9

)︀)︁
−Δ, (4.2g)

𝜈 =
(︀
𝜎2 − 1

)︀2
𝑘2ℎ2 − 2𝜎

(︀
𝜎2 + 1

)︀
𝑘ℎ+ 𝜎2. (4.2h)

The quantity 𝑉𝑔 is the wave group speed. The param-
eter Δ is the correction introduced by Slunyaev [52]
to the coefficients derived in [47, 48]. This correction
is negligible at 𝑘ℎ & 1 (see Appendix A), and we
ignore it by keeping Δ = 0.

The free-surface displacement is expressed in terms
of 𝐴 as

𝜂 = 𝜀2𝜂0 + 𝜀Re
(︀
𝐴ei(𝑘𝑥−𝜔𝑡)

)︀
+

+ 𝜀2 2Re
(︀
𝜂2 e

2i(𝑘𝑥−𝜔𝑡)
)︀
+𝒪(𝜀3), (4.3)

where Re{·} stands for the real part of a complex-
valued function. Here, 𝜂0 and 𝜂2 are defined as

𝜂0 =
𝜎 + 2

(︀
1− 𝜎2

)︀
𝑘ℎ

𝜈
𝑘|𝐴|2, (4.4a)

𝜂2 =
3− 𝜎2

8𝜎3
𝑘𝐴2. (4.4b)

The corresponding velocity potential is written as

Φ = 𝜀Φ0 + 𝜀 2Re
(︀
Φ1 e

i(𝑘𝑥−𝜔𝑡)
)︀
+

+ 𝜀2 2Re
(︀
Φ2 e

2i(𝑘𝑥−𝜔𝑡)
)︀
+𝒪(𝜀3), (4.5)

where

Φ1 =
𝜔

2𝑘𝜎

(︃(︂
𝜕𝐴

𝜕𝑥

(︂
ℎ𝜎 +

𝑉𝑔

𝜔

)︂
− i𝐴

)︂
cosh

(︀
𝑘(𝑦 + ℎ)

)︀
cosh(𝑘ℎ)

−

− (𝑦 + ℎ)
𝜕𝐴

𝜕𝑥

sinh
(︀
𝑘(𝑦 + ℎ)

)︀
cosh(𝑘ℎ)

)︃
, (4.6a)

Φ2 = 3i𝜔
(𝜎4 − 1)

16𝜎4

cosh
(︀
2𝑘(𝑦 + ℎ)

)︀
cosh(2𝑘ℎ)

𝐴2. (4.6b)

The term Φ0 describes the wave-induced mean flow
and is expressed implicitly in terms of its derivatives

𝜕Φ0

𝜕𝑥
= 𝜀

𝜔𝑘𝛾1
2𝜎𝜈

|𝐴|2 + i𝜀
𝜔𝛾2
8𝜎2𝜈2

(︂
𝐴
𝜕𝐴*

𝜕𝑥
−𝐴* 𝜕𝐴

𝜕𝑥

)︂
,

(4.7a)

𝜕Φ0

𝜕𝑡
= −𝑉𝑔

𝜕Φ0

𝜕𝑥
, (4.7b)

where

𝛾1 =
(︀
𝜎2 − 1

)︀2
𝑘ℎ− 𝜎

(︀
𝜎2 − 5

)︀
, (4.8a)

𝛾2 =
(︀
𝜎2 − 1

)︀5
𝑘4ℎ4 + 4𝜎

(︀
𝜎2 − 1

)︀2(︀
13𝜎2 + 3

)︀
𝑘3ℎ3 −

− 2𝜎2
(︀
𝜎2 − 1

)︀(︀
3𝜎4 + 32𝜎2 − 3

)︀
𝑘2ℎ2 +

+4𝜎3
(︀
2𝜎4 − 𝜎2 − 5

)︀
𝑘ℎ− 3𝜎4

(︀
𝜎2 − 5

)︀
. (4.8b)

Functions (4.3) and (4.5) define an approximate so-
lution to the original system of equations (2.1)–(2.4)
in terms of the first-harmonic envelope 𝐴, which is
found from Eq. (4.1).
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4.2. Dimensionless form

Introduce the following dimensionless time, coordi-
nate, and amplitude:

𝜏 = 𝛽𝑡, 𝜒 = 𝑘𝑥, 𝑢 = 𝛼−1𝜀𝐴, (4.9)

𝛼 and 𝛽 being the parameters to be determined. The
relationship between the old and new derivatives is

𝜕

𝜕𝑥
= 𝑘

𝜕

𝜕𝜒
,

𝜕

𝜕𝑡
= 𝛽

𝜕

𝜕𝜏
.

Then Eq. (4.1) is transformed to

i𝛼 (𝛽𝑢𝜏 + 𝑘𝑉𝑔𝑢𝜒)+𝛼

(︂
1

2
𝜔′′𝑘2𝑢𝜒𝜒 + 𝜔𝑘2𝑞3|𝛼|2|𝑢|2𝑢

)︂
+

+ i𝛼
(︁
−1

6
𝜔′′′𝑘3𝑢𝜒𝜒𝜒 + 𝜔𝑘2𝑄41|𝛼|2𝑢𝜒|𝑢|2 +

+𝜔𝑘2𝑄42|𝛼|2𝑢2𝑢*
𝜒

)︁
= 0 [m/s].

Here, the indices 𝜒 and 𝜏 designate the partial deriva-
tives with respect to the corresponding variables. Ta-
king into account that 𝜔′′ < 0 at all ℎ > 0 (Fig. 2),
divide this equation by 𝜔′′𝑘2𝛼 so that

i
(︂

𝛽

𝜔′′𝑘2
𝑢𝜏 +

𝑉𝑔

𝜔′′𝑘
𝑢𝜒

)︂
+

(︂
1

2
𝑢𝜒𝜒 +

𝜔

𝜔′′ |𝛼|
2𝑞3|𝑢|2𝑢

)︂
+

+ i
(︁
−1

6

𝜔′′′𝑘

𝜔′′ 𝑢𝜒𝜒𝜒 +
𝜔

𝜔′′ |𝛼|
2𝑄41𝑢𝜒|𝑢|2 +

+
𝜔

𝜔′′ |𝛼|
2𝑄42𝑢

2𝑢*
𝜒

)︁
= 0

and select the values of 𝛼 and 𝛽 as

|𝛼|2 = −𝜔′′

𝜔
> 0, 𝛽 = −𝜔′′𝑘2 > 0. (4.10)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

kh

Ω
¢¢

Fig. 2. 𝜔′′ in m2/s as a function of ℎ at 𝑘 = 1 and 𝑔 = 9.8m/s2

Thus, Eq. (4.1) takes the dimensionless form

i
(︂
𝑢𝜏 − 𝑉𝑔

𝜔′′𝑘
𝑢𝜒

)︂
− 1

2
𝑢𝜒𝜒 + 𝑞3|𝑢|2𝑢+

+ i
(︂
1

6

𝜔′′′𝑘

𝜔′′ 𝑢𝜒𝜒𝜒 +𝑄41𝑢𝜒|𝑢|2 +𝑄42𝑢
2𝑢*

𝜒

)︂
= 0

or, equivalently,

i
(︀
𝑢𝜏 + 𝑎1𝑢𝜒

)︀
− 𝑎2𝑢𝜒𝜒 + 𝑎0, 0, 0|𝑢|2𝑢+ i

(︁
−𝑎3𝑢𝜒𝜒𝜒 +

+ 𝑎1, 0, 0𝑢𝜒|𝑢|2 + 𝑎0, 0, 1𝑢
2𝑢*

𝜒

)︁
= 0, (4.11a)

which finally yields

𝑢𝜏 = −𝑎1𝑢𝜒 − i𝑎2𝑢𝜒𝜒 + i𝑎0, 0, 0|𝑢|2𝑢+

+
(︁
𝑎3𝑢𝜒𝜒𝜒 − 𝑎1, 0, 0𝑢𝜒|𝑢|2 − 𝑎0, 0, 1𝑢

2𝑢*
𝜒

)︁
, (4.11b)

where we used the unified notation introduced by
Lukomsky and Gandzha [42]. Here, the coefficients

𝑎1 = − 𝑉𝑔

𝜔′′𝑘
= − 2

𝜐

(︁
𝜎2 + 𝜎

(︀
1− 𝜎2

)︀
𝑘ℎ
)︁
> 0,

𝑎2 =
1

2
,

𝑎3 ≡ −1

6

𝜔′′′𝑘

𝜔′′ =

=
1

12𝜎𝜐

(︁(︀
𝜎2 − 1

)︀ (︀
15𝜎4 − 2𝜎2 + 3

)︀
𝑘3ℎ3 −

− 3𝜎
(︀
𝜎2 − 1

)︀ (︀
3𝜎2 + 1

)︀
𝑘2ℎ2 −

− 3𝜎2
(︀
𝜎2 − 1

)︀
𝑘ℎ− 3𝜎3

)︁
,

𝑎0, 0, 0 ≡ 𝑞3, 𝑎1, 0, 0 ≡ 𝑄41, 𝑎0, 0, 1 ≡ 𝑄42,

𝜐 =
(︀
𝜎2 − 1

)︀ (︀
3𝜎2 + 1

)︀
𝑘2ℎ2 − 2𝜎

(︀
𝜎2 − 1

)︀
𝑘ℎ− 𝜎2

(4.12)

are all real and depend on one dimensionless pa-
rameter 𝑘ℎ. Their behavior as functions of 𝑘ℎ is
shown in Fig. 3. It can be seen that Eq. (4.1) is valid
at 𝑘ℎ & 1, where the coefficients 𝑎0, 0, 0, 𝑎1, 0, 0, and
𝑎0, 0, 1 do not diverge. At smaller depths, the Korte-
weg–de Vries equation and its generalizations [36, 39]
should be used. On the other hand, at large 𝑘ℎ,
the infinite-depth limit (Dysthe’s equation) should be
used. Indeed, the following asymptotics are easily ob-
tained at 𝑘ℎ → ∞:

𝑎3 =
1

4
, 𝑎0, 0, 0 = −1

2
, 𝑎1, 0, 0 =

3

2
, 𝑎0, 0, 1 =

1

4
. (4.13)
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Fig. 3. Normalized coefficients of HONLSE as functions of 𝑘ℎ

They coincide with the corresponding coefficients of
Dysthe’s equation [63], except for the term includ-
ing the wave-induced mean flow, which cannot be
explicitly reconstructed from Eq. (4.11) because of
the additional power expansion of the wave-induced
mean flow made to derive Eq. (4.1). However, this
term can be reconstructed from the equations gene-
rating Eq. (4.1), at the stage when the wave-induced
mean flow has not been excluded from the equation
for 𝐴 yet [47]. Taking into account these constraints,
we will restrict our attention to the following range
of intermediate depths:
1 < 𝑘ℎ < 5. (4.14)

4.3. Moving reference frame

Equation (4.11) can be rewritten in the form with-
out the 𝑢𝜒 term. To this end, let us proceed to the
reference frame moving with speed 𝑎1 (dimensionless
group speed):

𝜉 = 𝜒− 𝑎1𝜏, 𝑇 = 𝜏. (4.15)

The relationship between the derivatives in new and
old variables is given by the formulas

𝜕

𝜕𝜒
=

𝜕𝜉

𝜕𝜒

𝜕

𝜕𝜉
+

𝜕𝑇

𝜕𝜒

𝜕

𝜕𝑇
=

𝜕

𝜕𝜉
,

𝜕

𝜕𝜏
=

𝜕𝜉

𝜕𝜏

𝜕

𝜕𝜉
+

𝜕𝑇

𝜕𝜏

𝜕

𝜕𝑇
= −𝑎1

𝜕

𝜕𝜉
+

𝜕

𝜕𝑇
,

so that

𝑢𝜏 = −i𝑎2𝑢𝜉𝜉 + i𝑎0, 0, 0|𝑢|2𝑢+

+
(︁
𝑎3𝑢𝜉𝜉𝜉 − 𝑎1, 0, 0𝑢𝜉|𝑢|2 − 𝑎0, 0, 1𝑢

2𝑢*
𝜉

)︁
. (4.16)

This is our target equation for numerical simula-
tions. It possesses the integral of motion

𝐼0(𝜏) =

∞∫︁
−∞

|𝑢(𝜉, 𝜏)|2d𝜉 = const, (4.17)

which expresses the conservation of wave action. The
derivation of this conservation law is given in Ap-
pendix C. It allows one to trace the relative numerical
error of simulations:

Er(𝐼0) =
|𝐼0(𝜏)− 𝐼0(0)|

𝐼0(0)
. (4.18)

Of particular interest is to reveal any relationship
of Eq. (4.16) to other HONLSEs derived in differ-
ent contexts. In Appendix B, we consider one such
equation (the Sasa–Satsuma equation) and prove that
Eq. (4.16) cannot be reduced to it at any 𝑘ℎ.

4.4. Dimensionless free surface
displacement and velocity potential

The dimensionless free surface displacement is ex-
pressed in terms of 𝑢 as follows:

𝜁 ≡ 𝑘𝜂 = 𝛼0|𝑢|2 + 𝛼1 Re
(︀
𝑢 ei𝜃

)︀
+ 2𝛼2 Re

(︀
𝑢2 e2i𝜃

)︀
,

(4.19)

𝛼0 =
𝜎 + 2

(︀
1− 𝜎2

)︀
𝑘ℎ

𝑐𝜈
, 𝛼1 =

1√
𝑐
, 𝛼2 =

3− 𝜎2

8𝑐𝜎3
,
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Fig. 4. Ratio between the dimensionless phase and group
speeds as a function of 𝑘ℎ

where

𝜃 = 𝑘𝑥− 𝜔𝑡 = 𝜒− 𝑐𝜏 = 𝜉 + (𝑎1 − 𝑐) 𝜏 (4.20)

is the wave phase and

𝑐 =
1

|𝛼|2𝑘2
= −4𝜎2

𝜐
(4.21)

is the dimensionless phase speed. Figure 4 shows the
ratio of the phase speed 𝑐 to the group speed 𝑎1 as a
function of 𝑘ℎ. This ratio is equal to unity at 𝑘ℎ → 0,
and it is twice as large at 𝑘ℎ → ∞, in full conformity
with the classical water wave theory [24]. The wave
envelope is written as

[𝜁]envelope = 𝛼1|𝑢|+ (𝛼0 + 2𝛼2) |𝑢|2. (4.22)

The corresponding dimensionless velocity potential
is expressed as

𝜙 ≡ − 1

𝜔′′Φ = 𝜙0 + 2Re
(︀
𝜙1 e

i𝜃)︀+
+2Re

(︀
𝜙2 e

2i𝜃)︀, (4.23)

(𝜙0)𝜉 =
𝛾1
2𝜎𝜈

|𝑢|2 + i𝛾2
8𝜎2𝜈2

(︀
𝑢𝑢*

𝜉 − 𝑢*𝑢𝜉

)︀
,

(𝜙0)𝜏 = −𝑎1 (𝜙0)𝜉 ,

𝜙1 =

√
𝑐

2𝜎

(︃(︂
−i𝑢+

(︀
𝜎2 + 1

)︀
𝑘ℎ+ 𝜎

2𝜎
𝑢𝜉

)︂
×

× cosh(𝑧 + 𝑘ℎ)

cosh(𝑘ℎ)
− (𝑧 + 𝑘ℎ)

sinh(𝑧 + 𝑘ℎ)

cosh(𝑘ℎ)
𝑢𝜉

)︃
,

𝜙2 =
3i
(︀
𝜎4 − 1

)︀
16𝜎4

cosh(2(𝑧 + 𝑘ℎ)
)︀

cosh(2𝑘ℎ)
𝑢2,

where 𝑧 ≡ 𝑘𝑦 is the dimensionless vertical coordi-
nate. The quasi-harmonicity condition is written as

|𝑢|√
𝑐
≪ 1, (4.24)

and the quasi-monochromaticity condition is⃒⃒⃒𝑢𝜉

𝑢

⃒⃒⃒
≪ 1. (4.25)

Finally, the original equations of hydrodynamics can
be written in the following dimensionless form:

𝜙𝜉𝜉 + 𝜙𝑧𝑧 = 0, −∞ < 𝜉 < ∞, −𝑘ℎ < 𝑧 < 𝜁(𝜉, 𝜏);

(4.26)

𝜙𝜏 +
1

2

(︀
𝜙2
𝜉 + 𝜙2

𝑧

)︀
+

𝑐2

𝜎
𝜁 = 0, 𝑧 = 𝜁(𝜉, 𝜏); (4.27)

𝜁 𝜏 − 𝜙𝑧 + 𝜁 𝜉 𝜙𝜉 = 0, 𝑧 = 𝜁(𝜉, 𝜏); (4.28)

𝜙𝑧 = 0, 𝑧 = −𝑘ℎ. (4.29)

5. Numerical Simulations

In this section, we adopt the split-step Fourier (SSF)
technique described in Appendix D to compute solu-
tions to HONLSE (4.16). To test the accuracy of our
numerical scheme, we start from classical NLSE (1.1)
written in terms of the coordinate 𝜉. At 𝑎0, 0, 0 < 0
(𝑘ℎ & 1.363), it has an exact one-soliton solution [69]:

𝑢(𝜉, 𝜏) =
𝑢0 exp (i𝜅𝜉 − iΩ𝜏)

cosh
(︀
𝐾(𝜉 − 𝜉0 − 𝑉 𝜏)

)︀ , (5.1)

Ω =
(︀
𝐾2 − 𝜅2

)︀
𝑎2, 𝑉 = −2𝜅𝑎2, 𝐾 = |𝑢0|

√︂
−𝑎0, 0, 0

2𝑎2
,

𝑢0 ∈ C, 𝜅, 𝜉0 ∈ R.

Here, 𝑉 is the soliton speed, 𝑢0 is the complex am-
plitude, 𝜅 and Ω are the soliton’s wavenumber and
frequency, and 𝜉0 is the soliton’s initial position. The
amplitude 𝑢0 and wavenumber 𝜅 should be selected
such that the quasi-harmonicity and quasi-monochro-
maticity conditions (4.24), (4.25) hold true. In prac-
tice, these conditions mean that the soliton amplitude
and wavenumber should be small:

|𝑢0| ≪ 1, 𝜅 ≪ 1.
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In this study, we restrict our attention by the follow-
ing choice of parameters:

𝑢0 = 0.1, 𝜅 = −𝐾 (⇒ Ω = 0), 𝜉0 = 0. (5.2)

Figures 5 and 6 demonstrate that constraints (4.24)
and (4.25) are readily satisfied in this case. Note that
at 𝜅 < 0 we have 𝑉 > 0. In this case, solitons move
from left to right with speed exceeding the carrier
group speed.

Figure 7 shows a soliton computed for 𝑘ℎ = 3 using
analytical formula (5.1) for the initial moment 𝜏 = 0
and moment 𝜏 = 10000. The same soliton was taken
as the initial condition for the simulation with the
SSF technique. The deviation from the exact solution
is seen to be negligible. Indeed, the numerical error
estimated with formula (4.18) is

𝑆(2)|𝜏=10000 : Er(𝐼0) = 1.3× 10−10%,

Δrms(𝑢exact, 𝑢comp) = 1.0× 10−4%,

𝑆(4)|𝜏=10000 : Er(𝐼0) = 2.3× 10−10%,

Δrms(𝑢exact, 𝑢comp) = 3.5× 10−9%,

where 𝑆(2) and 𝑆(4) designate the order of the SSF
technique adopted for calculation (see Appendix D)
and

Δrms(𝑢, 𝑔)(𝜏) =

√︃∫︀∞
−∞ (|𝑢(𝜉, 𝜏)| − |𝑔(𝜉, 𝜏)|)2 d𝜉

𝐼0

is the relative r.m.s. deviation between two func-
tions. Thus, our numerical scheme reproduces the ex-
act one-soliton solution to NLSE with high accuracy.

Figure 8 shows the evolution of the same one-
soliton waveform taken as the initial condition in
HONLSE (4.16). As compared to the NLSE case, the
wave amplitude is smaller, the pulse width is larger,
and the wave speed is higher. The wave amplitude
does not remain constant and exhibits slow oscilla-
tions that can be interpreted as the secondary mod-
ulation of the carrier wave. The amplitude of these
oscillations decreases with time (Fig. 9). Such a so-
lution does not fall under the definition of soliton
because it does not preserve the constant amplitude
and shape during the evolution. On the other hand,
it moves with nearly the constant speed (Fig. 10) and
still possesses the unique property of solitons to exist
over long periods of time without breaking. In view
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Fig. 5. Testing the quasi-harmonicity condition (4.24) for
𝑘ℎ = 3
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Fig. 6. Testing the quasi-monochromaticity condition (4.25)
for 𝑘ℎ = 3

of this unique property, we call such solutions quasi-
solitons. The term quasi-soliton was introduced ear-
lier by Zakharov and Kuznetsov [70], but in somewhat
different context; then Karpman et al. [38] and Slun-
yaev [53] used it in the same context as in the present
study.

Such a behavior of NLSE solitons in the HONLSE
case was first described by Akylas [3] in the context
of asymptotic modeling and numerical simulations of
Dysthe’s equation in the infinite-depth limit. Growth
in the soliton speed corresponds to the well-known
carrier frequency downshift observed in deep-water
experiments by Su [60] and in simulations of Dysthe’s
equation by Lo and Mei [40]. Dysthe [19] pointed out
that this phenomenon originates due to the wave-
induced mean flow, whose component in the direc-
tion of propagation of the wave causes a local Doppler
shift. Here, we proved for the first time that this well-
known phenomenon can be observed on finite depth
as well. This result is the main practical achievement
of our study. Figures 11, 12, and 13 demonstrate that
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Fig. 7. Evolution of one-soliton solution (5.1) to NLSE (1.1) at 𝑘ℎ = 3. SSF parameters:
Δ𝜏 = 1, Δ𝜉 = 2, 𝜉 ∈ [−1000, 1000); 𝑉 ≈ 0.0566
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Fig. 8. Evolution of one-soliton waveform (5.1) taken as the initial condition in HONLSE
(4.16) at 𝑘ℎ = 3. SSF parameters: Δ𝜏 = 0.5, Δ𝜉 = 2, 𝜉 ∈ [−4000, 4000). Accuracy:
𝑆(2)|𝜏=50000: Er(𝐼0) = 0.050%
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Fig. 9. Variations in the amplitude of the quasi-soliton solu-
tion with distance at 𝑘ℎ = 3
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Fig. 10. Mean wave speed as a function of distance at 𝑘ℎ = 3:
solid curve — quasi-soliton, dashed line — NLSE soliton (𝑉 ≈
≈ 0.0566)
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Fig. 11. Evolution of one-soliton waveform (5.1) taken as the initial condition in
HONLSE (4.16) at 𝑘ℎ = 2. SSF parameters: Δ𝜏 = 0.5, Δ𝜉 = 2, 𝜉 ∈ [−4000, 4000).
Accuracy: 𝑆(2)|𝜏=60000 : Er(𝐼0) = 0.028%
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Fig. 12. Variations in the amplitude of the quasi-soliton so-
lution with distance at 𝑘ℎ = 2

the same quasi-soliton solution and frequency down-
shift are observed at a smaller depth, 𝑘ℎ = 2.

Finally, the free surface profile reconstructed with
formula (4.19) is shown in Fig. 14 for 𝑘ℎ = 3. The di-
mensionless maximum free surface elevation is about
0.046. The case 𝑘ℎ = 3 corresponds to wavelengths
twice as large as depth, 𝜆 ≈ 2ℎ. The typical depth
of the shelf near the north-west shore of the Black
Sea varies from 10 to 100 m. Hence, the wavelength
corresponding to 𝑘ℎ = 3 falls within the range from
20 to 200 m, which is quite typical of water waves
observed on the Black Sea. For ℎ = 30 m, we have
𝜆 ≈ 60 m and 𝑘 = 0.1 m−1. The corresponding
maximum free surface elevation of the wave shown in
Fig. 14 is about 0.5 m, and the significant wavetrain
width is about 2 km. Thus, quasi-soliton solutions ob-
tained in this study can describe swells propagating
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Fig. 13. Mean wave speed as a function of distance at 𝑘ℎ = 2:
solid curve – quasi-soliton, dashed line – NLSE soliton (𝑉 ≈
≈ 0.0469)
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Fig. 14. Free surface profile with envelope in the form of
quasi-soliton at 𝑘ℎ = 3
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Fig. 15. Effect of correction Δ on the coefficients 𝑎1, 0, 0 and
𝑎0, 0, 1
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Fig. 16. The left- and right-hand-sides of Eq. (B2) versus 𝑘ℎ

on the relatively calm background on seas with inter-
mediate depths. The typical trough-to-crest height of
such swells is about 1 m.

6. Conclusions

The HONLSE derived earlier by Sedletsky [47] for
the first-harmonic envelope of slowly modulated grav-
ity waves on the surface of finite-depth irrotational,
inviscid, and incompressible fluid with flat bottom
was rewritten in the dimensionless form suitable
for numerical simulations. One-soliton solutions to
NLSE are transformed into quasi-soliton solutions
with slowly varying amplitude when the HONLSE
terms are taken into consideration. These quasi-
solitons represent the secondary modulations of grav-
ity waves. They propagate with nearly constant speed
and possess the unique property of solitons to ex-
ist over long periods of time without breaking. Their
speed was found to be higher than the speed of the
NLSE solitons taken as initial conditions in compu-
tations. This phenomenon was observed earlier both
in experiment and numerical modeling in the case of
deep-water limit [3, 60]. It is related to the frequency

downshift originating due to the wave-induced mean
flow [19, 40]. The quasi-soliton solutions obtained in
this study describe swells propagating on the rela-
tively calm background on seas with intermediate wa-
ter depth.

The authors are grateful to Dr. S. S. Rozhkov for
initial discussions that motivated us to undertake this
study. D. Dutykh would like to acknowledge the hospi-
tality of Institut für Analysis, Johannes Kepler Uni-
versität Linz, where this work was performed.

APPENDIX A
On the Correction Introduced by Slunyaev

Slunyaev [52] re-derived HONLSE (4.1) and introduced a cor-
rection,

Δ = −
1

16𝜎3𝜈

(︁(︀
𝜎2 − 1

)︀4(︀
3𝜎2 + 1

)︀
𝑘3ℎ3 −

−𝜎
(︀
𝜎2 − 1

)︀2(︀
5𝜎4 − 18𝜎2 − 3

)︀
𝑘2ℎ2 +

+𝜎2
(︀
𝜎2 − 1

)︀2(︀
𝜎2 − 9

)︀
𝑘ℎ+ 𝜎3

(︀
𝜎2 − 1

)︀(︀
𝜎2 − 5

)︀)︁
, (A1)

to the coefficients 𝑄41 = 𝑎1, 0, 0 and 𝑄42 = 𝑎0, 0, 1 derived ear-
lier by Sedletsky [47]. Actually, this correction was deliberately
ignored by Sedletsky in view of its smallness. Indeed, Fig. 15
proves that Δ can frankly be ignored at 𝑘ℎ & 1.

APPENDIX B
Relationship to the Sasa–Satsuma Equation

Taking into account that (|𝑢|2)𝜉 = 𝑢𝜉𝑢
* + 𝑢𝑢*

𝜉 , Eq. (4.16) can
be rewritten in another form:

𝑢𝜏 = −i𝑎2𝑢𝜉𝜉 + i𝑎0, 0, 0|𝑢|2𝑢+

+
(︀
𝑎3𝑢𝜉𝜉𝜉 − ̃︀𝑎1, 0, 0|𝑢|2𝑢𝜉 − 𝑎0, 0, 1𝑢 (|𝑢|2)𝜉

)︀
, (B1)̃︀𝑎1, 0, 0 = 𝑎1, 0, 0 − 𝑎0, 0, 1.

When

3(−𝑎3)𝑎0, 0, 0 =
1

2
̃︀𝑎1, 0, 0, (B2)

Eq. (B1) is reduced to the Sasa–Satsuma equation [28], which
possesses an infinite number of integrals of motion and admits
some additional exact multi-soliton solutions in contrast to
HONLSE with arbitrary coefficients [4]. However, it is clearly
shown in Fig. 16 that the above relationship among the param-
eters is not satisfied for any 𝑘ℎ. Therefore, the Sasa–Satsuma
equation cannot be obtained from Eq. (4.16).

APPENDIX C
Conservation of the Wave Action

Multiply Eq. (B1) by 𝑢* and the conjugate equation by 𝑢,

𝑢𝜏 = −i𝑎2𝑢𝜉𝜉 + i𝑎0, 0, 0|𝑢|2𝑢+

+
(︀
𝑎3𝑢𝜉𝜉𝜉 − ̃︀𝑎1, 0, 0|𝑢|2𝑢𝜉 − 𝑎0, 0, 1𝑢 (|𝑢|2)𝜉

)︀
, | × 𝑢*,
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𝑢*
𝜏 = i𝑎2𝑢*

𝜉𝜉 − i𝑎0, 0, 0|𝑢|2𝑢*+

+
(︀
𝑎3𝑢

*
𝜉𝜉𝜉 − ̃︀𝑎1, 0, 0|𝑢|2𝑢*

𝜉 − 𝑎0, 0, 1𝑢
* (|𝑢|2)𝜉

)︀
, | × 𝑢,

and add these two equations:

(𝑢*𝑢𝜏 + 𝑢𝑢*
𝜏 ) = −i𝑎2

(︁
𝑢*𝑢𝜉𝜉 − 𝑢𝑢*

𝜉𝜉

)︁
+

+ 𝑎3
(︁
𝑢*𝑢𝜉𝜉𝜉 + 𝑢𝑢*

𝜉𝜉𝜉

)︁
−

− ̃︀𝑎1, 0, 0 (︁|𝑢|2𝑢*𝑢𝜉 + |𝑢|2𝑢𝑢*
𝜉

)︁
− 2𝑎0, 0, 1|𝑢|2(|𝑢|2)𝜉.

After some algebraic transformations, we have(︀
|𝑢|2

)︀
𝜏
= −i𝑎2

(︂(︀
𝑢*𝑢𝜉

)︀
𝜉
−

(︁
𝑢𝑢*

𝜉

)︁
𝜉

)︂
+

+ 𝑎3

(︂(︀
𝑢*𝑢𝜉𝜉

)︀
𝜉
−

(︁
𝑢𝜉𝑢

*
𝜉

)︁
𝜉
+

(︁
𝑢𝑢*

𝜉𝜉

)︁
𝜉

)︂
−

−
1

2
(̃︀𝑎1, 0, 0 + 2𝑎0, 0, 1) (|𝑢|4)𝜉.

In the last term we took into account the following relation

|𝑢|2(|𝑢|2)𝜉 = 𝑢𝑢*(𝑢𝑢*)𝜉 =
1

2
(𝑢𝑢*𝑢𝑢*)𝜉 =

1

2
(|𝑢|4)𝜉.

Integrating this equation over 𝜉 from −∞ to ∞ yields
∞∫︁

−∞

(︀
|𝑢|2

)︀
𝜏
d𝜉 = 0 ⇔ 𝐼0 =

∞∫︁
−∞

|𝑢|2d𝜉 = const, (C1)

where we used the fact that the function 𝑢 vanishes at ±∞
along with its derivatives.

APPENDIX D
Split-Step Fourier Technique

1. Linear equation

Consider the linear part of HONLSE (4.16):

𝑢𝜏 = −i𝑎2𝑢𝜉𝜉 + 𝑎3𝑢𝜉𝜉𝜉, 𝑢 = 𝑢(𝜉, 𝜏). (D1)

Apply the Fourier transform to the function 𝑢(𝜉, 𝜏):

̂︀𝑢(𝜅, 𝜏) = 1

2𝜋

∞∫︁
−∞

𝑢(𝜉, 𝜏) exp(−i𝜅𝜉)d𝜉 ≡ ℱ𝜅[𝑢(𝜉, 𝜏)]. (D2)

The inverse Fourier transform is written as

𝑢(𝜉, 𝜏) =

∞∫︁
−∞

̂︀𝑢(𝜅, 𝜏) exp(i𝜅𝜉)d𝜅 ≡ ℱ−1
𝜉 [̂︀𝑢(𝜅, 𝜏)]. (D3)

The Fourier transforms of the derivatives of function 𝑢(𝜉, 𝜏)

are expressed aŝ︂(𝑢𝜉) = i𝜅̂︀𝑢, (̂𝑢𝜉𝜉) = −𝜅2̂︀𝑢, ..., (̂𝑢𝑛𝜉) = (i𝜅)𝑛̂︀𝑢. (D4)

Hence, linear equation (D1) takes the following form in the
Fourier space:̂︀𝑢𝜏 =

(︀
−i𝑎2(i𝜅)2 + 𝑎3(i𝜅)3

)︀ ̂︀𝑢, ̂︀𝑢(0) ≡ ̂︀𝑢0. (D5)

This ordinary differential equation can easily be integrated,̂︀𝑢 = ̂︀𝑢0 exp
(︀
(i𝑎2𝜅2 − i𝑎3𝜅3)𝜏

)︀
, (D6)

and the following solution for 𝑢(𝜉, 𝜏) is obtained:

𝑢 =

∞∫︁
−∞

̂︀𝑢0 exp
(︀
(i𝑎2𝜅2 − i𝑎3𝜅3)𝜏

)︀
exp(i𝜅𝜉)d𝜅. (D7)

2. Nonlinear equation

Nonlinear equation (4.16) can be split into the linear and non-
linear parts:

𝑢𝜏 = −i𝑎2𝑢𝜉𝜉 + i𝑎0, 0, 0𝑢|𝑢|2+

+
(︁
𝑎3𝑢𝜉𝜉𝜉 − 𝑎1, 0, 0𝑢𝜉|𝑢|2 − 𝑎0, 0, 1𝑢

2𝑢*
𝜉

)︁
≡ (ℒ+𝒩 )𝑢,

where

ℒ ≡ −i𝑎2𝜕𝜉𝜉 + 𝑎3𝜕𝜉𝜉𝜉, (D8)

𝒩 ≡ i𝑎0, 0, 0|𝑢|2 − 𝑎1, 0, 0𝑢𝜉𝑢
* − 𝑎0, 0, 1𝑢𝑢

*
𝜉 (D9)

are the linear and nonlinear operators, respectively. The semi-
discretization in time is performed as follows:

𝑢(𝜉, 𝜏 +Δ𝜏)− 𝑢(𝜉, 𝜏)

Δ𝜏

⃒⃒⃒
Δ𝜏→0

= (ℒ+𝒩 )𝑢(𝜉, 𝜏) ⇒

⇒ 𝑢(𝜉, 𝜏 +Δ𝜏) ≈ 𝑢(𝜉, 𝜏) + Δ𝜏(ℒ+𝒩 )𝑢(𝜉, 𝜏) ≈
≈ eΔ𝜏(ℒ+𝒩 )𝑢(𝜉, 𝜏),

and the second-order Strang formula for noncommuting oper-
ators [59] is used:

eΔ𝜏(ℒ+𝒩 ) ≡ 𝑆(2)(Δ𝜏) =

= exp
(︁Δ𝜏

2
𝒩
)︁
exp

(︀
Δ𝜏ℒ

)︀
exp

(︁Δ𝜏

2
𝒩
)︁
, (D10)

= exp
(︁Δ𝜏

2
ℒ
)︁
exp

(︀
Δ𝜏𝒩

)︀
exp

(︁Δ𝜏

2
ℒ
)︁
. (D11)

In our computations, splitting (D11) proved to be more accu-
rate than (D10). The linear part is integrated exactly using
relation (D7)

eΔ𝜏ℒ𝑢(𝜉, 𝜏) =

= ℱ−1
𝜉

[︀
eΔ𝜏(−i𝑎2(i𝜅)

2+𝑎3(i𝜅)
3)ℱ𝜅[𝑢(𝜉, 𝜏)]

]︀
, (D12)

and the nonlinear part is corrected at each step as follows:

eΔ𝜏𝒩𝑢(𝜉, 𝜏) =

= e
Δ𝜏

(︁
i𝑎0, 0, 0|𝑢|2−𝑎1, 0, 0𝑢𝜉𝑢

*−𝑎0, 0, 1𝑢𝑢
*
𝜉

)︁
𝑢(𝜉, 𝜏). (D13)

Following Yoshida [65], a more accurate fourth-order splitting
can be introduced as well:

𝑆(4)(Δ𝜏) = 𝑆(2) (𝑝1Δ𝜏)𝑆(2) (𝑝0Δ𝜏)𝑆(2) (𝑝1Δ𝜏), (D14)

𝑝0 = −
21/3

2− 21/3
≈ −1.70, 𝑝1 =

1

2− 21/3
≈ 1.35.

For a more detailed description of the SSF technique, the reader
can refer to [43].
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High-Order Nonlinear Schrödinger Equation

I.С. Ганджа, Ю.В.Седлецький, Д.С.Дутих

НЕЛIНIЙНЕ РIВНЯННЯ ШРЕДIНҐЕРА
ВИЩОГО ПОРЯДКУ ДЛЯ ОБВIДНОЇ ПОВIЛЬНО
МОДУЛЬОВАНИХ ГРАВIТАЦIЙНИХ ХВИЛЬ
НА ПОВЕРХНI РIДИНИ СКIНЧЕННОЇ ГЛИБИНИ
ТА ЙОГО КВАЗIСОЛIТОННI РОЗВ’ЯЗКИ

Р е з ю м е

Розглянуто нелiнiйне рiвняння Шредiнґера вищого поряд-
ку, виведене ранiше Ю.В. Седлецьким [УФЖ 48(1), 82
(2003)] для обвiдної першої гармонiки повiльно модульова-

них гравiтацiйних хвиль на поверхнi безвихрової, нев’язкої
та нестисливої рiдини зi скiнченною глибиною i плоским
дном. Це рiвняння враховує дисперсiю третього порядку i
кубiчнi нелiнiйно-дисперсiйнi доданки. В данiй роботi воно
приведено до безрозмiрного вигляду, в якому фiгурує ли-
ше один безрозмiрний параметр 𝑘ℎ, де 𝑘 – хвильове число
несучої хвилi, а ℎ – незбурена глибина рiдини. Показано,
що при врахуваннi доданкiв вищого порядку односолiтон-
нi розв’язки класичного нелiнiйного рiвняння Шредiнґера
перетворюються в квазiсолiтоннi розв’язки з повiльно змiн-
ною амплiтудою. Цi квазiсолiтоннi розв’язки представля-
ють вториннi модуляцiї гравiтацiйних хвиль.
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