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The Hamiltonian of an electron-phonon system in the second-quantization representation for
all variables has been obtained. The models of effective mass and rectangular potentials for
electrons and the polarization continuum model for confined phonons in a three-barrier res-
onant tunneling nanostructure are used. In the framework of the Green’s function method,
the phonon-renormalized electron spectra are calculated for a three-barrier resonant tunnel-
ing nanostructure composed of GaAs wells and Al𝑥Ga1−𝑥As barriers with various Al contents
𝑥’s. Irrespective of the Al content, the temperature-induced variations in the geometrical con-
figuration of the three-barrier resonant tunneling nanostructure within the temperature interval
from 0 to 300 K are found to increase the widths of both lower (working) quasi-stationary states
and decrease their energies. The widths and the shifts of the states turned out to be strongly
nonlinear functions depending on the position of the internal barrier in the three-barrier res-
onant tunneling nanostructure.
K e yw o r d s: resonant tunneling nanostructure, quantum cascade detector, electron-phonon
interaction.

1. Introduction

Nano-dimensional heterostructures have been inten-
sively studied recently, since they are basic elements
for unique nanodevices, such as quantum cascade
lasers (QCLs), quantum cascade detectors (QCDs),
and so forth, which operate on the basis of novel
physical effects that arise in multilayered nanostruc-
tures of the general type and, in particular, in res-
onant tunneling ones. It is the electron transport
through open multilayered resonant tunneling struc-
tures (RTSs) that provides the functioning of QCLs
and QCDs, which are studied in detail both exper-
imentally [1–7] and theoretically [8–12]. Concerning
QCDs, they were created to operate and mainly op-
erated at cryogenic temperatures. However, a consid-
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erable progress has been achieved since then in un-
derstanding the physical processes occurring in nano-
RTSs, which made it possible to substantially expand
the temperature interval where those nanodevices can
successfully function [13].

The temperature dependences of physical param-
eters for any system are basically governed by the
interaction of major quasiparticles – in particu-
lar, electrons – with phonons. Therefore, theoreti-
cal researches of the electron-phonon interaction in
nanoheterosystems with various dimensionalities and
geometrical shapes attracted considerable attention
[14–16].

Concerning planar nanostructures, the overwhelm-
ing majority of theoretical works dealing with them
were devoted to the analysis of the electron-phonon
interaction in closed two- and three-barrier RTSs
(3BRTSs) with fixed geometrical parameters. Various
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Fig. 1. Potential profile in the 3BRTS

methods were used to study their current-voltage
characteristics and the probabilities of quantum tran-
sitions stimulated by an electromagnetic field mak-
ing allowance for the electron-phonon interaction
[17, 18]. As the main model of electron-phonon in-
teraction in those works, the model of dielectric con-
tinuum was selected, which was developed in detail
for the first time by Mori and Ando [19]. In work
[19], the interaction Hamiltonian for the so-called bi-
nary heterosystems was presented in the coordinate
representation for electron variables and the second-
quantization representation for phonons. Later, this
approach was extended onto three-component sys-
tems [20, 21]. The basic theoretical researches were
carried out using the Fermi golden rule. The latter
made it possible to calculate and analyze the temper-
ature evolution of parameters that characterize in-
terband quantum transitions [17, 18, 21]. However, it
did not allow one to find how the electron-phonon
interaction modifies the energies and the damp-
ing of quasi-stationary electron states in quantum-
well RTSs.

This work aimed at obtaining an explicit expres-
sion for the Hamiltonian of a system of electrons
that interact with confined polarization phonons in
the second-quantization representation for all system
variables. This expression allows the method of tem-
perature electron Green’s functions to be used in or-
der to calculate the renormalization of the spectral
parameters (shifts and damping) of quasi-stationary
states in opened 3BRTSs with sufficiently high exter-
nal barriers, which serve as the active zones of exper-
imental QCDs [22, 23], and analyze the evolution of
those parameters depending on the geometrical de-
sign, the Al content 𝑥, and the temperature of the

system 𝑇 . As an example, we took a typical RTS on
the basis of GaAs wells and Al𝑥Ga1−𝑥As barriers.

2. Theory of Interaction
Between Electrons and Confined
Polarization Phonons in 3BRTSs

2.1. Energy spectrum, wave
functions, and Hamiltonian of electrons
in the second-quantization representation

The thickness of external layers in a three-barrier
RTS used as active zones in experimental QCDs is
rather large (3–6 nm) [13]. Therefore, while develop-
ing the theory of electron-phonon interaction, we use
the model of closed 3BRTS (Fig. 1) with the known
effective masses and the potential relief

𝑚(𝑧) =
{︁𝑚𝑤,
𝑚𝑏,

𝑈(𝑧) =

{︂
0, reg. 2, 4,
𝑈, reg. 1, 3, 5. (1)

Assuming the electron wave function to have the form

Ψ𝑛k(r) =
1√
𝑆
eik𝜌Ψ𝑛(𝑧), (2)

where k and 𝜌 are the quasi-momentum and the ra-
dius vector, respectively, of an electron in the plane
𝑥𝑂𝑦, and 𝑆 is the area of the main region in this
plane, we obtain the following Schrödinger equation
for the 𝑧-dependent factor Ψ𝑛(𝑧) of this function:[︂
−~2

2

𝑑

𝑑𝑧

1

𝑚(𝑧)

𝑑

𝑑𝑧
+ 𝑈(𝑧)

]︂
Ψ𝑛(𝑧) = 𝐸𝑛Ψ𝑛(𝑧). (3)

The total energy of the electron, 𝐸, is determined by
the sum

𝐸𝑛k = 𝐸𝑛 +
~2k2

2𝑚*
𝑛

. (4)

Here, the energy component in the plane perpendic-
ular to the axis 𝑂𝑧 is determined, as was done in
work [17], by the effective electron mass in the 𝑛-th
subband correlated over the RTS,

1

𝑚*
𝑛

=

∞∫︁
−∞

|Ψ𝑛(𝑧)|2

𝑚(𝑧)
𝑑𝑧, (5)

where Ψ𝑛(𝑧) and 𝐸𝑛 are determined by the solutions
of Eq. (3);

Ψ𝑛(𝑧) =

5∑︁
𝑗=1

Ψ𝑗𝑛(𝑧) =
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=

⎧⎪⎪⎨⎪⎪⎩
∑︁
𝑗=2,4

(𝐴𝑗𝑛 cos 𝑘𝑛𝑧 +𝐵𝑗𝑛 sin 𝑘𝑛𝑧);∑︁
𝑗=1,3,5

(𝐴𝑗𝑛e
𝜒𝑛𝑧 +𝐵𝑗𝑛e

−𝜒𝑛𝑧);
(6)

𝑘𝑛 = ~−1
√︀
2𝑚𝑤𝐸𝑛;𝜒𝑛 = ~−1

√︀
2𝑚𝑏(𝑈 − 𝐸𝑛) =

=
√︀

2𝑚𝑏𝑈~−2 − 𝑘2𝑛𝑚𝑏/𝑚𝑤. (7)

Under the condition that the wave function van-
ishes as 𝑧 → ±∞, we obtain 𝐵1𝑛 = 𝐴5𝑛 = 0, whereas
the other 𝐴𝑗𝑛 and 𝐵𝑗𝑛 coefficients and the energy
spectrum 𝐸𝑛 are unequivocally determined by the
boundary conditions

Ψ𝑗𝑛(𝑧)|𝑧=𝑧𝑗 = Ψ𝑗+1𝑛(𝑧)|𝑧=𝑧𝑗 ; 𝑗 = 1–4;

1

𝑚𝑗

𝑑Ψ𝑗𝑛(𝑧)

𝑑𝑧
|𝑧=𝑧𝑗 =

1

𝑚𝑗+1

𝑑Ψ𝑗+1𝑛(𝑧)

𝑑𝑧
|𝑧=𝑧𝑗 ,

(8)

and the normalization condition
∞∫︁

−∞

Ψ*
𝑛(𝑧)Ψ𝑛′(𝑧)𝑑𝑧 = 𝛿𝑛𝑛′ . (9)

Changing to the second-quantization representa-
tion for the quantized wave function in the electron
Hamiltonian,

Ψ̂(r) =
∑︁
𝑛,k

Ψ𝑛k(𝜌, 𝑧)𝑎𝑛k, (10)

we obtain the Hamiltonian of noninteracting electrons
in the occupation-number representation:

𝐻𝑒 =
∑︁
𝑛,k

𝐸𝑛k𝑎
+
𝑛k𝑎𝑛k, (11)

where the electron spectrum 𝐸𝑛k is defined by for-
mula (4), and the fermionic operators of creation
(𝑎+𝑛k) and annihilation (𝑎𝑛k) of the electron state sat-
isfy the anticommutation relations.

2.2. Hamiltonians of confined
phonons and electron-phonon interaction

It is well known [17, 24] that, in the framework of
the dielectric continuum model, the spectra of inter-
face and confined phonons and the potentials of their
polarization fields are determined by the equation

𝜀𝑗(𝜔)∇2Φ(r) = 0, (12)

where 𝜀𝑗(𝜔) is the dielectric permittivity of the 𝑗-
th layer in a system of two or three different layers;
respectively,

𝜀𝑗(𝜔) = 𝜀𝑗∞
𝜔2 − 𝜔2

𝐿𝑗

𝜔2 − 𝜔2
𝑇𝑗

;

𝜀𝑗(𝜔) = 𝜀𝑗∞
(𝜔2 − 𝜔2

𝐿𝑗1)(𝜔
2 − 𝜔2

𝐿𝑗2)

(𝜔2 − 𝜔2
𝑇𝑗1)(𝜔

2 − 𝜔2
𝑇𝑗2)

.

(13)

Here, 𝜀𝑗∞ is the high-frequency dielectric permittiv-
ity and 𝜔𝐿𝑗 , 𝜔𝐿𝑗1, 𝜔𝐿𝑗2, 𝜔𝑇𝑗 , 𝜔𝑇𝑗1, and 𝜔𝑇𝑗2 are the
frequencies of longitudinal (𝐿) and transverse (𝑇 ) vi-
brations in the 𝑗-th medium.

Equation (12) has solutions of two types, which, in
the case of non-uniform nanoheterosystems are sup-
plemented with boundary conditions determined at
its every interface. If 𝜀𝑗(𝜔) ̸= 0, we obtain ∇2Φ𝐼(r) =
= 0. Then, with regard for the conditions describ-
ing the continuity of the potential Φ𝐼 and the induc-
tion of this field across every interface of the het-
erosystem, we find the polarization field of inter-
face phonons (𝐼-phonons). The quantization of this
field determines the energy spectrum of 𝐼-phonons
[21]. On the other hand, if ∇2Φ𝐿(r) ̸= 0, we have
𝜀𝑗(𝜔) = 0. In this case, in view of the boundary condi-
tions known from work [19], which are needed for the
potential of the polarization field of confined phonons
to disappear (Φ𝑗𝐿(𝜌, 𝑧𝑗) = 0) at every nanoheterosys-
tem interface–irrespective of whether the media are
confined or semi-infinite, or whether they are two- or
three-component materials–the energies of confined
phonons in them are determined by the same frequen-
cies as in massive materials, namely,

Ω𝑗 = ~𝜔𝐿𝑗 , Ω𝑗ℓ = ~𝜔𝐿𝑗ℓ, (ℓ = 1, 2). (14)

The series expansion of the polarization field poten-
tial in the 𝑗-th medium in a two-dimensional Fourier
series

Φ𝑗(𝜌, 𝑧) =
∑︁
𝜆,ℓ,q

Φ𝑗ℓ𝜆(q, 𝑧)e
iq𝜌 (15)

followed by the change from the Fourier compo-
nents, first, to the normal generalized coordinates
and momenta and, then, to the occupation num-
ber operators according to the well-known quantum-
mechanical procedure [16] brings us to the Hamil-
tonian of confined phonons in the model of three-
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component material,

�̂�𝐿 =
∑︁

𝑗,ℓ,𝜆,q

Ω𝑗ℓ(𝑏
+
𝑗ℓ𝜆q𝑏𝑗ℓ𝜆q + 1/2). (16)

Note that hereafter the formulas are presented for a
more general three-component model, in which the
subscript ℓ accepts the values of 1 and 2. However,
all formulas remain also valid for the two-component
model (by putting ℓ = 1). The operators 𝑏+𝑗ℓ𝜆q and
𝑏𝑗ℓ𝜆q satisfy the bosonic commutation relations.

The mode normalization and the 𝐿-phonon field
quantization in the framework of the dielectric con-
tinuum model were carried out for binary heterosys-
tems in work [19] by Mori and Ando and for ternary
ones in works [17, 20]. Hence, with regard for the po-
tentials of polarization fields for the separate 𝑗-th
medium known from works [17, 20], the Hamiltonian
of electron interaction with all branches (𝜆) of con-
fined and semi-confined phonons in the whole het-
erosystem in the second-quantization representation
for the phonon variables can be written in the form

�̂�𝑒−𝐿 = −
∑︁

𝑗,ℓ,𝜆,q

⎯⎸⎸⎸⎷8𝜋~𝑒2𝑑𝑗
(︁
𝜕𝜀𝑗(𝜔)
𝜕𝜔 |𝜔=𝜔𝐿𝑗ℓ

)︁−1

𝑆(𝜋2𝜆2 + 𝑞2𝑑2𝑗 )
×

×

⎧⎪⎪⎨⎪⎪⎩
cos

[︂
𝜋𝜆

(︂
𝑧 − 𝑧𝑗−1

𝑑𝑗
− 1

2

)︂]︂
, 𝜆 = 1, 3, 5, ...

sin

[︂
𝜋𝜆

(︂
𝑧 − 𝑧𝑗−1

𝑑𝑗
− 1

2

)︂]︂
, 𝜆 = 2, 4, 6, ...

⎫⎪⎪⎬⎪⎪⎭×

×𝐻𝑗(𝑧)e
iq𝜌(𝑏𝑗ℓ𝜆q + 𝑏+𝑗ℓ𝜆q). (17)

Here, 𝐻𝑗(𝑧) is the function

𝐻𝑗(𝑧) =

{︂
1, if 𝑧 is in the 𝑗-th layer,
0, otherwise, (18)

introduced in work [19], q is the two-dimensional
quasi-momentum of phonons, and 𝑑𝑗 is the thickness
of the 𝑗-th region.

Changing to the second-quantization representa-
tion in Hamiltonian (17) and using the quantized
wave function of electrons (10), the Hamiltonian of
𝑒-𝐿 interaction in the occupation-number representa-
tion for the electron and phonon variables takes the
form

�̂�𝑒−𝐿 =
∑︁
𝑛,𝑛′

∑︁
𝑗,ℓ

∑︁
𝜆,q

𝐹 𝑗𝜆
𝑛′𝑛(ℓ, 𝑞)×

× 𝑎+𝑛′k+q𝑎𝑛k(𝑏𝑗ℓ𝜆q + 𝑏+𝑗ℓ𝜆q). (19)

Here, the coupling functions look like

𝐹 𝑗𝜆
𝑛′𝑛(ℓ, 𝑞) = 𝑓 𝑗𝜆

𝑛′𝑛(ℓ)
𝑑𝑗√
𝑆
(𝜋2𝜆2 + 𝑞2𝑑2𝑗 )

−1/2, (20)

where the quantities

𝑓 𝑗𝜆
𝑛′𝑛(ℓ) = −

√︃
8𝜋~𝑒2
𝑑𝑗

(︂
𝜕𝜀𝑗(𝜔)

𝜕𝜔
|𝜔=𝜔𝐿𝑗ℓ

)︂−1

×

×
𝑧𝑗∫︁

𝑧𝑗−1

𝑑𝑧Ψ*
𝑗𝑛′(𝑧)Ψ𝑗𝑛(𝑧)×

×

⎧⎪⎪⎨⎪⎪⎩
cos

[︂
𝜋𝜆

(︂
𝑧 − 𝑧𝑗−1

𝑑𝑗
− 1

2

)︂]︂
, 𝜆 = 1, 3, 5, ...

sin

[︂
𝜋𝜆

(︂
𝑧 − 𝑧𝑗−1

𝑑𝑗
− 1

2

)︂]︂
, 𝜆 = 2, 4, 6, ...

⎫⎪⎪⎬⎪⎪⎭ (21)

characterize the strength of the electron-phonon in-
teraction.

The integral in Eq. (21), as is seen from formula (6),
contains simple trigonometric and exponential func-
tions. Therefore, although it can be written precisely
in the analytical form, the latter is cumbersome and is
not presented here. Note that the electron-𝐼-phonon
interaction is not considered here, because, first of all,
this important theoretical problem demands a sub-
stantial growth of the work volume, which would ex-
ceed the limits of this paper. At the same time, it is
well known that the interaction of electrons with 𝐼-
phonons is negligibly low in wide quantum wells, so
that the theory developed here has an independent
value for such nanosystems.

2.3. Hamiltonian of the electron-phonon
system and Green’s function of an electron
in 3BRTS

The Hamiltonian

�̂� = �̂�𝑒 + �̂�𝐿 + �̂�𝑒−𝐿 (22)

obtained for the electron-phonon system in the
3BRTS allows the Fourier transform of the electron
Green’s function to be calculated analytically for an
arbitrary temperature of the system following the
procedure of the Feynman–Pines diagram technique
[16, 25], provided that the average occupation num-
bers of electron states are small (𝑛k ≪ 1), and those
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of phonon states are determined by the Bose–Einstein
distribution

𝜈𝑗ℓ =

(︂
e

Ω𝑗ℓ
𝑘B𝑇 − 1

)︂−1

. (23)

In this case, the Fourier transform of the electron
Green’s function is determined by the Dyson equation
[16, 24]

𝐺𝑛(k, 𝐸) = {𝐸 − 𝐸𝑛k −𝑀𝑛(k, 𝐸)}−1, (24)

in which, while considering the mass operator
𝑀𝑛(k, 𝐸), it is enough to confine the diagram series
to the one-phonon approximation,

𝑀𝑛(k, 𝐸) =

5∑︁
𝑗=1

𝑁∑︁
𝑛′=1

∑︁
ℓ,𝜆,q

𝑓 𝑗𝜆*
𝑛𝑛′ (ℓ)𝑓

𝑗𝜆
𝑛′𝑛(ℓ)×

× 𝑑2𝑗𝑆
−1

{︂
1 + 𝜈𝑗ℓ

𝐸 − 𝐸𝑛′(k+ q)− Ω𝑗ℓ + i𝜂
+

+
𝜈𝑗ℓ

𝐸 − 𝐸𝑛′(k+ q) + Ω𝑗ℓ + i𝜂

}︂
. (25)

Here, 𝑁 is the number of energy bands (levels) in the
potential wells of the nanosystem. The substitution
of the summation over the two-dimensional quasi-
momentum q by the integrals (

∑︀
q ⇒ (2𝜋)−2𝑆×

×
∫︀ ∫︀

𝑑2q) in the polar coordinate system allows one
to exactly (analytically) calculate the mass operator
(25) at k = 0, which corresponds to a typical exper-
imental situation, where electrons move normally to
the heterosystem surface. As a result, for the quantity
𝑀𝑛(k = 0, 𝐸), we obtain

𝑀𝑛(k, 𝐸) = −
5∑︁

𝑗=1

𝑁∑︁
𝑛′=1

∑︁
𝜆,ℓ

(︃
2~2

𝑚*
𝑛𝑑

2
𝑗

)︃−1

𝑑2𝑗𝑆
−1×

× 𝑓 𝑗𝜆*
𝑛𝑛′ (ℓ)𝑓

𝑗𝜆
𝑛′𝑛(ℓ)

∞∫︁
0

𝑑𝑥

𝜋2𝜆2 +
(︁

~2

2𝑚*
𝑛𝑑

2
𝑗

)︁−1

𝑥
×

×
{︂

1 + 𝜈𝑗ℓ
𝑥+ 𝐸𝑛′ +Ω𝑗ℓ − 𝐸 + i𝜂

+

+
𝜈𝑗ℓ

𝑥+ 𝐸𝑛′ − Ω𝑗ℓ − 𝐸 + i𝜂

}︂
, (𝜂 → +0). (26)

Taking the weakness of the electron-phonon cou-
pling into account, putting 𝐸 = 𝐸𝑛 in the mass op-
erator, and extracting the real,

Δ𝑛 = Δ𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Δ𝑛𝑛′ =

= Re𝑀𝑛𝑛(𝐸𝑛) +
∑︁
𝑛′ ̸=𝑛

Re𝑀𝑛𝑛′(𝐸𝑛), (27)

and imaginary,

Γ𝑛 = Γ𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Γ𝑛𝑛′ =

= 2Im𝑀𝑛𝑛(𝐸𝑛) + 2
∑︁
𝑛′ ̸=𝑛

Im𝑀𝑛𝑛′(𝐸𝑛), (28)

parts, which describe the total shift Δ𝑛 and the
damping Γ𝑛, respectively, for the 𝑛-th band, as well as
their partial intraband (Δ𝑛𝑛 and Γ𝑛𝑛) and interband
(Δ𝑛𝑛′ ̸=𝑛 and Γ𝑛𝑛′ ̸=𝑛) components, after the exact an-
alytical integration, we obtain

Δ𝑛 = Δ+
𝑛 +Δ−

𝑛 =

= (Δ+
𝑛𝑛 +

∑︁
𝑛′ ̸=𝑛

Δ+
𝑛𝑛′) + (Δ−

𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Δ−
𝑛𝑛′), (29)

Γ𝑛 = Γ+
𝑛 + Γ−

𝑛 =

= (Γ+
𝑛𝑛 +

∑︁
𝑛′ ̸=𝑛

Γ+
𝑛𝑛′) + (Γ−

𝑛𝑛 +
∑︁
𝑛′ ̸=𝑛

Γ−
𝑛𝑛′), (30)

where

Δ±
𝑛 = −

𝑁∑︁
𝑛′=1

∑︁
𝑗,𝜆,ℓ

(︃
2𝜋~2

𝑚*
𝑛𝑑

2
𝑗

)︃−1

𝑓 𝑗𝜆*
𝑛𝑛′ (ℓ)𝑓

𝑗𝜆
𝑛′𝑛(ℓ)×

× ln

[︃
(𝜋𝜆~)2

2𝑚*
𝑛𝑑

2
𝑗 |𝐸𝑛′ − 𝐸𝑛 ± Ω𝑗ℓ|

]︃{︂
1 + 𝜈𝑗ℓ
𝜈𝑗ℓ

}︂
×

×

{︃
Θ(𝐸𝑛′ − 𝐸𝑛 ± Ω𝑗ℓ)

(𝜋𝜆)2 − |𝐸𝑛′ − 𝐸𝑛 ± Ω𝑗ℓ|
(︁

~2

2𝑚*
𝑛𝑑

2
𝑗

)︁−1 +

+
Θ(𝐸𝑛 − 𝐸𝑛′ ± Ω𝑗ℓ)

(𝜋𝜆)2 + |𝐸𝑛′ − 𝐸𝑛 ± Ω𝑗ℓ|
(︁

~2

2𝑚*
𝑛𝑑

2
𝑗

)︁−1

}︃
, (31)
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Physical parameters of nanosystem components

𝜀∞ ~𝜔𝐿1, meV ~𝜔𝑇1, meV ~𝜔𝐿2, meV ~𝜔𝑇2, meV 𝑚, 𝑚𝑒 𝑈 , meV

GaAs 10.89 36.25 33.29 0.067 0.6 (1266𝑥+260𝑥2)

Al𝑥Ga1−𝑥As 10.89 – 2.73𝑥 36.25 – 6.553𝑥+ 33.29 – 0.643𝑥 – 44.63+8.783𝑥 – 44.63+0.553𝑥 – 0.067+
+1.793𝑥2 – 1.163𝑥2 – 3.323𝑥2 – 0.303𝑥2 +0.083𝑥

Γ±
𝑛 =

𝑁∑︁
𝑛′=1

∑︁
𝑗,𝜆,ℓ

(︃
4~2

𝑚*
𝑛𝑑

2
𝑗

)︃−1

𝑓 𝑗𝜆*
𝑛𝑛′ (ℓ)𝑓

𝑗𝜆
𝑛′𝑛(ℓ)×

×
Θ(𝐸𝑛 − 𝐸𝑛′ ± Ω𝑗ℓ)

{︂
1 + 𝜈𝑗ℓ
𝜈𝑗ℓ

}︂
(𝜋𝜆)2 + |𝐸𝑛′ − 𝐸𝑛 ± Ω𝑗ℓ|

(︁
~2

2𝑚*
𝑛𝑑

2
𝑗

)︁−1 . (32)

The theory developed here allows one to calculate
and analyze the parameters of electron spectrum in
the 3BRTS renormalized by the electron interaction
with confined 𝐿-phonons at given physical and geo-
metrical parameters of the system.

3. Analysis of the Temperature
and Content Dependences of the Electron
Spectrum Parameters Using 3BRTSs
with GaAs Wells and Al𝑥Ga1−𝑥As
Barriers as an Example

The shifts and the damping of the electron spec-
trum in the 3BRTS were calculated taking a 3BRTS
GaAs/Al𝑥Ga1−𝑥As as an example. This structure
is an active zone in experimentally studied QCDs
[21,22]. The physical parameters of the elements com-
posing the system are quoted in Table.

In Fig. 2, the dependences of the electron spec-
tral parameters on the internal barrier position 𝑎1 be-
tween the external ones are depicted for two 3BRTSs
with the identical total widths of both wells (𝑎 =
= 𝑎1 + 𝑎2 = 13.9 nm), provided that the width of
the internal barrier is fixed (𝑏 = 1.13 nm), but the Al
contents in all barriers are different: (A) 𝑥 = 0.15,
and the potential barrier is low, 𝑈 = 120 meV (pan-
els a to c); and (B) 𝑥 = 0.45, and the potential
barrier is high, 𝑈 = 320 meV (panels d to f). The
temperature 𝑇 = 0 K. One can see that, irrespec-
tive of the Al content 𝑥 in the RTS layer-barriers, the
dependences of all electron spectral parameters on
the width 𝑎1 of the first layer-well are qualitatively
similar and symmetric with respect to the 3BRTS

middlepoint 𝑎1 = 𝑎/2. In the 3BRTS A with shal-
low wells (𝑥 = 0.15), there are three quasi-stationary
states. The energies of two working states (𝐸1 and
𝐸2) are located below the corresponding energies in
the 3BRTS B with deep wells (𝑥 = 0.45), which is
characterized by four quasi-stationary states (Fig. 2,
panels a and d).

The energy of the quantum transition between two
lowest levels (𝐸21 = 𝐸2 −𝐸1), which is accompanied
by the absorption of the electromagnetic field, de-
pends nonlinearly on the size 𝑎1 of the first well. As
𝑎1 increases from zero to about 𝑎1/4, the magni-
tude of 𝐸21 increases and reaches the maximum value
max𝐸21 = 48 (A) or 76 meV (B). As 𝑎1 increases fur-
ther, 𝐸21 decreases and reaches the minimum value:
min𝐸21 = 29 (A) or 20 meV (B) at 𝑎1 = 𝑎/2.

Owing to the interaction of electrons with vir-
tual phonons, the total negative shift Δ1 of the first
working level decreases as 𝑎1 grows within the in-
terval 0 ≤ 𝑎1 ≤ 𝑎/2. Almost at all 𝑎1-values, its
magnitude is mainly formed by the intraband in-
teraction (Δ11), because the partial contributions
of the electron interaction with phonons through
other bands are rather small; only in a vicinity
of 𝑎1 ≈ 𝑎/2, their total contribution to the shift,
Δ1Σ =

∑︀
𝑛′ ̸=𝑛 Δ1𝑛′ , is comparable with the magni-

tude of Δ11.
The total negative shift Δ2 of the second work-

ing level (Figs. 2, c and f) decreases, as 𝑎1 increases
within the interval 0 ≤ 𝑎1 ≤ 𝑎/4, increases in the
interval 𝑎/4 ≤ 𝑎1 ≤ 𝑎/3, and becomes weakly nonlin-
ear in the interval 𝑎/3 ≤ 𝑎1 ≤ 𝑎/2. For system A with
𝑎1 within the interval 0 ≤ 𝑎1 ≤ 𝑎/3 (Fig. 2, c), the
total contribution Δ2Σ of the interband interaction
to the shift Δ2 is comparable with the contribution
Δ22 of the intraband interaction, but is almost twice
as large as Δ22 within the interval 𝑎/3 ≤ 𝑎1 ≤ 𝑎/2.
For system B (Fig. 2,f), the contributions Δ22 and
Δ2Σ to the magnitude of Δ2 are comparable at all
𝑎1-values.
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Fig. 2. Dependences of electron spectral parameters on the position 𝑎1 of the internal barrier between external 3BRTS barriers
at 𝑇 = 0 K
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Fig. 3. Dependences of electron spectral parameters on the position 𝑎1 of the internal barrier between external 3BRTS barriers
at 𝑇 = 300 K
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Concerning the damping Γ2 (Figs. 2, c and f), if
𝑇 = 0 K, it arises only in the second working state
(Γ2 = Γ21) because of the interband interaction of
electrons in this state with the electrons in the first
(ground) state by means of virtual phonons, provided
that 𝐸2 > 𝐸1 + Ω𝑗ℓ. Certainly, the intra- and inter-
band interactions of electrons in the lower (in par-
ticular, the ground) states with the electrons in the
higher excited states by means of phonons do not re-
sult in the damping in accordance with the physical
reasoning.

The temperature dependences of spectral parame-
ters, as is seen from the mass operator (26), is gov-
erned by the average values of occupation numbers, 𝜈,
of phonon states in the processes of electron-phonon
interaction with the phonon emission (the first term
in the mass operator) and absorption (the second
term in the mass operator). In Fig. 3, the evolu-
tion of the total, Δ𝑇

𝑛 = Δ𝑛 + Δ𝑛(𝑇 ), and partial,
Δ𝑇

𝑛𝑛 = Δ𝑛𝑛 + Δ𝑛𝑛(𝑇 ) and Δ𝑇
𝑛Σ = Δ𝑛Σ + Δ𝑛Σ(𝑇 ),

shifts, and the total, Γ𝑇
𝑛 = Γ𝑛 + Γ𝑛(𝑇 ), and par-

tial, Γ𝑇
𝑛𝑛 = Γ𝑛𝑛 + Γ𝑛𝑛(𝑇 ) and Γ𝑇

𝑛Σ = Γ𝑛Σ + Γ𝑛Σ(𝑇 ),
widths with the variation of the internal barrier po-
sition 𝑎1 with respect to the external barriers in the
3BRTS at the temperature 𝑇 = 300 K is shown. The
figure demonstrates that the contributions made by
real phonons to the magnitudes of total, Δ𝑇

𝑛 , and
partial shifts and total, Γ𝑇

𝑛 , and partial widths at
𝑇 = 300 K are comparable with the contribution Δ𝑛

made by virtual phonons at 𝑇 = 0 K. The qualita-
tive dependences of those quantities on the internal
barrier position 𝑎1 also remains similar to that ob-
tained at 𝑇 = 0 K. In addition, irrespective of the Al
content 𝑥 and the value of 𝑎1, when the temperature
increases to 300 K, the absolute values of all renor-
malizing spectral parameters in system A grow a bit
less than in system B. It is also worth noting that, at
nonzero temperatures, owing to the processes of real
photon absorption (since 𝜈 ̸= 0), the damping arose
not only in the excited but also in the ground electron
state (Figs. 3, c and f).

4. Conclusions

The Hamiltonian of a system of electrons that interact
with confined polarization phonons in a nano-3BRTS
with three-component barriers was obtained for the
first time in the second-quantization representation
for all variables.

The temperature Green’s function technique is
used to calculate and analyze the phonon-renorma-
lized shifts and the damping of two lowest (working)
electron states in the 3BRTS GaAs/Al𝑥Ga1−𝑥As at
𝑇 = 0 and 300 K.

It is shown that, independently of the temperature
and the Al content in barriers, the variation of the in-
ternal barrier position brings about a nonlinear evo-
lution of the damping and negative shifts of electron
states.

The developed approach makes it possible to con-
sider other mechanisms of electron interaction (elect-
ron-to-electron, with the interface polarization and
acoustic phonons, with dc electric and high-frequency
electromagnetic fields). The elaborated theory, in-
volving the main mechanisms of interaction between
electrons at their tunneling through open multilay-
ered RTSs, will allow not only the physical phenom-
ena in nanoheterosystems to be studied in detail, but
also the operational characteristics of QCDs, QCLs,
and others nanodevices to be optimized.
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ВПЛИВ ОБМЕЖЕНИХ
ПОЛЯРИЗАЦIЙНИХ ФОНОНIВ НА ЕЛЕКТРОННИЙ
СПЕКТР ТРИБАР’ЄРНОЇ АКТИВНОЇ ЗОНИ
КВАНТОВОГО КАСКАДНОГО ДЕТЕКТОРА

Р е з ю м е

У моделi ефективних мас i прямокутних потенцiалiв для
електронiв та в моделi поляризацiйного континууму для
обмежених фононiв у трибар’єрнiй резонансно-тунельнiй
наноструктурi отримано гамiльтонiан електрон-фононної
системи у зображеннi чисел заповнення за всiма змiнни-
ми. Методом функцiй Грiна розраховано перенормований
спектр електронiв у трибар’єрнiй резонансно-тунельнiй на-
ноструктурi на основi GaAs-ям i Al𝑥Ga1−𝑥As-бар’єрiв при
рiзних значеннях концентрацiї (𝑥) Al. Встановлено, що при
змiнi температури вiд 0 до 300 K, незалежно вiд концен-
трацiї Al, зi змiною геометричної конфiгурацiї трибар’єрної
резонансно-тунельної наноструктури ширини обох нижнiх
(робочих) квазiстацiонарних станiв збiльшуються, а енергiї
змiщуються у низькоенергетичну область. Ширини i змi-
щення виявилися сильно нелiнiйними функцiями у зале-
жностi вiд положення внутрiшнього бар’єра в трибар’єрнiй
резонансно-тунельнiй наноструктурi.
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