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(SE-412 96, Göteborg, Sweden)

3 Department of Electronics and Biomedical Electronics,
National University and Polytechnical Institute, NTU “KhPI”
(21, Frunze Street, Kharkov 61102, Ukraine)

APPLICATION OF SURFACE WAVES
FOR STUDYING THE CHARACTERISTICS
OF GAS-TRAPPING SENSORS LOCATED
ON A SOLID SURFACEPACS 63.20.-e, 63.20.Dj

Dispersion relations for surface waves and attenuation parameters in a crystal with the impu-
rity monolayer adsorbed on its top are studied. We consider a face-centered cubic crystal with
central interaction between the nearest neighbors as a model and calculate the value of 𝑚*

0 for
the adsorbed surface monolayer. Beginning from it (𝑚0 < 𝑚*

0), the surface wave splits off the
upper edge of the volume spectrum and attenuates non-monotonously (with oscillations), when
penetrating into the crystal bulk.
K e yw o r d s: volume and surface waves, dispersion relations, amplitude decreasing parameter,
adsorbed surface monolayer.

1. Introduction

Current trends in engineering allow one to build up
the atomic ( nanoscale) architecture of the surface
of solid supports in a controlled manner [1]. The mi-
crofabricated surfaces of acoustic-wave sensors can be
made highly responsive to the mass adsorbed from a
gas, vapor, or liquid phase [2]. In particular, the de-
vices with surface acoustic waves are widely used for
the precise gravimetrical measurements of negligible
masses by chemical sensors and biosensors [2, 3]. In
this context, the theoretical analysis and the model-
ing of the dynamics of a propagation of acoustic waves
in the adsorbed monolayer on the surface of an oscil-
lating crystal is an important part of the research of
sensors [4–6].

In the present work, we consider the surface vibra-
tions of pure shear waves in the case of the (001) sur-
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face orientation in face-centered cubic crystals with
adsorbed surface monolayer. The characteristics of
surface waves are highly sensitive to properties of
the surface. In this connection, the pure shear sur-
face waves with horizontal polarization (SH-waves)
are of great interest both in the context of fundamen-
tal studies and technological applications [5, 7, 8].

Consider the elastic vibrations of an FCC crys-
tal with interaction between the nearest neighbors
taken into account. We describe our system in a scalar
model, i.e. the displacement of an atom from its
equilibrium state is described with the scalar value
𝑢(n), (n(𝑛1, 𝑛2, 𝑛3) is an integer-valued vector enu-
merating the lattice points). The equation of motion
of such a system in the harmonic approximation is
given by [5].

𝑚 (n)
𝜕2𝑢(𝑛)

𝜕𝑡2
= −

∑︁
𝑛′

𝛼(n,n′)𝑢(n
′
). (1)
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Here, 𝑚 (n) is the atomic mass at the 𝑛th node;
𝛼(n,n′) are force coefficients. Let the crystal be
bounded with (001) surface, and let the outer atomic
layer (𝑛3 = 0) consist of impurity atoms (𝑚0 is the
mass of an impurity atom, and 𝑚 is the mass of a host
one; see Fig. 1). The force constants for the nearest
neighbors are

𝛼 (n,n′) =

⎧⎨⎩
𝛼; 𝑛3, 𝑛

′
3 ≥ 1; (a)

𝛾𝛼; 𝑛3 = 0, 𝑛′
3 = 1; (b)

𝛾′𝛼; 𝑛3, 𝑛
′
3 = 0. (c)

(2)

In Eq. (2), we allow for the interaction 𝛾𝛼 between
the surface (𝑛 = 0) and subsurface (𝑛 = 1) layers to
be different from the interlayer interaction 𝛼 in the
bulk. In addition, expression (2c) allows one to take
a surface distortion into account.

The occurrence of the translational invariance
along (001) plane allows one to find the eigenvibra-
tions as 𝑢 (𝑛1, 𝑛2, 𝑛3) = 𝑢(𝑛3)exp[𝑖 (𝑘1𝑛1 + 𝑘2𝑛2)−
− 𝑖𝜔𝑡], where 𝑘1 and 𝑘2 are components of the di-
mensionless plane wave vector 𝜒(𝑘1, 𝑘2), and 𝜔 is the
oscillation frequency. Since there is the translation in-
variance in the (xy) plane (z axis is perpendicular
to the plane), 𝑘1 and 𝑘2 are “good” quantum num-
bers, and we will seek the frequency dependence on
𝜒(𝑘1, 𝑘2). 𝑘3 runs all values from 0 to 𝜋. Denoting
𝑢(𝑛3) ≡ 𝑢(𝑛), we obtain the following expressions
from Eq. (1):

𝑚0𝜔
2𝑢(0)

𝛼
= 4 (𝛾 + 𝛾′)𝑢 (0)−

− 4𝛾 (cos 𝑘1 + cos 𝑘2)𝑤𝑢(1); (𝑛 = 0); (3)

𝑚𝜔2𝑢(1)

𝛼
= (8 + 4𝛾)𝑢 (1)− 4𝑢 (1) cos 𝑘1 cos 𝑘2 −

− 2 (cos 𝑘1 + cos 𝑘2) (𝑢(2) + 𝛾𝑢(0)); (𝑛 = 1); (4)

𝑚𝜔2𝑢(2)

𝛼
= 12𝑢 (2)− 4𝑢 (1) cos 𝑘1 cos 𝑘2 −

− 2 (cos 𝑘1 + cos 𝑘2) (𝑢(2) + 𝛾𝑢(0)); (𝑛 = 2). (5)

For 𝑛 ≥ 2, relation (5) is a system of linear homo-
geneous finite difference equations of the second or-
der with constant coefficients. The sequence {𝑢(𝑛)},
𝑛 = 1, 2, ..., determined by the system is actually a
sum of geometric progressions

𝑢 (𝑛) =

2𝑠∑︁
𝑗=2

𝑉𝑗𝑞
𝑛
𝑗 , |𝑞| < 1, (6)

Fig. 1. Semi-infinite face-centered cubic crystal with an ad-
sorbed impurity monolayer on its top

𝑉𝑗 are the amplitudes of 2s partial waves character-
ized by 𝑞𝑗 parameters depending on the wave vector 𝜒
and the wave frequency 𝜔 and determine the attenu-
ation of a given partial wave into the crystal bulk; i.e.
𝑞 determines the penetration depth. Hereafter, we are
going to consider the single-partial surface waves, for
which 𝑢 (𝑛) = 𝑢(1)𝑞𝑛−1 in the considered model, and
Eq. (5) for a layer with 𝑛 ≥ 2 can be rewritten as

𝑚𝜔𝑠
2

𝛼
= (12− 4 cos k1 cos k2)−

− 2 (cos k1 + cos k2)

(︂
𝑞 +

1

𝑞

)︂
, (7)

and 𝑢 (0) is a an independent component (the surface
impurity mass 𝑚0 differs from the host mass 𝑚) and
comes out of the geometric progression.

Relations (3) and (4) are boundary conditions.
Let us consider an FCC crystal without surface dis-

tortion (𝛾 = 𝛾′ = 1). The dispersion relation for vol-
ume vibrations is
𝑚

𝜔2
𝑉

𝛼 = 12− 4 cos

[︂
𝑘1

𝑎0√
2

]︂
cos

[︂
𝑘2

𝑎0√
2

]︂
−

− 4 cos

[︂
𝑘1

𝑎0√
2

]︂
cos

[︂
𝑘3

𝑎0√
2

]︂
−

− 4 cos

[︂
𝑘2

𝑎0√
2

]︂
cos

[︂
𝑘3

𝑎0√
2

]︂
. (8)

The borders of the two-dimensional Brillouin zone
along the symmetric directions are shown in Fig. 2.
Without any loss of generality, we choose the 𝑘 =
= 𝑘1 = 𝑘2 direction of the two-dimensional Brillouin
zone.

In this case, expression (7) transforms into

𝑚𝜔𝑠
2

𝛼
= (12−𝐵)−𝐴

[︂
𝑞 +

1

𝑞

]︂
, (9)
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Fig. 2. Two-dimensional Brillouin zone for an FCC crystal

Fig. 3. Volume vibration band and surface waves in a fa-
ce-centered cubic crystal with adsorbed surface monolayer;
𝑚0/𝑚 = 0.5

Fig. 4. Dependence of the decreasing parameter q on the
impurity mass

where

𝐴 = 2

(︂
cos

[︂
𝑘1

𝑎0√
2

]︂
+ cos

[︂
𝑘2

𝑎0√
2

]︂)︂
;

𝐵 = 4 cos

[︂
𝑘1

𝑎0√
2

]︂
cos

[︂
𝑘2

𝑎0√
2

]︂
.

(10)

The equations for the defect (𝑛 = 0) and interme-
diate (𝑛 = 1) layers are⎧⎪⎪⎨⎪⎪⎩
𝑚0𝜔

2
𝑠

𝛼
𝑢(0) = (8−𝐵)𝑢(0)−𝐴𝑢(1),

𝑚𝜔𝑠
2

𝛼
𝑢 (1) = (12−𝐵)𝑢 (1)−𝐴 [𝑢 (1) 𝑞 + 𝑢 (0)].

(11)

From (4) and (6), we obtain the expressions for the
dispersion relation of surface waves and the decreas-
ing parameter q depending on 𝜇 = 𝑚0/𝑚. Consider
the case of light impurity atoms, 𝜇 = 𝑚0/𝑚 < 1.
Thus, we obtain

𝑞 =
8−𝐵 − (12−𝐵)𝜇

2𝐴(1− 𝜇)
−

−

√︁
4𝐴2(𝜇− 1)𝜇+ (𝐵 − 8 + (12−𝐵)𝜇)

2

2𝐴(1− 𝜇)
. (12)

The dispersion relation is calculated from (9).
Let us analyze the obtained expression for some

particular value 𝜇 = 0.1 (the adsorbed atom is ten
times lighter than the host one). Then

𝑞 = −𝐵 − 8 + 0.1(12−𝐵)

1.8𝐴
+

+

√︁
−0.36𝐴2 + (8−𝐵 + 0.1(𝐵 − 12))

2

1.8𝐴
. (13)

Here, 𝑞 < 0, |𝑞| < 1, i.e. the oscillation amplitude
decreases non-monotonously (with oscillations), while
penetrating into the crystal bulk.

It is easy to calculate the splitting of the surface
wave from the volume band. We have

Δ =
𝑚𝜔𝑠

2

𝛼
− 𝑚𝜔𝑣max

2

𝛼
= 𝐴

(︂
𝑞 +

1

𝑞

)︂
. (14)

It is greater than zero, if 𝜇 ≤ 0.5, i.e. the surface
waves split off higher than the highest edge of the
volume band. For 𝜇 = 1/2, the dispersion relation for
surface waves does not depend on the wave vector
𝜒 (𝑘1, 𝑘2) = 𝜒 (𝑘),

𝑚𝜔𝑠
2

𝛼
= 16, (15)

and is a straight line on the 𝜔2(𝜒) dependence
(Fig. 3).

Moreover, the essential condition |𝑞| < 1 is fulfilled
only if 𝜇 ≤ 0.5 (Fig. 4).

For 𝑘𝑎 ≪ 1, the splitting parameter △ takes very
small values, and the surface wave penetrates deeply
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Fig. 5. Volume vibration band and surface waves in a
face-centred cubic crystal with adsorbed surface monolayer;
𝑚0/𝑚 = 0.1

into the crystal bulk (quasivolume). But, in the short-
wave approximation, the penetration depth of a sur-
face wave decreases, as 𝜒 (𝑘) increases. For 𝑘 = 𝜋

2 , the
surface wave is localized only in the impurity surface
monolayer.

Since the frequency is dependent on the 𝑚0/𝑚 ra-
tio, it is possible to determine the impurity mass with
the dispersion relation obtained or by the spread-
ing the velocity of the surface wave 𝜕𝜔

𝜕𝑘 . The de-
pendence of 𝑚𝜔𝑠

2/𝛼 on the two-dimensional vector
𝜒 (𝑘1, 𝑘2) = 𝜒 (𝑘) =

[︀
0; 𝜋

2

]︀
is shown in Fig. 5.

Since 𝑞 < 0, the surface wave oscillations decrease
non-monotonously in the case of light impurity atoms,
while penetrating into the crystal bulk. The surface
vibrations are high-frequency presented as a single
curve splitting off the highest edge of the continuous
spectrum of volume vibrations.

Therefore, the impurity mass, at which a surface
wave splits exactly off the top of the continuous spec-
trum has been calculated, and it is five times lighter
than the mass of a host atom. For 𝜇 ≤ 0.5, the sur-
face wave splits off higher than the highest edge of
the volume vibration band. For 𝜇 > 0.5, the inequal-
ity |𝑞| < 1 is not fulfilled. So, the high frequency sur-
face waves are not excited at such ratios. The vibra-
tions of light impurity atoms in the surface mono-
layer are high-frequency; their amplitudes decrease

non-monotonously, as the surface wave penetrates
into the crystal bulk. In the long-wave approximation
(𝑘𝑎 ≪ 1), the vibrations penetrate deeply, being qua-
sivolume, while they are localized only in the impurity
monolayer for 𝑘 = 𝜋/2 (short-wave approximation).
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ЗАСТОСУВАННЯ ПОВЕРХНЕВИХ
ХВИЛЬ ДЛЯ ВИВЧЕННЯ ХАРАКТЕРИСТИК
ГАЗОЧУТЛИВИХ СЕНСОРIВ НА ПОВЕРХНI
ТВЕРДОГО ТIЛА

Р е з ю м е

В роботi отримано закони дисперсiї та параметри загаса-
ння поверхневої хвилi у кристалi з домiшковим моноша-
ром, адсорбованим на поверхнi. У ролi моделi розглянуто
гранецентровану кубiчну ґратку iз центральною взаємодi-
єю мiж найближчими сусiдами. Обчислено значення домi-
шкової маси 𝑚*

0, починаючи з якої (𝑚0 < 𝑚*
0) поверхнева

хвиля вiдщеплюється вiд верхньої границi спектра об’ємних
коливань та затухає немонотонно (з осциляцiями) iз поши-
ренням в глибину кристала.
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