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1B IN A THREE-CLUSTER MICROSCOPIC MODEL

In the frame of a microscopic model, namely a three-cluster algebraic version of the resonating-
group method, the spectrum of bound states of nucleus °B with T = 0 is considered. As
a nucleon-nucleon potential, the semirealistic potential containing the central and spin-orbit
components is used. The Coulomb interaction of protons is exactly taken into account. The
proper order of levels in the spectrum under study and the reasonable agreement with experi-
mental data on the arrangement of levels relative to the lowest breakup threshold of a nucleus
are obtained. The role of the spin-orbit interaction in the formation of the spectrum of bound
states of nucleus '°B is studied in detail.
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1. Introduction

The purpose of the present work is the study of
the spectrum of bound states of nucleus '°B in the
frame of a three-cluster microscopic model. This nu-
cleus is odd-odd with N = Z, and its spectrum
includes the states with the isotopic spins T = 0
and T = 1. From the viewpoint of the shell model,
its structure has the form (1s)*(1p3/2)°. The total
angular momentum of the ground state is equal to
J = 3, which is explained by peculiarities of the filling
of the p-shell. The SU(3)-multiplet of the basic con-
figuration has quantum numbers (Elliott’s indices)
(A, 1) = (2,2) consistent with the following values
of total orbital momentum: L™ = 0%, 2T, 2+, 37T,
and 47, where the state 2% is met twice at the re-
duction of SU(3) onto O(3). Though the model used
in the present work is much more general than the
oscillator shell model in its lowest configuration, we
may expect, however, that the former contains the
mentioned states in the low-energy region of excita-
tions of nucleus '°B, where the experiment shows the
presence of bound states, whose number is unconven-
tionally large for a nucleus of the p-shell. The last
circumstance was, in particular, one of the stimuli to
separate the consideration of the spectrum of bound
states of nucleus !°B as an independent problem.

To explain our interest in this question, we con-
sider its modern theoretical state. In order to clar-
ify the present situation, we will analyze the results
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of previous calculations, which are called the ab ini-
tio calculations made, in particular, in the frame of
the no-core shell model (NCSM), which becomes pop-
ular with the appearance of supercomputers. These
results are, in our opinion, the most demonstrative
at the present time. The mentioned model called else
the shell model without inert core uses the oscilla-
tor basis of the shell model and considers all nucleons
to be spectroscopically active. In this case, the cal-
culations usually involve a huge number (=10%) of
basis functions, and the nucleon-nucleon interaction
is modeled by potentials based on the ideas of the
meson exchange or on the reasoning considering the
quark structure of nucleons in the frame of the chiral
effective field theory.

On the initial stage, the similar calculations were
carried out with the realistic nucleon-nucleon po-
tentials CD-Bonn and Argonne v§ [1-3]. In the first
work, it was obtained that the ground state is 17,
whereas the experiment shows that it is the 3T-state
lying by 0.72 MeV lower than the 1*-state. It is worth
noting that the nucleon-nucleon potential in the sec-
ond and third works contained effective three-particle
forces, whose significance was indicated by the au-
thors. But the hope for that these forces will correct
completely the situation with the inversion of levels
was not realized on the great score.

While setting the nucleon-nucleon forces, the au-
thors of work [4] used the potential N3LO (next-to-
next-to next-to-leading order) obtained in the fourth
order of the chiral perturbation theory without re-
gard for three-particle forces. The inversion of the
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37- and 17-levels was obtained again, and this result
was commented to be due to the neglect of three-
particle forces. The calculations with N2LO three-
particle forces, which required a very high loading of
supercomputers, in two somewhat different modifica-
tions of the NNN potentials led to the questionable
success [5].

In the previous work [6], the fitting of the low-
energy constants in contact NNN terms of the po-
tential in view of the binding energy of nuclei with
A = 3 was performed. The obtained results includ-
ing, in particular, the spectrum of nucleus '°B led
the authors to the conclusion about the necessity of a
further improvement of the chiral Hamiltonian. The
inversion of levels of nucleus 1B, which was obtained
in the majority of cases, forced the authors of work
[5] to claim that the description of the spectrum of
bound states of this nucleus is a true challenge to all
ab initio calculations.

We add that the similar difficulties are character-
istic of the calculations in [7] on the basis of NCSM
with the use of NN-forces in JISP16 (J-matrix inverse
scattering potential 16), which were obtained within
the J-matrix method of inverse scattering transform
with the use of a fitting to nucleon-nucleon data. This
concerns also the results in [8], where the quantum
Monte-Carlo method was used with the application
of the potential Argonne v1g and the potentials of
three-particle forces of the Urbana IX and Illinois
types as three-nucleon potentials. The proper order of
the above-mentioned levels was obtained in the last
case. These results supplement the above-presented
uncertain situation concerning the spectrum of bound
states of nucleus '°B as a result of the ab initio cal-
culations and some simpler approaches such as, for
example, the method of random phases and indi-
cate that the question requires a more profound con-
sideration.

Before the above-mentioned calculations, the spec-
trum of nucleus '°B was considered in [9] in the frame
of the multiconfiguration multichannel resonating-
group method. There, the Minnesota potential [10]
was used. Its parameters were fitted by the low-
energy nucleon-nucleon scattering data, and the
model space contained the binary channels o + L4,
d 4+ ®Be, a + SLi*, and d + ®Be*, where the asterisks
denote the excited states of nuclei with L = 2. In
view of the last circumstance, the attempt to ap-
proximately account for the three-cluster structure
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a + a + d was made. The Coulomb repulsion of
protons was not considered. But the main shortcom-
ing of the mentioned calculations consisted in that,
from our viewpoint, the spin-orbit forces (LS-forces)
were not taken into account in them. The estimation
of the spin-orbit splitting was obtained on the ba-
sis of the results in [11], where the spectrum of nu-
cleus 1B was considered in the frame of the three-
cluster model with the approximate account for the
Pauli principle by the method of orthogonalization
conditions. The calculations were performed with the
Hasegawa—Nagata potential. In this case, it was in-
dicated in [9] that the proper mutual position of the
levels was obtained.

In the present work, the spectrum of bound states
of nucleus '°B is considered in the frame of a three-
cluster variant of the algebraic version of RGM (AV
RGM) (see, e.g., [12,13]) with the use of a hyperspher-
ical oscillator basis. In this model, the Pauli principle
is exactly taken into account. To model nucleus '°B
as a three-cluster system, we choose the configuration
a+a+d, for which the three-cluster threshold energy
is minimal among all possible three-cluster configu-
rations. With its help, we can consider the dominat-
ing binary channel o + SLi, which defines mainly, as
we can boldly assume, the properties of bound states
and a number of resonances related to nucleus °B. It
is worth noting that the three-cluster configuration
a+ o+ d describes the states of a compound-nucleus
with the total spin S = 1 and the isospin 7' = 0. (It is
of interest that the existence of the indicated cluster
configuration as a leading one is indirectly confirmed
not only by the general reasoning, but by the experi-
mental results obtained on a nucleotron [14].)

In the numerical calculations of the spectrum of
0B, we used, similarly to [9], the semirealistic Min-
nesota potential [10], which describes reasonably the
properties of nuclei of the s-shell and the LS-forces
in version IV in [15]. The latter have a simple form
represented by a single term, which allows us to suffi-
ciently easily consider the dependence of the obtained
results on the intensity of these forces. The parame-
ters of LS-forces were fitted by the phase shifts for
a +n and « + p scattering at low energies Here, we
took the Coulomb interaction of protons into account
as well.

We accept the following plan. We present the main
ideas of the used theoretical approach in Section 2
and the results of its application to the description
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of characteristics of the spectrum of bound states of
nucleus '°B in Section 3.

2. Method

By presenting AV RGM in its three-cluster variant,
we start from a three-cluster ansatz of the traditional
version of RGM [16]. RGM seems to be one of the
most successive and efficient tools to study the dy-
namics of cluster configurations in light atomic nu-
clei. In this case, the completely antisymmetrized
multiparticle wave function of a three-cluster nuclear
system consisting of A nucleons with the clusteriza-
tion A = A; + As + A3z can be set, in the frame of
RGM, as

U;(q1,92,..,94-1) =

=D A{[W1 (A1) W2 (42) W (As)] s

LS
X Wrs.s(ai,q2)},, (1)

where A is the operator of antisymmetrization, and
U,;(A;) is the function describing the internal struc-
ture of the i-th cluster. The functions W¥,;(A;) are
fixed from the onset, which corresponds to the use
of the approximation of “frozen” nucleon distribu-
tion densities for the clusters. As usual, we choose
these functions as those of a multiparticle spherically
symmetric shell model with the most compact fill-
ing of shells. The function ¥ g, (q1,q2) depends on
the Jacobi coordinates setting the mutual position of
the clusters and must be determined by solving some
equation following from the Schrédinger equation and
by setting the required function in the form (1).

In the definition of the antisymmetric function
U, (A;) of the i-th cluster, we omit, for simplicity, two
significant quantities: the spin .S; of a cluster and the
oscillator radius (the oscillator length) b. Since the
wave function ¥, (Ai) is constructed, as was men-
tioned above, from one-particle functions of the mul-
tiparticle shell model, it depends explicitly on the os-
cillator length b. In this approach, b is a fitting (vari-
ational) parameter, whose choice will be discussed in
Section 3. We now consider the spin of a cluster. As
was clearly indicated in Eq. (1), we use the LS-scheme
of coupling of the orbital and spin momenta for the
classification of states of the three-cluster system. In
this scheme, the total spin S of the system is defined
as the vector sum of the spins of individual clusters:
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S = S; + Ss + S3. The total angular momentum J
of the system is, in turn, the vector sum of the to-
tal orbital momentum L and the total spin S of the
compound-nucleus: J =L + S.

The undoubtful advantages of the resonating-group
method consist in the following: (i) it is a microscopic
approach, in which the dynamics of clusters is de-
fined by the nucleon-nucleon interaction, (ii) the Pauli
principle is taken into account explicitly, and (iii) the
motion of the center of masses is separated in the ex-
plicit form. The second item is especially significant
for the consideration of bound states and states of the
continuous spectrum of light nuclei at comparatively
small energies. RGM, as one of the most successive
realizations of the cluster model, allows one to prop-
erly consider the boundary conditions and to perform
a theoretical analysis of results with regard for those
physical properties of the systems under study, which
seem to be the most important in each specific case.

There exist several alternative versions of the
resonating-group method. They differ from one an-
other by the procedures of solution of the equations
for the determination of the spectrum of bound states
and the parameters of elastic and inelastic scatter-
ing. Many versions of RGM involve different discrete
schemes for the numerical solution of dynamical equa-
tions. One of the popular trends in the realization of
these schemes is the use of square-integrable bases
of functions. As a rule, the basis functions are at-
tracted for the description of only the internal part of
the wave function, and the asymptotic part is deter-
mined in the coordinate representation. In AV RGM,
the discrete scheme is realized with the help of an
orthonormalized set of oscillator functions. As dis-
tinct from the alternative versions of RGM, these
functions describe both the internal and asymptotic
parts of the wave function. In essence, AV RGM is
the self-consistent matrix form of quantum mechanics
for a multiparticle system, for which the wave func-
tion and the boundary conditions are defined in a
discrete space.

In correspondence with the above discussion, the
wave function ¥y g.; can be represented as follows:

Vrs.g (CI1»Q2) = ZCV;LS;J |V>F (2)

Here, the aggregate index v is a set of six quantum
numbers characterizing the wave functions of the to-
tal basis V) = |v;qi,d2)r chosen by us, i.e., the
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F-representation, by which we make transition, in
fact, to the matrix representation of quantum me-
chanics. The functions |v) . are the principal compo-
nent for the construction of three-cluster antisymmet-
ric oscillator functions

V) = A{W1 (A1) Us (A2) U5 (A3) [v;an, a2) o). (3)

The set of antisymmetric oscillator functions (3) is
used for the expansion of the three-cluster function

(1):

Uy=Y Cursuly). (4)

Thus, we have to determine the set of coefficients
{Cy.Ls;s}. In view of Eq. (1), this set defines, in fact,
the multiparticle wave function of the nucleus under
consideration and must be determined by solving of
the Schrédinger equation in the matrix form, i.e., a
system of linear algebraic equations of the form

> [(v|E|7) - Bwm] ¢s =0, (5)

174

where <u H ‘ D> and (v|V) are matrix elements of the

Hamiltonian and the identity operator between anti-
symmetrized multiparticle basis functions.

As the total basis for the expansion of the relative-
motion function, we will use the basis of a six-di-
mensional spherically symmetric harmonic oscilla-
tor. In this case, the matrix of the operator of ki-
netic energy has a convenient three-diagonal (Jacobi)
form. In other words, we use, in fact, the approach
called the method of J-matrix [17, 18|. For the ba-
sis of a six-dimensional harmonic oscillator, we may
use various schemes of classification of functions. For
example, three such possibilities related to the reduc-
tion of the unitary group U (6), which is a symme-
try group for a six-dimensional harmonic oscillator,
onto its subgroups were considered in [13,19]. In the
present work, we choose the scheme

U (6) 5 0 (6) 5 SO (3)® SO (3) D SO (3). (6)

This gives us the following quantum numbers: the
hypermomentum K, number of quanta of hyperradial
excitations n,, partial angular momentum [; related
to the first Jacobi vector, partial angular momentum
lo related to the second Jacobi vector, and L and
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M that are the momentum obtained by the coupling
of the partial momenta [, and Il and its projection
M, respectively. Thus, we work with hyperspherical
harmonics [20, 21] on a six-dimensional sphere, and
our basis functions in the below-indicated variables
take the form

|I/> = \nP,K,ll7l2;LM> =

1 .
= Nnk exp {2;)2} pKLTIL{pH (n*) q)%7l2’L @), (1)

where My is the normalizing factor, p is the hy-
perradius (p> = q? + q2), which defines the sizes
of the system and is related to the quantum num-

ber n,, LnKp +2 (,02) is the generalized Laguerre poly-
nomial, and ‘le(’lZ;L (2) is a hyperspherical harmonic
depending on five hyperangles: 3,601, ¢1,602, and ¢s.
Here, the first angle can be given by the relation
B = arctan (|q1|/|qz|), defines the shape of a trian-
gle formed by clusters, and is related to the quantum
number K. Four remaining angles set pairwise deter-
mine the directions in the space of vectors q; and qpo,
respectively. For the sake of definiteness, we consider
here and below that the vector q; joins the center
of masses of the subsystem a — a with the center of
masses of the deuteron cluster, and qs joins the cen-
ters of masses of the a clusters.

Having determined completely the full basis needed
in what follows, it is necessary to make the next step
and to calculate matrix elements of the Hamiltonian
(v|H|7) and the overlap integral (v|7). The direct
calculation of the mentioned matrix elements between
the basis functions (7) is a very complicated techni-
cal task. This forced developing a special calculation
technique for calculating the required quantities. It is
based on the use of the generating functions and the
generating matrix elements, which allows one to ob-
tain the recurrence relations for all matrix elements
of interest. Since this task is a separate item, whose
discussion will require a large place for bulky formu-
las, we mention works [12, 22|, where this technique
of calculations is presented sufficiently completely.

By this, we could finish the description of the used
approach in the frame of AV RGM. But we note else
that this approach is, at the present time, a completed
specific realization of matrix quantum mechanics with
proper boundary conditions for states of the discrete
and continuous spectra. In particular, the asymptotic
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formulas describing a large number of radial excita-
tions were obtained for components of a wave func-
tion in the oscillator representation [23-27]. In other
words, whereas the solution of problems for the dis-
crete or continuous spectrum uses usually the asymp-
totic formula for a wave function at large distances in
order to set the boundary conditions in the coordinate
representation, the practically equivalent procedure is
realized in the oscillator representation. For the large
numbers of radial oscillator quanta of the relative mo-
tion of clusters, we consider the asymptotic formulas,
but already for the coefficients of an expansion of the
relative-motion function.

There is one more question needed to be consi-
dered. It consists in that, as was indicated above,
the Pauli principle is taken into account exactly in
the present approach, and it is necessary to exclude
the Pauli forbidden states. As is known, the prob-
lem consists in the following. The basis functions
|v) o are orthonormalized. But at the same time, the
operator of antisymmetrization participating in the
construction of the antisymmetric oscillator func-
tions (4) breaks the orthogonality and the normal-
ization of the functions |v). Moreover, the opera-
tor of antisymmetrization causes the appearance of
linearly dependent functions, which correspond to
the Pauli forbidden states. Here, they are excluded
by means of the diagonalization of the antisym-
metrization operator matrix ||(v[7)| = ||(v]|A|7)]],
which is calculated on the multiparticle basis func-
tions, and by omitting to the eigenvectors of the
matrix [[(v|V)|| with zero eigenvalues. As for the al-
lowed states that are eigenfunctions of the antisym-
metrizator, they can be constructed in the form of
linear combinations of the input basis functions of
the given oscillator shell. The last circumstance is
related to the fact that the matrix ||(v|7)] has a
block structure, and its nonzero matrix elements
arise at the overlapping of functions that belong
to the same oscillator shell and satisfy the condi-
tion N = N. After the elimination of the forbidden
states, our system of equations (5) takes a somewhat
different form. If ||U, .|| is the matrix of eigenvec-

J

tors of the operator of antisymmetrization, we ob-
tain

> [{alH|&) - Edu5]Ca =0, (8)

e}

where ||<a|ﬁ|a>|| is the Hamiltonian matrix calcu-
lated already on such linear combinations of the input
multiparticle basis functions, which correspond to the
Pauli allowed states. In this case, the new matrix of
the Hamilton operator is connected with the matrix
H<V|H|§>H by the relation

<a]fl’&> = Z Ua7V<V|ﬁ’g>Ua’;.

In our approach, the system of linear algebraic equa-
tions (8) describes completely the dynamics of the
three-cluster system under study with regard for the
Pauli principle, and its solutions determine uniquely
the spectrum and the wave functions of bound states
or the wave functions and elements of the scattering
matrix for states of the continuous spectrum.

3. Discussion of Results

As was mentioned above, we consider the spectrum
of bound states of nucleus °B in the three-cluster
representation « + a + d. Since the spin of an « par-
ticle is zero, the total spin S of the system is de-
termined by the spin of a deuteron and, therefore,
is equal to 1. This implies that the state with the
total angular momentum J must consist of states,
in which the total orbital momentum L takes the
values L. = J -1, L = J, and L = J + 1. For
example, the total orbital momentum J™ = 3T
can be obtained with the use of the angular mo-
menta L = 2, 3, 4, and the states J*™ = 17T
are states with L = 0, 1, 2, and so on. This
means that the wave function (1) can be represented
as a vector consisting of three components ¥ =
{Ur—y-1, Yy, and ¥ _;,1}, and the Schrodinger
equation can be conditionally presented in a block
form

(He +Vis)s—10-1  (Vis)si—1 0 v, ¥,
(Vis)ss—1 (Ho + Vis)gg (Vis)g—1,7+41 U; ||=E| U, |, )
0 (VLS)J-l-l,J (HC +VLS)J+17J+1 \IIJ+1 \I/J+1

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 11
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where I;'c =T+ ‘A/N N+ ‘7(; is the central part of the
Hamiltonian consisting of the operator of kinetic en-
ergy, central part of the nucleon-nucleon potential,
and Coulomb potential, respectively, and Vg is the
potential of spin-orbit forces.

In order to describe the spectrum of bound states
of nucleus '°B , we chose the Minnesota potential as
the nucleon-nucleon potential. Then we obtained the
exchange parameter as a free parameter (Majorana
parameter) of the potential in addition to the oscil-
lator radius b, whose value is taken here to be the
same in the construction of the wave functions of all
clusters. The former is connected with the amplitudes
of odd components, which are mainly responsible for
the repulsion of nucleons at small distances. Both
parameters should be determined from the physical
reasoning prior to the solution of the system of equa-
tions (9).

Here, we consider three possible means to set the
free parameters. They correspond to three differ-
ent choices of the nucleon distribution densities in
clusters and, respectively, to three different effec-
tive potentials of interaction of clusters. In the first
case (C1), we choose a value of oscillator radius that

Table 1. Versions of the choice
of the input parameters b and u of the problem

Version of calculations C1 C2 C3
b, fm 1.298 1.3110 1.39482
u 0.900 0.9254 0.9070
Optimization at+a+d a+d a
Fitting 108 6Li SLi

Table 2. Results of calculations of the spectrum

of bound states of nucleus 1°B for various collections
of the parameters u and b. The energies are reckoned
from the lowest breakup threshold of nucleus

10B, which is the threshold ®Li 4+ «

Theory

Quantum Exp.

numbers C1 2 C3
JT E, keV E, keV E, keV E, keV
3+ —4459.60 | —5130.20 | —6993.55 | —4583.37
1+ —3741.22 | —3802.13 | —4942.66 | —4058.54
1+ —2305.33 —893.33 —2497.70 | —1429.39
2t —872.47 40.03 —1348.23 | —542.02

1070

minimizes the energy of the three-cluster threshold
a+ a + d and take u such that it ensures the proper
position of the ground state of nucleus B relative
to the indicated threshold. In case (C2), we choose
a value of b, at which the binary threshold « + d in
nucleus Li has the minimal energy, and « ensures
the proper position of the ground state °Li relative
to the threshold of a + d. In the third case (C3), the
parameter u is chosen as in (C2), and b was deter-
mined from the condition of the best description of
the root-mean-square radius of an « particle. In other
words, choice (C3) is the same as in [9]. The distinc-
tion consists in that we take both the spin-orbit in-
teraction and the Coulomb potential into account in
the present work. For reader’s convenience, we give
the values and the means of choice of the input pa-
rameters of the model in Table 1.

The results of calculations of the spectrum of
bound states with S = 1 and T" = 0 of nucleus
10B for three collections of parameters b and u given
in Table 1 are presented in Table 2, where the first
column gives experimental data from work [28]. It
is worth noting that, on the given stage, we vary
only the mixing parameter u related to the central
part of the nucleon-nucleon potential. In the calcu-
lations, we used the values of parameters of LS-
forces, which were recommended in work [15]. The
dependence of the results of calculations on the in-
tensity of spin-orbit forces will be considered be-
low in detail. In our calculations, we take all ba-
sis functions with hypermoments up to K., = 14
and with the radial quantum number n, up to 100,
which ensures the quite reasonable convergence of the
results.

In a more descriptive form, the results of Table 2
are presented in Fig. 1, where we omitted, like that in
the table, the level with the quantum numbers J™ =
= 0" and with the isotopic spin equal to 1. In order
to describe this level, it is necessary to consider the
four-cluster configuration o + a 4+ p + n.

The comparison of the results of calculations with
experimental data indicates in the first turn that
we obtained the proper positions of the levels. As
for their mutual arrangement, variant (C3) seems
to be the most successful. Apparently, it is not ac-
cident that just such means to set the parameters
was used in work [9], though the choice of param-
eters was not discussed there. In what follows, we
present only those theoretical results that were ob-
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tained with the use of the collection of parame-
ters (C3).

In the first part of this work, we paid a suffi-
ciently significant attention to the discussion of the
results of calculations performed in the no-core shell
model. Now, we present the most representative re-
sults from work [5] in order to compare them with
our results in Fig. 2. In this case, we took only the
levels with T = 0 and remained only one of three
versions of calculations of the NCSM2 type differing
by the values of oscillator radius. In our opinion, the
chosen version describes utmost adequately the ex-
perimental situation. The results in [5] were obtained
with the use of modern two- and three-nucleon chi-
ral interactions (chiral effective field theory (EFT)
of two- and three-nucleon interactions). For example,
the calculations of the NCSM3 type were performed,
by using the N3LO NN forces. Those results suffer
from the same drawbacks, as the results of calcula-
tions with realistic potentials, which were mentioned
in Introduction. We note that the proper value of to-
tal momentum in the ground state can be obtained
only with the potential N2LO NNN with the energy
cutoff at 500 MeV (NCSM2). It is worth noting that
a weaker chiral N2LO NNN NCSM1 potential with
the NNN energy cutoff at 400 MeV led again to the
inversion of the 1+ and 37 states.

At the beginning of this section, we mentioned how
the states with definite values of total angular mo-
mentum J can be obtained from the states with differ-
ent values of total orbital momentum L. The results
of consideration of the question about the contribu-
tion of states with the admissible values of L to a
state with some value of J are given in Table 3 for
various specific cases.

As is seen from the results presented in Table 3,
the wave function of the ground state shows the most
remarkable distribution over states with a total or-
bital momentum. Of course, the leading role in this
case is played by the states with L™ = 2%, but the
state with L™ = 3% gives a sufficiently significant con-
tribution. As for the contribution of the state with
L™ = 4%, it equals about 1.5%. For the J™ = 1T
states, the situation is somewhat different. The first
and the second states are formed practically com-
pletely from states with the total orbital momenta
07 and 27, respectively. The wave function of the
state with J™ = 2%, like the second 17 -state, consists
mostly of the wave function with L™ = 27 and the
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Fig. 1. Spectra of bound states of nucleus 1B with T = 0
obtained with the use of the collections of input parameters
C1, C2, and C3 (see Table 1). In each case, the quantity Fyy, is
the 6Li+ o threshold energy for nucleus 1°B; all other energies
are reckoned from it

EXP. NCSM2  NCSM1  NCSM3
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3 27—
+ 22—
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= — 11—
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o 3----- 3ten--- 3----- 3o
1
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Fig. 2. Spectra of bound states of nucleus 1B with 7" = 0
obtained in [5] with the use of two- and three-nucleon chiral
interactions (see the text). All energies are reckoned from the
energy of the 3T state

Table 3. Weights W (L) of states with the various
values of angular momentum in the wave function
of the bound J™-state of nucleus 1°B given in per cent

J*" | E,keV | L=0 | L=1| L=2 | L=3 | L=4
3+ | —4583 83.64 14.92 1.44
1t | —4059 | 99.92 0.07 0.005

1T | —1429 0.003 | 0.001 | 99.99

2t | —542 0.01 96.91 3.08

3-% admixture of the wave function with L™ = 3.
Thus, the states with anomalous parity, as distinct
from the states with normal parity, take no notice-
able participation in the formation of the spectrum

1071



A.V. Nesterov, V.S. Vasilevsky, T.P. Kovalenko

0 2

100

90

80

70

60+

50

W(L)%

40
30

20

12 01
+ T

1 J 1
Fig. 3. Contributions of states with the various values of

angular momentum to the wave functions of bound states of
nucleus 1°B with 7' = 0 (see the text)
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Fig. 4. Spectra of bound states of nucleus 9B obtained in
the Vg = 0 and “diagonal” approximations, as well as in the
complete proper calculation (Full)

of excited states. Undoubtedly, this defines the mu-
tual position of the levels in many aspects.

The visualization of the data from Table 3 is real-
ized in Fig. 3. It is a histogram, where each of four
groups of columns (three in each group) corresponds
to a state with the definite values of total angular
momentum J and parity 7w, and each of the columns
demonstrates the contribution W (L) of a function
with some value of total orbital momentum to this
state. The values of total orbital momenta are given
by numbers above each of the columns.

To understand the role of the spin-orbit interac-
tion in the formation of bound states of 9B, we
made two additional calculations. First, we switched
off the spin-orbit interaction. This calculation will
be referred as Vi,g = 0. In this case, the Hamiltonian
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contains only central forces, and, thus, the total or-
bital momentum L is a quantum number. Second, the
spectrum of '°B was obtained in the diagonal approx-
imation. These results will be called “diagonal”. The
diagonal approximation is realized by omitting the
off-diagonal matrix elements of the spin-orbit interac-
tion in the system of equations (9) or, in other words,
by assuming that (VLS)L’Z =0, when L # L. In this
case, the spin-orbit interaction takes part in the for-
mation of the spectrum of bound states. However,
both the total angular momentum J and the total
orbital momentum L are integrals of motion. When
we transit from Vpg = 0 to “diagonal”’ calculations,
we observe that the spin-orbit interaction splits the
state with the total orbital momentum L into three
states with the different values of total angular mo-
mentum J: J=L—-1,J =L, and J =L+ 1. One
exception of this rule is the state with the total or-
bital momentum L = 0, where the spin-orbit inter-
action has zero contribution, and only one state with
J = 1 is emerged. Thus, each state in the “diago-
nal” calculation has to be marked by two quantum
numbers L and J. In Fig. 4, one can compare the
results obtained with Vg = 0 and in the “diagonal”
approximation. In this figure, we also display the cor-
rect solution of Egs. (9), which is marked as Full. In
the Full calculation, the energy levels are obtained
in the “diagonal” approximation with a fixed value of
total angular momentum J, but the different values
of total orbital momentum L.

The wave function of an eigenstate of Hamiltonian
(9) obtained in the Full calculation is a combination
of wave functions determined in the “diagonal” ap-
proximation with the fixed value of total angular mo-
mentum, but with the different values of total orbital
momentum. The contribution of different orbital L
states to the states with the total angular momentum
J is determined by the off-diagonal matrix elements
of the spin-orbit interaction (Vis), 7.

One can see that there are some energy levels with
the same energy in the Vg = 0 and “diagonal” ap-
proximations. This means that the spin-orbit inter-
action has small effects on these levels. They are the
L =0and L =0, J = 1 states, where, as was pointed
above, the spin-orbit interaction has zero contribu-
tions, and the L = 2 and L = 2, J = 2 states in
the Vs = 0 and “diagonal” approximations, respec-
tively. The later situation needs some additional con-
sideration. If the spin-orbit interaction is a small per-
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turbation, then the splitting energy arising from this
interaction would be determined by the well-known
formula

1
AFEL; =~ E[J(JJr 1)—L(L+1)-S(S+1)](Vs);,
where (Vis); is the expectation value of spin-orbit
interaction in the unperturbed state with the total
orbital momentum L. In our case, the total spin S =
1. Therefore, for L = 2, we obtain the energy shift as

9, J=3
ABp; = (Vis)p -1, J =2,
3 J=1.

If (Vis), is negative, then the state with J = 3 moves
down, and the states with J = 2 and J = 1 move
up. According to this rule, the state with the total
angular momentum J = 2 should be lower in energy
than the state with J = 1. Both have to lie above
the unperturbed L = 2 state (i.e., in the Vg = 0
approximation). We see that such splitting of states
is observed for the second state with L = 2. However,
the order of the J = 2 and J = 1 states contradicts
the rule. This means that the perturbation method is
not totally valid for this L = 2 state.

As for the first state with the total orbital momen-
tum L = 2, it also does not obey the perturbation
method. However, the order of states with the to-
tal angular momentum J is in accordance with the
above-mentioned rule. But all three states (J = 3,
J =2, and J = 1) are below the unperturbed L = 2
state. This indicates that, in the “diagonal” calcula-
tions, the expectation value (Vi,5); depends not only
on the total orbital momentum L, but also on the
total angular momentum J.

In the same manner as in the approach with linear
Hermitian operators, we can calculate the quantum-
mechanical means of various quantities in the frame
of matrix quantum mechanics. First, we consider
<JTr ’qﬂ J”> and <J’T ‘q%’ J”>. This gives us possibil-
ity to determine an average isosceles triangle formed
by clusters on a plane for each of the states of a dis-
crete spectrum. The results are presented in Table 4,
where r (o — a) stands for the average distance be-
tween the a-clusters, i.e., the length of the triangle
base. The height of the triangle is r (d — ar), which
is the average distance between the center of masses of
two « clusters and the deuteron cluster. In the same
table, we show the value of proton root-mean-square
radius R, for each of the states, whose value in our

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 11

fm
fm

1Rm

fm
fm

b =1 " =2

o4 —m0—m 0
o o o o
T T

1 2

T T T T T T T T
3 4 5 1 2 3 4 5
fm fm

Fig. 5. Triangles representing the averaged mutual position
of clusters for the bound states of nucleus 1°B with 7' =0

model coincides with the values of neutron and mass
radii.

For the better clearness, the triangles formed by
clusters are presented in Fig. 5.

As follows from the results presented in Table 4
and in Fig. 5, nucleus '°B has the most compact con-
figuration in the ground state. For this state, the ex-
perimental value of proton root-mean-square radius
is available and is equal to 2.30 £ 0.12 fm [29], which
agrees well, with regard for experimental errors, with
the theoretical value of 2.23 fm obtained by us. It
is worth noting that, for example, the no-core shell
model with the use of the NN and NN + NNN forces
following from the effective chiral field theory gives
the values of 2.256 fm and 2.197 fm, respectively, for
the root-mean-square radius (see, e.g., [6]). In other
words, the three-particle forces, which are used in the
ab initio calculations in order to correct the situation
with the order of the positions of levels, contract the

Table 4. Mean values of parameters of the triangles
formed by clusters for the bound states of nucleus 1°B
and their proton root-mean-square radii

Radius, fm | J* =31 | J7 =11t | J" =117 | J°* =2%
r(d— aa) 2.630 3.612 3.693 3.369
rla—a) | 3132 3.709 3.252 4138
Ry 2.229 2.502 2.398 2.539
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system. It seems to us that the relative compactness
of the nucleus in the ground state in our case is en-
sured by a sufficiently strong spin-orbit interaction.

Apparently, it is more convenient to use not only
the language of a hyperspherical basis, which we used
in calculations, but also that of a bioscillator ba-
sis (see, e.g., [12, 13]), whose functions are classified
by the quantum numbers ny,l1,no,ls; LM. Here, ng
is the number of oscillator quanta of the excitation
along the Jacobi vector q;, which is associated with
the heights of triangles in our case, l; is the partial
momentum related to the Jacobi vector, ns is the
number of oscillator quanta of the excitation along
the Jacobi vector qs, which is associated with the
bases of triangles, and [l is the partial momentum
related to the second Jacobi vector. In this case, no
and, respectively, lo take only the even values due to
the symmetry of the o — a subsystem. In our case as
a result of the action of the Pauli principle, na,_,, =4
and, respectively, ni_.. = 2, since Npi, = 6, and
N =n; +ny = K+ 2n, in all cases.

It is natural that, in the frame of the same oscil-
lator shell with the given value of principal quan-
tum number, the functions of the mentioned bases
are connected by a unitary transformation as the
eigenfunctions of the same Hamiltonian of a six-
dimensional harmonic oscillator presented in different
variables. In other words, the function of one basis is
a linear combination of functions of another basis on
the given shell.

Both triangles in Fig. 5 corresponding to the states
17 have larger sizes, as compared with the case of
the states 37, and noticeably different shapes. The
first triangle (above on the right) has a larger base
than the second one (below on the left), but its
height is less. The triangle for the first 17 state has
a more regular shape due to, apparently, that this
state is formed almost completely from the wave func-
tion with the total orbital momentum L = 0 and,
hence, mainly from states with the partial momenta
li =1lp =0 (K = 0). The last assertion must be
true by virtue of the commonly known fact that the
interaction of nucleons is manifested most strongly
namely in the s-state, and it is completely confirmed
by our entire experience of three-cluster calculati-
ons. The second J™ = 17T state is formed practically
by 100% from the states with L = 2 and, hence,
mainly from the basis functions with the partial or-
bital momenta (I1,l3) = (2,0), (0,2). Moreover, the
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large role is played namely by the first state and, gen-
erally, by the basis functions corresponding to excita-
tions along the vector q, because this triangle is acu-
te-angled with the acute angle at the vertex, where
the deuteron cluster is placed. From the viewpoint of
hyperspherical variables, this corresponds to the sig-
nificant mean value of angle 5. We note the observed
interesting situation concerning the root-mean-square
radii of the states 1. The state with a higher en-
ergy has a less root-mean-square radius. This is quite
possible in a three-cluster system, because the tough-
nesses of its oscillations along the directions set by
the vectors q; and qo can be very different. The tri-
angle representing the mutual position of clusters in
the 2T -state is obtuse-angled. It has a comparatively
small height, but the elongated base. This allows us
to assume that the formation of the wave function of
the 2T -state involves significantly the wave functions
with ny > 4, i.e., no = 6, 8,.... Apparently, just this
point ensures the relatively large value of root-mean-
square radius of the nucleus in the 2% -state.

It is of interest to determine the oscillator shells,
whose functions contribute most essentially to the
wave functions of states of the spectrum under
study. This situation is illustrated by Fig. 6, where
we present the total weights of functions of each of
the shells, Wgy, depending on some number Ng, con-
nected with the principal oscillator quantum number
by the relation N = 2Ny, + Npin. Here, Ny, = 6
for the positive-parity states of nucleus '°B in corre-
spondence with the filling rule in the oscillator model
of shells, which is the limiting case of our approach
for N = Npin- The plots are artificially cut on the
abscissa axes at the point corresponding to Ny, = 14,
because the weights of each individual shell continu-
ing further would be practically indistinguishable in
the plot.

The results presented in Fig. 6 for the ground state
indicate that a very large contribution (=70%) to its
wave function comes namely from the states with
N = Nupjn = 6, which corresponds to the function
of the oscillator shell model for its lowest shell occu-
pation. This confirms the relative compactness of nu-
cleus 9B in its ground state as compared with other
bound states, whose functions are spread to a greater
degree over higher shells. Respectively, their clusteri-
zation is manifested more strongly, because the num-
ber of quanta of oscillator excitations is gathered due
to the function of the relative motion of clusters. In
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this case, we note that the results presented in Fig. 6
indicate, on the whole, the necessity to consider the
functions of higher shells and, respectively, the clus-
terization in order to describe the properties of bound
states of nucleus °B.

In order to demonstrate the significance of the spin-
orbit forces for the formation of the proper mutual po-
sition of levels of the spectrum of bound states of nu-
cleus 9B once more, we considered the dependence of
their energies on the intensity of the LS-forces. To this
end, we multiply the amplitude of spin-orbit forces,
which was recommended by the authors of the poten-
tial, by the factor fi,g varied in the process of calcula-
tions from 0.5 to 1.1. The results of such calculations
are given in Fig. 7, where the dashed line shows the
lowest breakup threshold %Li+« of the nucleus under
study, from which all energies are reckoned. The dot-
ted lines give the experimental energies of levels, and
the solid lines show the theoretical values of energies
of the states as functions of the quantity frs.

We note at once that the energy of the first state
J™ = 17 obtained by us is practically independent of
the quantity frg, since the results presented in Ta-
ble 2 imply that this state is formed dominantly at
the expense of the state L™ = 07. Respectively, the
spin-orbit splitting itself is practically absent in this
case. The completely different situation is observed
for the state J™ = 3. As was mentioned above, it is
mainly formed on the basis of the state L™ = 2¥. The
state L™ = 3% and even some share of the state
L™ = 47 are involved as well. Moreover, the proper
difference of the energies of the first excited state and
the ground state can be obtained already for a value
of fLs, which exceeds slightly 1. The energies of the
second 17 state and the 2% state decrease also, as frs
increases, but they do not attain yet the experimental
values.

Concluding this section, we present the results of
calculations of the values of the spectroscopic fac-
tors SFy, for the virtual decay of nucleus '°B into
the three-cluster channel o + a4 d. These factors are
the normalizing coefficients of the wave functions of
the relative motion of clusters ¥y, (q1,qs2) under con-
ditions that the total wave function of the state VU is
normalized to 1. The spectroscopic factors SFp, are
determined from the relation

ISEL? =",
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Fig. 6. Total weights Wy}, of the functions of various oscillator
shells in the wave functions of states of the discrete spectrum
of nucleus 1°B as functions of the shell number N, (see the
text)
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Fig. 7. Energies of bound states of nucleus 9B versus the
spin-orbit interaction intensity (see the text)

where the summation is carried out over all quantum
numbers v (see (7)) except for the orbital momen-
tum. We note that the quantities SF can be use-
ful to take approximately the Pauli principle into ac-
count, for example, by processing the experimental
data in the frame of the potential model. To make it,
one needs the results given in Tables 3 and 5, where
the correspondence between the values of quantities
W (L) and SFf, should be noted. The large and small
weights W (L) correspond to the large and small val-
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Table 5. Spectroscopic factors SFp,

and renormalized spectroscopic factors SF,
for the states with L=J — 1, L = J,

and L = J 4+ 1 in the three-particle

channel o + a + d

Jr 3+ 1+ 1+ 2+
SF;_1 | 0.863841 1.698726 0.000055 | 0.000378

SFj 0.151081 0.001033 0.000142 | 1.352742
SFj.1 | 0.016652 0.001012 1.971116 | 0.032111
SFs;_1 | 1.033444 1.386661 | 14.339290 | 4.589016
SF; 1.010086 1.960402 3.467972 | 1.395862
SFjy1 | 1145165 | 17.675393 1.265448 | 1.042262

ues of the spectroscopic factors, respectively, for each
specific value of orbital momentum L. In order to
more adequately describe the influence of the Pauli
principle on each of the states with a given value
of orbital momentum, we introduce the notion of
the renormalized spectroscopic factor, which is con-
nected with the traditional definition by the relation
SFp = SFL/W (L). This definition of the spectro-
scopic factor implies that the component, which is
characterized by the orbital momentum L and the
spin S, of the wave function with the total angular
momentum J, is normalized to 1. Such definition of
the spectroscopic factors reflects more adequately, in
our opinion, the influence of the Pauli principle on
the function of the relative motion of clusters. In this
case, the values of SFj become much more larger
than SFp. It seems to us that this fact allows one
to say, in some cases, about the states superallowed
by the Pauli principle, for which SF, is much more
than 1. It is worth noting that the renormalization
of the spectroscopic factors reveals no almost forbid-
den states, for which SF; < 1. The results of cal-
culations of the quantities SF; and SF with the
collection of input parameters C3 are presented in
Table 5.

4. Conclusions

The spectrum of bound states of nucleus !B is
studied in the frame of a three-cluster microscopic
model. The nucleus has been modeled by the three-
cluster configuration o + a + d. The interaction of
the clusters is given by a semirealistic nucleon-nucleon
potential known as the Minnesota potential in the lit-
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erature. We have studied how the density distribution
of nucleons in the clusters « and d affects the spec-
trum of a compound-nucleus. The variation of the
density distribution of nucleons was carried out due
to the variation of the oscillator length. The effects of
the spin-orbit interaction of nucleons on the structure
of bound states are studied in detail. It is shown that
the spin-orbit interaction affects essentially the spec-
trum of bound states and, depending on the intensity,
can strongly change the mutual position of the levels
of nucleus °B.
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0.B. Hecmepos,
B.C. Bacuaescoruti, T.II. Kosanenxo

CIHEKTP 3B’SI3AHUX CTAHIB s1/IPA 1°B
YV TPUKJIACTEPHIV MIKPOCKOIIIYHIN MOJIEJII

Peszmowme

Y paMKax MiKpPOCKOITIYHOI MOJEJIi — TPUKJIACTEPHOrO BapiaH-
Ta Anrebpaiunol Bepcil Merony Pesonyrouux I'pyn — posris-
HYTO CIeKTp 3B’si3amumx cramis sgpa °B 3 T = 0. V posi
HYKJIOH-HYKJIOHHOT'O ITIOTEHI[iaJly BUKOPHCTOBYBABCsSI HalliBpea-
JICTUYIHUI MOTEHIia, 0 MICTUTE B OOl IIeHTPaJIbHY Ta CIIiH-
opbiTabHy KOMIOHEHTH. TOYHO BpaxoBaHa KyJIOHIBCbKa B3ae€-
Mozisa Mixk mporoHamu. OTpUMaHO MPaBUIILHUI HOPSIOK PiB-
HIB y CHEKTpi, IO JOC/IIIKYETHCsI, PO3yMHE 30iraHHS 3 €KC-
IIEPUMEHTAJIbHUMH JTaHUMU 110 1X PO3MIIIEHHIO BiJHOCHO Haii-
HHUKYOTO IIOpora po3mnaay siapa. JleTagabHO HOCTiIKEeHO POJb
crig-op6iTajabHOl B3aeMo/il y opMyBaHHI CIIEKTPa 3B’sI3aHUX
cranis siapa 10B.
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