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RENORMALIZATION IN QUANTUM FIELD THEORY

Starting from the instant form of relativistic quantum dynamics for a system of interact-
ing fields, where only the Hamiltonian and the boost operators carry interactions among ten
generators of the Poincaré group, we propose a constructive way of ensuring the relativistic
invariance (RI) in quantum field theory (QFT) with cutoffs in the momentum space. Our ap-
proach is based on an opportunity to separate a part in the primary Hamiltonian interaction,
whose density in the Dirac (D) picture is the Lorentz scalar. In this work, we study the compat-
bility of the RI requirements as a whole, i.e., the fulfilment of the well-known commutations
for these generators with the structure of mass counterterms in the total field Hamiltonian.

Keywords: mass renormalization, relativistic invariance, quantum field theory.

1. Introduction

After P. Dirac [1], any relativistic quantum theory
may be so defined that the generator of time trans-
lations (Hamiltonian, H), generators of space trans-
lations (linear momentum, P), space rotations (an-
gular momentum, J), and Lorentz transformations
(boost operator, N) satisfy the Lie-Poincaré commu-
tations. The basic ideas put forward by P. Dirac with
his “front”, “instant,” and “point” forms of the rel-
ativistic dynamics have been realized in many rela-
tivistic quantum mechanical models. In this context,
survey [2]| reflects various aspects and achievements
of relativistic direct interaction theories. Among the
vast literature on this subject, we would like to note
an exhaustive exposition of appealing features of the
relativistic Hamiltonian dynamics in [3] with an em-
phasis on the “light-cone quantization”.

Motivations for our endeavor to contribute to this
area are exposed in [4]. There, in the framework of

© P.A. FROLOV, A.V. SHEBEKO, 2014
1060

the instant form of the relativistic quantum dynam-
ics for a system of interacting fields, we offered an
algebraic method to integrate the Poincaré commu-
tators. We have not employed the Lagrangian formal-
ism with its Noether representation of the generators
for local fields. Our consideration is focused upon var-
ious field models, in which the operator H, being
divided into the no-interaction part Hp and the in-
teraction one H; = [ H(x)dx, has the interaction
density Hj(x) that consists of the scalar Hg.(x) and
nonscalar Hs.(x contributions, viz.,

HI(X) = HSC(X) + Hnsc(x)' (1)

The property to be a scalar means

Up(A)Hyo(2)Up (M) = Hee(Az) Vo = (t,x) 2)

with unitary transformations Up(A) that realize an
irreducible representation of the Lorentz group Lj:
A — Ugp(A) VA € Ly on the corresponding Fock
space F. As usual, for any operator O(x) in the
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Schrodinger (S) picture, there is its counterpart
O(z) = exp(iHpt)O(x)exp(—iHpt) in the D pic-
ture. Such models are typical of the meson theory of
nuclear forces, where one has to consider vector-me-
son exchanges and introduce meson-nucleon vertices
with cutoffs in the momentum space (see, e.g., [5]).

Decomposition (2) is our starting point in con-
structing the boosts in the case of both local field
models (e.g., with derivative couplings and spins >1)
and their nonlocal extensions. The finding of analytic
expressions for them is simplified in the clothed-par-
ticle representation (CPR), in which the so-called bad
terms are simultaneously removed from the Hamil-
tonian and boosts [6-8|, so these operators acquire
the same sparse structure in F. In what follows, we
will show how the mass renormalization terms intro-
duced in the Hamiltonian at the very beginning turn
out to be related to certain covariant integrals that
are convergent in field models with appropriate cutoff
factors.

2. Algebraic Approach
within Hamiltonian Formalism

In this context, let us quote from Chapter VII of
[9]: “..in theories with derivative couplings or spins
j > 1, it is not enough to take Hamiltonian as the
integral over space of a scalar interaction density;
we also need to add nonscalar terms to the inter-
action density to compensate noncovariant terms in
the propagators”. For example, it is the case where
the pseudoscalar (7w and n), vector (p and w), and
scalar (0 and o) meson (boson) fields interact with
the 1/2 spin (N and N) fermion ones via the Yukawa-
type couplings V. = ", Vi = Vi + Vs + V4 in
H; =V + mass and vertex counterterms.

Let us take into account that the first relation in
(11) in [4] is equivalent to [N, H;] = [H,Nj], and
let us consider the operator Hy(t) = [ Hy(z)dx and
its similarity transformation

eiﬂNpHSC(t)e—i,@Np _ /HSC(L(ﬂ)x)d& (3)

where L(f) is any Lorentz transformation with pa-
rameters 3 = (31, 32, 3%) that are related to the ve-
locity of a moving frame, Nz and Nj are the free
and interaction parts of the boost operator N =
= Ny + Nj. One can show [4] that the commutation
[H,N] = P is fulfilled if, along with the Belinfante-
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type relation
N;=Npg=- /XHSC(X)dX, (4)

the interaction density meets the equation

[ xix [ ax (o), Huclo)) = [Hee N (5)

This implies that, in a model with H,, = 0,
we would arrive to the microcausality condition
[Hr(z"), Hr(x)] = 0 for (2' — x)? < 0 at equal times.
But the latter and Eq. (4) may be incompatible.

It forces us to seek an alternative, by introducing
N;=Ng+ D to get

[HF,D] = [NB -‘r-D,HSC]-‘r[NF +Np +D,Hnsc], (6)

which replaces the relation [H,N] = iP and deter-
mines the displacement D. Further, by assuming that
the scalar density Hg.(x) is of the first order in the
coupling constants involved and by putting

Hyse(x) = Z HI(IIS)()I(X)7 (7)

we search the operator D in the form
D=> D", (8)
p=2

i.e., as a perturbation expansion in powers of the in-
teraction Hg.. This leads to the chain of relations

[HF,D(Q)] = [NF>HI(1§2] + [NB>HSC]7 (9)
Hp, DY) = [Np, H] + D), Hy| +

from [Py, D;] = 90k Hunse, (J, k = 1,2, 3), etc. for are-
cursive finding of the operators D®) (p = 2,3,...) (de-
tails in [4], where our results are compared with those
in [10] and [11]). In particular, keeping in mind the
elegant Chandler method and following [12], we note
the property of a formal solution Y of the equation
[Hr,Y] = X to be any linear functional F(X) of a
given operator X # 0 and its useful consequences. In
this context, we recall the proof [6, 7] of the existence
of a solution

Y =—i lim [ X(t)e "dt.

n—0+
0
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3. Application to a Nonlocal Model

As an illustration, we have considered [4] an extension
of the Wentzel model with

HI = ‘/nloc + Ms + Mb7 anoc = Vb + ‘/bTv (13)
in which

dk
V= /vb Ydx = FTG( k)F, : a(k), (14)

v.s. the original local Wentzel model with H; =

= fHI dX = Vioc+Vien, HI( ) Vioc(x)—i—‘/ren(x)a
Vioe (%) = gps(x) : wb( X)Pp(x) 1 Vien(x) = dps -
@2(x) © +0up : P (x)p(x) : and mass shifts S, =
=" (48, — 12)(5s = (43 — 42)) for charged spin

less bosons (neutral scalar ones) or, in the particle
number representation,

%z/%(x)dp/f: FGo(k)Fy

Henceforth, as before [7], we prefer to deal with the
matrix form

[ [

for any 2 x 2 matrix X(p/,p) and the row FJ (p) =
= {bl(p),d(p)} = {Ff(p) FQT(p)} with the commu-
tations [F.(p'), FI(p)] = pod(p’ — p)oere, where

€
Ogle = (—

ca(k).  (15)

X(p',p)Fy(p) = Fy XF

1)s7 16 in the space of charge indices
(e =1,2).

In such notations, the matrix G(k) is composed of
elements

Gs/s(p/apv k) = gE’E(plvpv k)(;(k"‘

+(=1)7p' — (-1)°p), (16)
while Go(k) is obtained from (16) by putting the ¢
coefficients equal to 1 in it. Furthermore, we retain
the property

Ur (M) Vatoe(2) U (A) = Vyjoe(Az) (17)
for our nonlocal interaction density to be the Lorentz
scalar. The latter takes place if the “cutoff” functions
9gere(p',p, k) have the property gorc(Ap’,Ap,Ak) =
= gere(p', p, k). The transition Vioc = Vyloc can be in-
terpreted as an endeavor to regularize the model. In
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the context, the introduction of such functions in the
momentum space is aimed at removing the ultraviolet
divergences typical of local field models with trilin-
ear Yukawa-type interactions. These cutoffs are sub-
ject to the additional constraints imposed by different
symmetries. For example, we mean the invariance of
the Hermitian Vj,o. with respect to i) space inversion
P; ii) time reversal 7, and iii) charge conjugation
Ca which yields gs’s(p/7p7k) = ge’e(p7plak)> g 7é &
gere (', 0, k) = gere(p_,p—,k-) and gui(p',p. k) =
= g22(p', 0, k).

The structure of the “mass renormalization” terms

M, and M,

= [ B

+ma(k)[al (k)at (k=) + a(k)a(k-)]},

a'(k)a(k) +

(18)

My :/22 {ma1(p)b' (p)b(p) + ma2(p)b' (p)d' (p-) +

+ma1(p)b(p)d(p—) + maa(p)d' (p)d(p)},

is prompted with the clothing procedure developed in
[6-8]. In these formulae, the coefficients m 2(k) and
mee(p), being for the time unknown, may be momen-
tum-dependent.

(19)

4. Mass Renormalization
and Relativistic Invariance
as a Whole after Dirac

We have seen [4] how, in the framework of the non-
local meson-boson model, one can build the 2 — 2
interactions between the clothed mesons and bo-
sons. They appear in a natural way from the commu-
tator %[Rnloc, Vialoc] as the operators bfatba, dfalda,
bTotob, bidibd, dididd, bTdTaa, aTatdd of the class
[2.2]. Moreover, this commutator is a spring of the
good operators a'a, b'h, and d'd of the class [1.1] to-
gether with the bad operators aa and bd of the class
[0.2] (henceforth, for brevity, we omit the subscript
“c”) and their Hermitian conjugates aa! and bd of
the class [2.0]. These operators may be cancelled by
the respective counterterms from

Hypse(a) = Mg(a) + Mp(a) (20)

on the r.h.s. of Eq. (159) in [4]. Such a cancellation
gives rise to certain definitions of the mass coefficients
in Egs. (135) and (136) in [4].
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With the help of the same technique as in [7], one
can show that

1
i[RDIOCaVHIOC] aTa)
/ / 951(13 q-,k-)
EpEp_x E + Ep_x +wk
2
+ 912(]93 q*ak) ]aT(k)a(k), (21)

Ep + Ep_x — wk

where ¢ = (Ep—x, p — k). In the same way, we obtain

1
= [Rnloc 5 anoc] (a,a) =

/ /E By kgm(p,q k)ga1(p, g, k_) x

1
+ X
|:Ep + Ep_x + wk Ep +Ep x —wk
x a(k)a(k_) (22)
or
nloca anoc](aa) =
k k_
/ / B, (P, q—, k)g21(p, g, k—) x
x + | a(k)atk) (23)
us+2p—k 2 —2pk |

We recall that the last transition can be done by
means of some trick considered in Appendix A in [7].
Furthermore, assuming that

M (@) + %[Rnloc, Valoc)2mes = 0 (24)
with

[Rutoc, Valoc)2mes = [Rntoc, Valoc] (ala) +

+ [Rutoc, Valoc) (a@) + [Rutoc, Vatoe] (a'al),

we obtain, e.g.,

_ 1 / dp
2 ) EpEp x

912(p, g, k)
Ep + Ep,k — Wk

93 (p, g, k)
Ep + Ep—k + wk

+ (25)
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To facilitate the further analysis following [4],
we propose to handle the cutoffs ge.(p',p, k) =
— v [k + (=1)°'p = (~L)p[k — (1) P + (~1)°p]
that possess necessary properties to reduce simi-
lar triple integrals to simple ones. In particular, we
obtain

m{? (k) = m§? (k) = m{?) =
f2(u3 — 4% — 4p3)

/ t2dt
U )
VA2 M2 A — 2

0

(26)

by putting via(x) = va1(z) = f(z). Our calculation
in [4] with the popular form f(z) = g(A% — pu2)(A%+
+u? — 4p? — 2)~! showed that mg2) values consid-
erably decrease when moving from large A values
(smeared cutoffs) to smaller A’s, i.e., the cutoffs more
localized in the momentum space. It is equivalent to
an effective weakening of the initial nonlocal inter-
action with its coupling constant g. In addition, it
turns out that, at moderate A values ~1 GeV (typi-
cal of the theory of meson-nucleon interactions), the
respective numerical deviations from the free boosts
can be small.

At last, one should emphasize that if one starts
from expansion (7) with the second-order contribu-
tion HIEEZ = 0, then RI would be violated at the be-
ginning because of the obvious discrepancy between
Egs. (9) and (11).

5. Conclusions

We have proposed a way of ensuring RI in QFT with
cutoffs in the momentum space. In contrast to the
traditional approach, where the generators of II are
determined as the Noether integrals of the energy-
momentum density tensor, our purpose is to find
these generators as elements of the Lie algebra of IT
starting from the total Hamiltonian, whose interac-
tion density in the D-picture includes a Lorentz-scalar
part Hy.(x). In this context, using a purely algebraic
means, the boost generators can be decomposed into
the Belinfante operator built up of Hg. and the opera-
tor which accumulates the chain of recursive relations
in the second and higher orders in Hyg.. Thereby, it
becomes clear that the Poincaré commutations are
not fulfilled if the Hamiltonian does not contain some
additional ingredients, which we call mass renorma-
lization terms. We have shown how the method of
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UCTs enables us to determine the corresponding op-
erators for a given model.

We see that our approach is sufficiently flexible, be-
ing applied to the local field models with derivative
couplings and spin j > 1. Its realization shown here
for nonlocal extensions of the well-known Yukawa-
type couplings gives us an encouraging impetus, when
constructing the interactions between clothed parti-
cles simultaneously in the Hamiltonian and the cor-
responding boost operator.

In our opinion, the approach exposed has promising
prospects, e.g., in the theory of decaying states (after
evident refinements), certainly in quantum electrody-
namics, and, we believe, in quantum chromodynamics
as well. Such endeavors are under way.
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I[IEPEHOPMYBAHHS MACH
TA PEJIITUBICTCHKA IHBAPIAHTHICTD
B KBAHTOBII TEOPII I1OJI41

Peszmowme

ITounnarouu 3 MUTTEBOT (POPMU PEIATUBICTCHKOI KBAHTOBOT M-
HaMIKH JIJIsI CHCTEMH B3a€MO/IIOYUX IIOJIB, J€ CEPEJ JIeCATH
reneparopiB rpynu Ilyankape TijibKu ramiJibTOHiaH Ta oIlre-
paropu OycTiB HeCyThb B3a€MOJil, MU IIPOIIOHYEMO KOHCTPY-
KTHUBHUH cII0cib 3abe3medenns peasaTuBicTchbKol inBapianTHOCTI
B KBaHTOBil Teopil 3 dopm-dpakTopaMu B iMIIYJILCHOMY IIPO-
cropi. Ham minxix 3acHOBaHHiT Ha MOXKJINBOCTI BigokpemuTn
B [EepBUHHIN rycruni B3aemonil Hj wacrtuny, sika € JlopeHi-
ckasisipoM. Cutifi miKpecauTH, 10, AKIIO BUXOAUTH 3 BHECKY
JPYTOro MOPAaKY H,gc = 0, TO peIATUBICTCHKA iHBapiaHTHICTH
rnopyuryBajiacdi 6 3 caMOro IO4YaTKy dYepe3 OYEeBHHY HEBiJ-
MOBIAHICTh MiXK KOMYTAIWHUMM CIiBBIJHOIIEHHSMU aJireGpu
ITyaukape.
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