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Starting from the instant form of relativistic quantum dynamics for a system of interact-
ing fields, where only the Hamiltonian and the boost operators carry interactions among ten
generators of the Poincaré group, we propose a constructive way of ensuring the relativistic
invariance (RI) in quantum field theory (QFT) with cutoffs in the momentum space. Our ap-
proach is based on an opportunity to separate a part in the primary Hamiltonian interaction,
whose density in the Dirac (D) picture is the Lorentz scalar. In this work, we study the compat-
ibility of the RI requirements as a whole, i.e., the fulfilment of the well-known commutations
for these generators with the structure of mass counterterms in the total field Hamiltonian.
K e yw o r d s: mass renormalization, relativistic invariance, quantum field theory.

1. Introduction

After P. Dirac [1], any relativistic quantum theory
may be so defined that the generator of time trans-
lations (Hamiltonian, 𝐻), generators of space trans-
lations (linear momentum, P), space rotations (an-
gular momentum, J), and Lorentz transformations
(boost operator, N) satisfy the Lie–Poincaré commu-
tations. The basic ideas put forward by P. Dirac with
his “front”, “instant,” and “point” forms of the rel-
ativistic dynamics have been realized in many rela-
tivistic quantum mechanical models. In this context,
survey [2] reflects various aspects and achievements
of relativistic direct interaction theories. Among the
vast literature on this subject, we would like to note
an exhaustive exposition of appealing features of the
relativistic Hamiltonian dynamics in [3] with an em-
phasis on the “light-cone quantization”.

Motivations for our endeavor to contribute to this
area are exposed in [4]. There, in the framework of
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the instant form of the relativistic quantum dynam-
ics for a system of interacting fields, we offered an
algebraic method to integrate the Poincaré commu-
tators. We have not employed the Lagrangian formal-
ism with its Noether representation of the generators
for local fields. Our consideration is focused upon var-
ious field models, in which the operator 𝐻, being
divided into the no-interaction part 𝐻𝐹 and the in-
teraction one 𝐻𝐼 =

∫︀
𝐻𝐼(x)𝑑x, has the interaction

density 𝐻𝐼(x) that consists of the scalar 𝐻sc(x) and
nonscalar 𝐻nsc(x contributions, viz.,

𝐻𝐼(x) = 𝐻sc(x) +𝐻nsc(x). (1)

The property to be a scalar means

𝑈𝐹 (Λ)𝐻sc(𝑥)𝑈
−1
𝐹 (Λ) = 𝐻sc(Λ𝑥) ∀𝑥 = (𝑡,x) (2)

with unitary transformations 𝑈𝐹 (Λ) that realize an
irreducible representation of the Lorentz group 𝐿+:
Λ → 𝑈𝐹 (Λ) ∀Λ ∈ 𝐿+ on the corresponding Fock
space ℱ . As usual, for any operator 𝑂(x) in the
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Schrödinger (S) picture, there is its counterpart
𝑂(𝑥) = exp(𝑖𝐻𝐹 𝑡)𝑂(x) exp(−𝑖𝐻𝐹 𝑡) in the D pic-
ture. Such models are typical of the meson theory of
nuclear forces, where one has to consider vector-me-
son exchanges and introduce meson-nucleon vertices
with cutoffs in the momentum space (see, e.g., [5]).

Decomposition (2) is our starting point in con-
structing the boosts in the case of both local field
models (e.g., with derivative couplings and spins ≥1)
and their nonlocal extensions. The finding of analytic
expressions for them is simplified in the clothed-par-
ticle representation (CPR), in which the so-called bad
terms are simultaneously removed from the Hamil-
tonian and boosts [6–8], so these operators acquire
the same sparse structure in ℱ . In what follows, we
will show how the mass renormalization terms intro-
duced in the Hamiltonian at the very beginning turn
out to be related to certain covariant integrals that
are convergent in field models with appropriate cutoff
factors.

2. Algebraic Approach
within Hamiltonian Formalism

In this context, let us quote from Chapter VII of
[9]: “... in theories with derivative couplings or spins
𝑗 ≥ 1, it is not enough to take Hamiltonian as the
integral over space of a scalar interaction density;
we also need to add nonscalar terms to the inter-
action density to compensate noncovariant terms in
the propagators”. For example, it is the case where
the pseudoscalar (𝜋 and 𝜂), vector (𝜌 and 𝜔), and
scalar (𝛿 and 𝜎) meson (boson) fields interact with
the 1/2 spin (𝑁 and �̄�) fermion ones via the Yukawa-
type couplings 𝑉 =

∑︀
𝑏 𝑉𝑏 = 𝑉𝑠 + 𝑉𝑝𝑠 + 𝑉v in

𝐻𝐼 = 𝑉 + mass and vertex counterterms.
Let us take into account that the first relation in

(11) in [4] is equivalent to [N𝐹 , 𝐻𝐼 ] = [𝐻,N𝐼 ], and
let us consider the operator 𝐻sc(𝑡) =

∫︀
𝐻sc(𝑥)𝑑x and

its similarity transformation

𝑒𝑖𝛽N𝐹𝐻sc(𝑡)𝑒
−𝑖𝛽N𝐹 =

∫︁
𝐻sc(𝐿(𝛽)𝑥)𝑑x, (3)

where 𝐿(𝛽) is any Lorentz transformation with pa-
rameters 𝛽 = (𝛽1, 𝛽2, 𝛽3) that are related to the ve-
locity of a moving frame, N𝐹 and N𝐼 are the free
and interaction parts of the boost operator N =
= N𝐹 +N𝐼 . One can show [4] that the commutation
[𝐻,N] = 𝑖P is fulfilled if, along with the Belinfante-

type relation

N𝐼 = N𝐵 ≡ −
∫︁

x𝐻sc(x)𝑑x, (4)

the interaction density meets the equation∫︁
x𝑑x

∫︁
𝑑x′[𝐻sc(x

′), 𝐻sc(x)] = [𝐻nsc.N], (5)

This implies that, in a model with 𝐻nsc = 0,
we would arrive to the microcausality condition
[𝐻𝐼(𝑥

′), 𝐻𝐼(𝑥)] = 0 for (𝑥′ − 𝑥)2 ≤ 0 at equal times.
But the latter and Eq. (4) may be incompatible.

It forces us to seek an alternative, by introducing
N𝐼 = N𝐵 +D to get

[𝐻𝐹 ,D] = [N𝐵 +D, 𝐻sc]+ [N𝐹 +N𝐵 +D, 𝐻nsc], (6)

which replaces the relation [𝐻,N] = 𝑖P and deter-
mines the displacement D. Further, by assuming that
the scalar density 𝐻sc(x) is of the first order in the
coupling constants involved and by putting

𝐻nsc(x) =

∞∑︁
𝑝=2

𝐻(𝑝)
nsc(x), (7)

we search the operator D in the form

D =

∞∑︁
𝑝=2

D(𝑝), (8)

i.e., as a perturbation expansion in powers of the in-
teraction 𝐻sc. This leads to the chain of relations

[𝐻𝐹 ,D
(2)] = [N𝐹 , 𝐻

(2)
nsc] + [N𝐵 , 𝐻sc], (9)

𝐻𝐹 ,D
(3)] = [N𝐹 , 𝐻

(3)
nsc] + [D(2), 𝐻sc] +

+ [[N𝐵 , 𝐻
(2)
nsc], ..., (10)

[𝑃𝑘, 𝐷
(𝑝)
𝑗 ] = 𝑖𝛿𝑘𝑗𝐻

(𝑝)
nsc (𝑝 = 2, 3, ...) (11)

from [𝑃𝑘, 𝐷𝑗 ] = 𝑖𝛿𝑘𝑗𝐻nsc, (𝑗, 𝑘 = 1, 2, 3), etc. for a re-
cursive finding of the operators D(𝑝) (𝑝 = 2, 3, ...) (de-
tails in [4], where our results are compared with those
in [10] and [11]). In particular, keeping in mind the
elegant Chandler method and following [12], we note
the property of a formal solution 𝑌 of the equation
[𝐻𝐹 , 𝑌 ] = 𝑋 to be any linear functional 𝐹 (𝑋) of a
given operator 𝑋 ̸= 0 and its useful consequences. In
this context, we recall the proof [6, 7] of the existence
of a solution

𝑌 = −𝑖 lim
𝜂→0+

∞∫︁
0

𝑋(𝑡)𝑒−𝜂𝑡𝑑𝑡. (12)
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3. Application to a Nonlocal Model

As an illustration, we have considered [4] an extension
of the Wentzel model with

𝐻𝐼 = 𝑉nloc +𝑀𝑠 +𝑀𝑏, 𝑉nloc = 𝑉𝑏 + 𝑉 †
𝑏 , (13)

in which

𝑉𝑏 =

∫︁
𝑉𝑏(x)𝑑x =

∫︁
𝑑k

𝜔k
: 𝐹 †

𝑏𝐺(𝑘)𝐹𝑏 : 𝑎(𝑘), (14)

v.s. the original local Wentzel model with 𝐻𝐼 =
=

∫︀
𝐻𝐼(x)𝑑x = 𝑉loc+𝑉ren, 𝐻𝐼(x) = 𝑉loc(x)+𝑉ren(x),

𝑉loc(x) = 𝑔𝜙𝑠(x) : 𝜓†
𝑏(x)𝜓𝑏(x) :, 𝑉ren(x) = 𝛿𝜇𝑠 :

𝜙2
𝑠(x) : +𝛿𝜇𝑏 : 𝜓†

𝑏(x)𝜓𝑏(x) : and mass shifts 𝛿𝜇𝑠 =
= 1

2 (𝜇
2
0𝑠 − 𝜇2

𝑠)(𝛿𝜇𝑏 = (𝜇2
0𝑏 − 𝜇2

𝑏)) for charged spin-
less bosons (neutral scalar ones) or, in the particle
number representation,

𝑉𝑏 =

∫︁
𝑉𝑏(x)𝑑x =

∫︁
𝑑k

𝜔k
: 𝐹 †

𝑏𝐺0(𝑘)𝐹𝑏 : 𝑎(𝑘). (15)

Henceforth, as before [7], we prefer to deal with the
matrix form∫︁

𝑑p′

𝐸p′

∫︁
𝑑p

𝐸p
𝐹 †
𝑏 (𝑝

′)𝑋(𝑝′, 𝑝)𝐹𝑏(𝑝) ≡ 𝐹 †
𝑏𝑋𝐹𝑏

for any 2 × 2 matrix 𝑋(𝑝′, 𝑝) and the row 𝐹 †
𝑏 (𝑝) =

= {𝑏†(𝑝), 𝑑(𝑝)} ≡
{︀
𝐹 †
1 (𝑝), 𝐹

†
2 (𝑝)

}︀
with the commu-

tations [𝐹𝜀′(𝑝
′), 𝐹 †

𝜀 (𝑝)] = 𝑝0𝛿(p
′ − p)𝜎𝜀′𝜀, where

𝜎𝜀′𝜀 = (−1)𝜀−1𝛿𝜀′𝜀 in the space of charge indices
(𝜀′, 𝜀 = 1, 2).

In such notations, the matrix 𝐺(𝑘) is composed of
elements

𝐺𝜀′𝜀(𝑝
′, 𝑝, 𝑘) = 𝑔𝜀′𝜀(𝑝

′, 𝑝, 𝑘)𝛿
(︀
k+

+(−1)𝜀
′
p′ − (−1)𝜀p

)︀
, (16)

while 𝐺0(𝑘) is obtained from (16) by putting the 𝑔
coefficients equal to 1 in it. Furthermore, we retain
the property

𝑈𝐹 (Λ)𝑉nloc(𝑥)𝑈
−1
𝐹 (Λ) = 𝑉nloc(Λ𝑥) (17)

for our nonlocal interaction density to be the Lorentz
scalar. The latter takes place if the “cutoff” functions
𝑔𝜀′𝜀(𝑝

′, 𝑝, 𝑘) have the property 𝑔𝜀′𝜀(Λ𝑝
′,Λ𝑝,Λ𝑘) =

= 𝑔𝜀′𝜀(𝑝
′, 𝑝, 𝑘). The transition 𝑉loc ⇒ 𝑉nloc can be in-

terpreted as an endeavor to regularize the model. In

the context, the introduction of such functions in the
momentum space is aimed at removing the ultraviolet
divergences typical of local field models with trilin-
ear Yukawa-type interactions. These cutoffs are sub-
ject to the additional constraints imposed by different
symmetries. For example, we mean the invariance of
the Hermitian 𝑉nloc with respect to i) space inversion
𝒫; ii) time reversal 𝒯 , and iii) charge conjugation
𝒞, which yields 𝑔𝜀′𝜀(𝑝′, 𝑝, 𝑘) = 𝑔𝜀′𝜀(𝑝, 𝑝

′, 𝑘), 𝜀′ ̸= 𝜀,
𝑔𝜀′𝜀(𝑝

′, 𝑝, 𝑘) = 𝑔𝜀′𝜀(𝑝
′
−, 𝑝−, 𝑘−) and 𝑔11(𝑝

′, 𝑝, 𝑘) =
= 𝑔22(𝑝

′, 𝑝, 𝑘).
The structure of the “mass renormalization” terms

𝑀𝑠 and 𝑀𝑏,

𝑀𝑠 =

∫︁
𝑑k

𝜔2
k

{𝑚1(𝑘)𝑎
†(𝑘)𝑎(𝑘)+

+𝑚2(𝑘)[𝑎
†(𝑘)𝑎†(𝑘−) + 𝑎(𝑘)𝑎(𝑘−)]}, (18)

𝑀𝑏 =

∫︁
𝑑p

𝐸2
p

{𝑚11(𝑝)𝑏
†(𝑝)𝑏(𝑝) +𝑚12(𝑝)𝑏

†(𝑝)𝑑†(𝑝−)+

+𝑚21(𝑝)𝑏(𝑝)𝑑(𝑝−) +𝑚22(𝑝)𝑑
†(𝑝)𝑑(𝑝)}, (19)

is prompted with the clothing procedure developed in
[6–8]. In these formulae, the coefficients 𝑚1,2(𝑘) and
𝑚𝜀′𝜀(𝑝), being for the time unknown, may be momen-
tum-dependent.

4. Mass Renormalization
and Relativistic Invariance
as a Whole after Dirac

We have seen [4] how, in the framework of the non-
local meson-boson model, one can build the 2 → 2
interactions between the clothed mesons and bo-
sons. They appear in a natural way from the commu-
tator 1

2 [𝑅nloc, 𝑉nloc] as the operators 𝑏†𝑎†𝑏𝑎, 𝑑†𝑎†𝑑𝑎,
𝑏†𝑏†𝑏𝑏, 𝑏†𝑑†𝑏𝑑, 𝑑†𝑑†𝑑𝑑, 𝑏†𝑑†𝑎𝑎, 𝑎†𝑎†𝑏𝑑 of the class
[2.2]. Moreover, this commutator is a spring of the
good operators 𝑎†𝑎, 𝑏†𝑏, and 𝑑†𝑑 of the class [1.1] to-
gether with the bad operators 𝑎𝑎 and 𝑏𝑑 of the class
[0.2] (henceforth, for brevity, we omit the subscript
“c”) and their Hermitian conjugates 𝑎†𝑎† and 𝑏†𝑑† of
the class [2.0]. These operators may be cancelled by
the respective counterterms from

𝐻nsc(𝛼) =𝑀𝑠(𝛼) +𝑀𝑏(𝛼) (20)

on the r.h.s. of Eq. (159) in [4]. Such a cancellation
gives rise to certain definitions of the mass coefficients
in Eqs. (135) and (136) in [4].
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With the help of the same technique as in [7], one
can show that

1

2
[𝑅nloc, 𝑉nloc](𝑎

†𝑎) =

= −1

2

∫︁
𝑑k

𝜔2
k

∫︁
𝑑p

𝐸p𝐸p−k
[
𝑔221(𝑝, 𝑞−, 𝑘−)

𝐸p + 𝐸p−k + 𝜔k
+

+
𝑔212(𝑝, 𝑞−, 𝑘)

𝐸p + 𝐸p−k − 𝜔k
]𝑎†(𝑘)𝑎(𝑘), (21)

where 𝑞 = (𝐸p−k,p−k). In the same way, we obtain

1

2
[𝑅nloc, 𝑉nloc](𝑎𝑎) =

= −1

2

∫︁
𝑑k

𝜔2
k

∫︁
𝑑p

𝐸p𝐸p−k
𝑔12(𝑝, 𝑞−, 𝑘)𝑔21(𝑝, 𝑞−, 𝑘−)×

×
[︂

1

𝐸p + 𝐸p−k + 𝜔k
+

1

𝐸p + 𝐸p−k − 𝜔k

]︂
×

× 𝑎(𝑘)𝑎(𝑘−) (22)

or

1

2
[𝑅nloc, 𝑉nloc](𝑎𝑎) =

=

∫︁
𝑑k

𝜔2
k

∫︁
𝑑p

𝐸p
𝑔12(𝑝, 𝑞−, 𝑘)𝑔21(𝑝, 𝑞−, 𝑘−)×

×
[︂

1

𝜇2
𝑠 + 2𝑝−𝑘

+
1

𝜇2
𝑠 − 2𝑝𝑘

]︂
𝑎(𝑘)𝑎(𝑘−). (23)

We recall that the last transition can be done by
means of some trick considered in Appendix A in [7].

Furthermore, assuming that

𝑀 (2)
𝑠 (𝛼) +

1

2
[𝑅nloc, 𝑉nloc]2mes = 0 (24)

with

[𝑅nloc, 𝑉nloc]2mes = [𝑅nloc, 𝑉nloc](𝑎
†𝑎)+

+ [𝑅nloc, 𝑉nloc](𝑎𝑎) + [𝑅nloc, 𝑉nloc](𝑎
†𝑎†),

we obtain, e.g.,

𝑚
(2)
1 (𝑘) =

1

2

∫︁
𝑑p

𝐸p𝐸p−k

[︃
𝑔221(𝑝, 𝑞−, 𝑘−)

𝐸p + 𝐸p−k + 𝜔k
+

+
𝑔212(𝑝, 𝑞−, 𝑘)

𝐸p + 𝐸p−k − 𝜔k

]︃
. (25)

To facilitate the further analysis following [4],
we propose to handle the cutoffs 𝑔𝜀′𝜀(𝑝

′, 𝑝, 𝑘) =
= 𝑣𝜀′𝜀([𝑘+(−1)𝜀

′
𝑝′− (−1)𝜀𝑝][𝑘− (−1)𝜀

′
𝑝′+(−1)𝜀𝑝])

that possess necessary properties to reduce simi-
lar triple integrals to simple ones. In particular, we
obtain

𝑚
(2)
1 (𝑘) = 𝑚

(2)
2 (𝑘) ≡ 𝑚(2)

𝑠 =

= 8𝜋

∞∫︁
0

𝑡2𝑑𝑡√︀
𝑡2 + 𝜇2

𝑏

𝑓2(𝜇2
𝑠 − 4𝑡2 − 4𝜇2

𝑏)

4𝑡2 + 4𝜇2
𝑏 − 𝜇2

𝑠

, (26)

by putting 𝑣12(𝑥) = 𝑣21(𝑥) = 𝑓(𝑥). Our calculation
in [4] with the popular form 𝑓(𝑥) = 𝑔(Λ2 − 𝜇2

𝑠)(Λ
2+

+𝜇2
𝑠 − 4𝜇2

𝑏 − 𝑥)−1 showed that 𝑚(2)
𝑠 values consid-

erably decrease when moving from large Λ values
(smeared cutoffs) to smaller Λ’s, i.e., the cutoffs more
localized in the momentum space. It is equivalent to
an effective weakening of the initial nonlocal inter-
action with its coupling constant 𝑔. In addition, it
turns out that, at moderate Λ values ∼1 GeV (typi-
cal of the theory of meson-nucleon interactions), the
respective numerical deviations from the free boosts
can be small.

At last, one should emphasize that if one starts
from expansion (7) with the second-order contribu-
tion 𝐻

(2)
nsc = 0, then RI would be violated at the be-

ginning because of the obvious discrepancy between
Eqs. (9) and (11).

5. Conclusions

We have proposed a way of ensuring RI in QFT with
cutoffs in the momentum space. In contrast to the
traditional approach, where the generators of Π are
determined as the Noether integrals of the energy-
momentum density tensor, our purpose is to find
these generators as elements of the Lie algebra of Π
starting from the total Hamiltonian, whose interac-
tion density in the D-picture includes a Lorentz-scalar
part 𝐻sc(𝑥). In this context, using a purely algebraic
means, the boost generators can be decomposed into
the Belinfante operator built up of 𝐻sc and the opera-
tor which accumulates the chain of recursive relations
in the second and higher orders in 𝐻nsc. Thereby, it
becomes clear that the Poincaré commutations are
not fulfilled if the Hamiltonian does not contain some
additional ingredients, which we call mass renorma-
lization terms. We have shown how the method of
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UCTs enables us to determine the corresponding op-
erators for a given model.

We see that our approach is sufficiently flexible, be-
ing applied to the local field models with derivative
couplings and spin 𝑗 ≥ 1. Its realization shown here
for nonlocal extensions of the well-known Yukawa-
type couplings gives us an encouraging impetus, when
constructing the interactions between clothed parti-
cles simultaneously in the Hamiltonian and the cor-
responding boost operator.

In our opinion, the approach exposed has promising
prospects, e.g., in the theory of decaying states (after
evident refinements), certainly in quantum electrody-
namics, and, we believe, in quantum chromodynamics
as well. Such endeavors are under way.
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ПЕРЕНОРМУВАННЯ МАСИ
ТА РЕЛЯТИВIСТСЬКА IНВАРIАНТНIСТЬ
В КВАНТОВIЙ ТЕОРIЇ ПОЛЯ

Р е з ю м е

Починаючи з миттєвої форми релятивiстської квантової ди-
намiки для системи взаємодiючих полiв, де серед десяти
генераторiв групи Пуанкаре тiльки гамiльтонiан та опе-
ратори бустiв несуть взаємодiї, ми пропонуємо констру-
ктивний спосiб забезпечення релятивiстської iнварiантностi
в квантовiй теорiї з форм-факторами в iмпульсному про-
сторi. Наш пiдхiд заснований на можливостi вiдокремити
в первиннiй густинi взаємодiї 𝐻𝐼 частину, яка є Лоренц-
скаляром. Слiд пiдкреслити, що, якщо виходити з внеску
другого порядку 𝐻

(2)
nsc = 0, то релятивiстська iнварiантнiсть

порушувалася б з самого початку через очевидну невiд-
повiднiсть мiж комутацiйними спiввiдношеннями алгебри
Пуанкаре.
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