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TRANSFORMATION

The dispersion laws of coupled magnetoelastic waves have been calculated for all ground states
of a ferromagnet with the cubic symmetry. It is shown that the magnetoelastic interaction with
the first transverse sound takes place for all equilibrium directions of the magnetization vec-
tor. The obtained dispersion laws testify that the magnetoelastic interaction coefficient depends
on the magnetization and wave vector directions. The quantitative calculations of the disper-
sion relations for the shape memory alloy Ni-Mn—Ga are made on the basis of the obtained
results. The results of research demonstrate that a decrease in the elastic modulus gives rise
to an appreciably stronger magnetoelastic interaction.

Keywords: magnetoelastic interaction, dispersion law, cubic ferromagnet, shape memory

alloy, elastic modulus.

1. Introduction

Magnetoelastic waves have been studied for many
years [1,2], and the phenomenological model for their
description is well developed [3,4]. Nowadays, the
study of the interaction between the magnetic and
elastic subsystems gets a new impetus owing to nu-
merous experiments [5-8] with magnetically ordered
systems, in which such interaction can be rather
strong. It is well known that the magnetoelastic in-
teraction increases, as such systems approach spin-
reorientation phase transitions [4, 9]. This fact in-
duced the active researches of coupled magnetoe-
lastic waves at phase transformations of different
types.

Recently, the so-called structural phase transi-
tions have been the objects of intense researches ow-
ing to their crucial role in such effects as supere-
lasticity and shape memory. Of special interest are
the so-called “martensitic transformations” and the
structural phase transitions of the first kind from a
highly symmetric structure into a low symmetric de-
formed one, which take place at low temperatures
[5-8]. In materials with those phase transitions, the
phenomenon of giant magnetostriction was discov-
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ered, which is governed by a drastic decrease of the
elastic energy in vicinities of martensitic transfor-
mations [10]. It is the interaction between the mag-
netic subsystem and elastic waves that plays the key
role in this phenomenon. In work [11], the influence
of such interaction on one of the elastic moduli of
a cubic ferromagnet with shape memory was cal-
culated. However, the experimental data [5, 7] tes-
tify that the relevant theoretical calculations are ex-
tremely necessary for other elastic moduli as well,
because they also appreciably change at martensitic
phase transitions.

2. Dispersion Laws for Coupled
Magnetoelastic Waves in a Cubic
Ferromagnet

Consider a ferromagnet with cubic symmetry. For the
description of the interaction between spin and elastic
waves, the total energy density in a cubic crystal can
be presented in the form

F=Fy+F.+ Fpe. (1)

The first term in expression (1) is the magnetic part
of the energy density. In the case of cubic symmetry,
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it looks like [3]

adp Op 2 2 2 2 2 2
F,==-PF K

2 95, 90, T 1 (Hopy + pop? + pops) +
+ KopZpi s — MH, (2)

where «a is the inhomogeneous exchange interaction
constant; K7 and K5 are the constants of magnetic
anisotropy in the cubic ferromagnet; M and H are the
vectors of magnetization and external magnetic field,
respectively; yu = % is the normalized magnetization
vector (since the constants in expression (2) have the
dimensionality of energy), and Mj is the saturation
magnetization. The energy of demagnetizing fields is
neglected in Eq. (2), because we do not consider the
specific shape of a ferromagnetic specimen.

The energy density of elastic deformations looks
like [12,13]

3 1
F, = 5(011 + 2012)’&% + 60/(’&% + u%) +

+ 2C’44(UZ + ug + ug) (3)

Here, the quantities C11, Ci2, Cyq, and C’ = (Cy1 —
—C12)/2 are the elastic moduli of the second order
of the crystal with cubic symmetry. The variables
uy = % (E:vw + Eyy + Ezz)a Uz = \/E(Ea:x - Eyy)a
us = (2Ezz — By — Eyy); Ug = % (Eyz + Ezy)7 Us =
= 1 (E;. + E..), and ug = 3 (Eyy + Ey;) are the lin-
ear combinations of strain tensor components, which
are transformed according to the one- (up), two-
(uz and wug), and three-dimensional (u4, us, and ug)
irreducible representations of the crystal symmetry
group.

The third term in Eq. (1) corresponds to the energy
density for the interaction between the magnetic and
elastic subsystems [13],

Fre = —=0oun (5 + piy + p2) —
— 01 {V/Bua (2 — 1) + us(2u? — 2 — pg)} —

— 0o (Ua iy iz + Usfigfiz + Ushiafly), (4)

where the constants Jg, d1, and Jo describe the mag-
netoelastic interaction.

From the minimization condition for the magnetic
part of the energy, it is easy to show that there are
three ground states for the magnetization vector in
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the cubic ferromagnet in the absence of an external
magnetic field (H = 0): along the fourth-order axis,
M ||| (001), phase 1; along the diagonal of one of the
cube edges, M ||| (101), phase 2; and along the spatial
cube diagonal, M ||| (111), phase 3; every other possi-
ble direction of the magnetic moment is equivalent to
one of those given above. In real experiments aimed
at the study of the elastic and magnetic properties of
materials [5-8], the external magnetic field direction
coincides with one of the indicated directions of the
magnetic moment, and the magnitude of H is rather
large (~1000 Oe). Hence, M in equilibrium can be
considered as directed along one of those directions.

We consider small adiabatic oscillations of the mag-
netic moment density g in the ferromagnet [3]. Ac-
cordingly, we can write

u(r,t) = po +m(r,t), (5)

where m(r,t) stands for small deviations from the
equilibrium pg-value as a result of fluctuations, and
the equilibrium value of magnetization vector has
the following components: po = (0,0, 1) in phase 1,
o = (%,0, %) in phase 2, and pg = (%, %, %)
in phase 3. Using the condition 0F/0E;; = 0, we can
obtain the equilibrium values EY;, of the strain tensor
components for the ground states of a cubic ferromag-
net (below, the corresponding expressions are given
for each ground state of a cubic ferromagnet). Hence,
every strain tensor component can also be written as
the sum of a homogeneous part and a small deviation
from it,

Eir = Egk + €ik- (6)

The inhomogeneous part of the elastic strain tensor
can be expressed in terms of the vector of particle
displacement U, using the formula [4]

_ 1 /0U; Uy
fik =5 <8sck i axi)' Q

In order to obtain the dispersion laws for coupled
magnetoelastic waves in all ground states of a cubic
ferromagnet, let us use the dynamic equations for the
magnetization vector p (the Landau-Lifshitz equa-
tions) and the particle displacement vector U [3, 4],

om

-, — He 5
5 Yo X Hegr (8)
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.. oF

U=-— 9
p 50 (9)
where Heg = —g—i is an effective magnetic field,

the gyromagnetic ratio, and p the density. We should
expand the total energy density in a series in small
deviations m; and e, substitute it into Egs. (8) and
(9), and linearize them.

It is well known [14] that the following elastic
waves can propagate in a crystal with cubic sym-
metry: longitudinal waves with s, = Ci1/p and
s, = (C11+C12+2C44)/2p, where s;1 and s;2 are the
velocities of the first and second longitudinal sounds,
respectively; and transverse waves with s, = Cy4/p,
s2, = C'/p, where s;; and sy are the velocities of the
first and second transverse sounds, respectively. The
first transverse sound can be described in the cases of
two directions of the wave vector of elastic vibrations
[14]: along the fourth-order axis and along the cube
face diagonal. Hence, for definiteness, let us consider
the directions k || (100) and k || (110).

Let us change in Eqgs. (8) and (9) to the Fourier
components with respect to the time t and the co-
ordinates r in the case of small deviations, m =
= mgexp {i(kr — wt)} and U = Ug exp {i(kr — wt)},
where w is the frequency, and k the wave vector of
collective waves. Then Eqs. (8) and (9) give rise to
a system of six equations for the components of the
vectors mg and Ug. From the condition that the de-
terminant of this system equals zero, we obtain the
dispersion laws for coupled magnetoelastic waves in
the ground states of a cubic ferromagnet.

Below, we present the results obtained for each
ground state.

Phase 1: H | M || (001).

The equilibrium values of strain tensor compo-
nents are

1) 20
Eo — E.o — 0 o 1 ’
o Yo 3(Ch +2C12)  Chi—Che
0o 461
Egz - + )
3(C11 +2C12)  Ci1—Cha

O _ 0 _ 0 _ 0 _ 0 _ 0 __
Ezz - Ezz - Eyz - Ezy - Ezy - ny =0.
Case k || (100):

W — AR — R [(aﬂ ) x

2[.2
< = MGu) - 6 {222
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(10)

Case k || (110):

(W = SHE)W — k) [(aﬂ 2K x
2k2
X (w? = Miwp,y) — 03 {w’”ljp H = 0.

In expressions (10) and (11), the notation w,; =
ak? /M + H/My + 2K1 /Mg + 7263 /MZ(C11 — C12)
was used.

Phase 2: H || M || (101).

The equilibrium values of strain tensor compo-
nents are

(11)

do 01

EY) =E = + ,
e #3(Cii+2C12)  Cii—Che
P
Yo 3(Ci1 +2C12)  Cyp —Cho’
02
B0 _ g0 _
xrz zxT 8044’

0 _ 0 _ 0 _ 0 _
B0, = F°, = B, = E%, =0
Case k || (100):
(W = k) [w 2R — SR

2 2972
— Y Mywmawms) —

3602y k>
~op {FemE 2 ) -

21.2
Wm37 k
g o el <o

Case k || (110):
(w? = s k?)(w?

18wmay?k?
x (W= y? MEWmawms) (53{ Bomay (w2—sflk2)><

X (w

- S?ka)(w2 - 3122k2) X

2 (512 + 3t2 3Wm3’Y _ 2
X (w 5 } 62 { 16 (w?— 5% k%) x
x(w? — (st _;231&1)]{2)} (13)

In expressions (12) and (13), the notations

Wma = ak? /ME + H/My + K, /M3 +

+ Ko /2M§ + 3667 /MG (C11 — Cha) + 65 /8Mg Caa,
Wiz = ak? /M + H/My — 2K, /Mg + 63 /AMZClyy.
were used.

1009



A.G. Danilevich

Coefficient of magnetoelastic interaction

with the first transverse sound in various ground states of a cubic ferromagnet

Wavevector Phase 1: H||M]||(001) Phase 2: H||M]||(101) Phase 3: H||M]||(111)
direction wsw = YMowm1 Wsw = Mo (wmawms)'/? wsw = YMowma
2,2 2.2 2,2
Kk||(100) g:% g:% 5:%
m 2]€2 m 2k22 m 2](72
K|[(110) €= “mil = § = =g § = smig

Phase 3: H || M || (111).
The equilibrium values of strain tensor components
are
do
E) =E) =E), = ——————,
TT Yy 2z 3(011 4 2012)
B, =E) =FE),=E% =F% =FE) =

yz 2y zy yz

2
12C4s

Case k || (100):
(W — k) [w AW — SR x
21.2
X (W — 72 MER) — 8 {32“””” (W k)} -
P

2]€2

—(52 Wma?Y 2 2]€2 = 0.
3 {9;) (W S )

Case k || (110):

(w? = s k) (W? — s{k%) (w? — sipk?) x

{32“0771472]{;2 %

(14)

2 27172 2
X (W =" Mywy,,y

) — 03
2 | 2
x (w? — s2,k?)(w? — (3512+8t2)k2)}_

4
(siz +2s3) k2)} B

21.2
wm Yk
—ap{em e - e - PR

12p

27.2
_ @@{W(w — 2R — s§2k2)} —0. (15)
In expressions (14) and (15), the notation wy,y =
+ 063 /4AM3Cyy was used.

Hence, expressions (10)—(15) are the dispersion
laws for coupled magnetoelastic waves in a ferro-
magnet with cubic symmetry presented in the gen-
eral form. Those dispersion equations are standard
by their form [3, 4]. If the magnetoelastic interaction
is neglected (6; — 0), they split into the classical dis-
persion laws for spin waves [3] and elastic waves in
cubic crystals [14].
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3. First Transverse
Sound for a Shape Memory Alloy

The influence of the magnetic subsystem on the first
transverse sound and, accordingly, on the elastic
modulus Cyy can be described, by considering the
magnetoacoustic resonance at the frequency wpn =
= (Cy4/p)"/?k. In this case, the dispersion laws (10)—
(15) transform into a dispersion equation, which has
the following general form for all ground states and
wave vector directions:

(w? = wpp)(w? — wiy) — 056 = 0. (16)

Here, ws,, is the spin wave frequency, and & the co-
efficient of magnetoelastic interaction. Their specific
values (see Table) depend on the direction of the fer-
romagnet magnetic moment and the direction of the
wave vector of collective waves, and are presented in
Table. The solution of Eq. (16) looks like

1
Wl = 5 {d +wd, £ 14663 + (Wh — w2)T2) (17)

This dispersion law consists of two branches: qua-
simagnon and quasiphonon ones (see Fig. 1). From
Eq. (17), it is easy to see that, as the system approa-
ches the magnetoacoustic resonance (wsw — wph), it is
the quantities £ and 5 that determine the “repulsion”
between the quasimagnon and quasiphonon branches.

For making some quantitative estimations, let us
plot the obtained dispersion law (17) in various cases,
by using a shape memory material as an exam-
ple (Fig. 1). The magnitudes of constants entering
Eq. (17) are taken in the case of Ni-Mn—Ga alloy,
since this alloy is one of the most interesting repre-
sentatives of shape memory materials for today. In a
vicinity of room temperature, it undergoes a marten-
sitic phase transformation: a transition from the cu-
bic phase to the tetragonal one [15].

In specific calculations for Ni-Mn—Ga alloy, we se-
lected the known experimental values of anisotropy
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Dispersion laws for magnetoelastic waves: (a) in the ground state H || M || (001) for two values
of elastic modulus Cy4 and (b) in the ground state H || M || (101) and H || M || (111)for

Cy4 = 40 GPa

constants in the cubic phase (austenite) [16],
which correspond to phase 1, namely, K; = 2.7 X
% 10% erg/em® and Ky = —6.1 x 10* erg/cm®, and
the magnitude of saturation magnetization My =
= 600 Gs. The constant of inhomogeneous exchange
interaction can be estimated from the expression [3]
a2 (kgT.A?My)/up, where T, = 360 K is the Curie
temperature [16], A = 0.41 x 1078 cm is the distance
between magnetic atoms [16], up is the Bohr mag-
neton, and kg the Boltzmann constant. The external
magnetic field has to be strong enough in order to
satisfy the existence conditions for the ground states
(Wmi = 0, where ¢ = 1,2,3,4) and to correspond to
the conditions of experimental researches, which are
usually carried out with such materials. Therefore,
we selected H = 1000 Gs. The elastic moduli were
also taken as those for austenite: Cyy = 40 GPa and
C' = 14 GPa [17]. The constant of magnetoelastic
interaction do was not evaluated earlier. Proceeding
from the facts that it cannot be less that d;, and
8y ~ 107 erg/cm® [13], we put &; = 10° erg/cm® for
the sake of illustration.

4. Discussion and Conclusions

The dispersion laws (10)—(15) of coupled magnetoe-
lastic waves calculated for a ferromagnet with cubic
symmetry make it possible to estimate the influence
of the magnetic subsystem on the elastic properties
of the crystal, namely, on the corresponding elastic
moduli. From the obtained laws of dispersion in a cu-
bic ferromagnet, one can see that, contrary to other
sound modes [11], the magnetoelastic interaction with
the first transverse sound takes place for all equilib-
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rium directions of the magnetic moment in a cubic
ferromagnet.

The coefficient & of the magnetoelastic interaction
between spin waves and the first transverse sound de-
pends on the direction of the ferromagnet magnetic
moment (see Table and Fig. 1, b). This interaction
manifests itself most strongly in the ground state
H || M || (001). In addition, it turns out that, in
the ground states H || M || (101) and H || M || (111),
the coefficient of magnetoelastic interaction also de-
pends on the direction of the wave vector of collective
oscillations (Table).

Collective oscillations of spin waves and collective
vibrations of the first transverse sound are described
by the dispersion equation (17), which has identi-
cal character for each direction of the ferromagnet
magnetic moment. From Eq. (17), it follows that if
the elastic modulus C}y4 drastically decreases, the
magnetoelastic interaction grows considerably. From
Fig. 1, a plotted for Ni-Mn—Ga alloy as an example,
one can see that even the two-fold reduction of the
elastic modulus Cy4 brings about a considerable “re-
pulsion” between the quasimagnon and quasiphonon
branches in the dispersion law. Such a behavior of the
quasiphonon mode can be responsible for even more
undervalued Cyy-magnitudes at resonance measure-
ments.

It is also worth noting that the application of the
expression for the magnetoelastic energy in the form
(4) enables one to accurately determine the part of
this energy (i.e. the constant ¢;) that is responsible
for the interaction with a definite sound mode (un-
like the classical form of the expression used, e.g., in
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work [4]). The analysis of the dispersion laws (10)—
(15) demonstrates that the constant dy does not en-
ter them, so that the influence of the equilibrium
part of the magnetoelastic energy is not taken into
account. Really, while considering the dynamic phe-
nomena, e.g., the magnetoelastic resonance, the in-
fluence of this term cannot be taken into consider-
ation. A theoretical model that makes allowance for
the influence of the equilibrium part of the magnetoe-
lastic energy was proposed in work [18]. The constant
01 characterizes the influence of the magnetic subsys-
tem on the second transverse sound and, accordingly,
on the elastic modulus C’ [11]. From Eq.(10), one
can easily see that, as was shown earlier [11], the in-
teraction with this sound mode cannot be described
in phase 1. In turn, the constant J, characterizes the
influence of the magnetic subsystem on the first trans-
verse sound and the elastic modulus Cyy.
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O.I". Jlanunesuw

BIIJIUB MATHITOIIPY2KHOT

B3AEMO/II HA ITEPIINI IIOIIEPEYHNI 3BYK
B ®EPOMATHETUKY KYBIYHOI CUMETPII

B OKOJII MAPTEHCUTHOT'O [TIEPETBOPEHHSA

Peszmowme

PospaxoBaHo 3akoHm nucrepcil 3B’sS3aHEX MarHITONPYKHUX
XBUJIb JIJISI BCIX OCHOBHUX CTaHiB (pepoMaruerunka KyO6idHOl cu-
merpil. [lokazaHo, 1[0 Mar"HiTONpy>KHsI B3a€MO/Iisl 3 HEPIIUM
IIOIIEPEYHUM 3BYKOM Ma€ MicIle 11 BCiX piBHOBasKHHUX HaIIPAM-
KiB MarmiTHoro momenTy. OTpuMaHi 3aKOHU JuUCHEpCil MmoKa-
3YIOTh, 0 KOeMII[i€EHT MArHITONPY>KHOI B3aEMO/IIl 3aJI€?KUTh
SK BiJ] HAIIPAMKY MarHiTHOIO MOMEHTY (epOMarHeTHUKa, TakK
1 BiJ HAIIpPsSIMKY XBHJIBOBOIO BEKTOPa KOJIEKTHBHUX KOJINBAHbD.
Ha ocmoBi orpumanux pesysnbrariB 3pobieno Kinbkicai pospa-
XYHKH JUCIEPCIiHUX 3aexkHocTel 11 crutaBy NiMnGa 3 ede-
kTOM mam’aTi ¢popmu. OTpumani pO3paxyHKH MMOKA3yIOTh, IO
3MEHIIEHHS PYKHOI'0 MOJLYJIsl IPUBOJHUTH JIO ITOMITHOTO 3pO-
CTaHHS MarHITONIPY?KHOI B3a€MOIiI.
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