
The Influence of Magnetoelastic Interaction

A.G. DANILEVICH
Institute of Magnetism,
Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
(36b, Academician Vernadsky Blvd., Kyiv 03142, Ukraine; e-mail: alek_tony@ukr.net)

THE INFLUENCE OF MAGNETOELASTIC
INTERACTION ON THE FIRST TRANSVERSE SOUND
IN A FERROMAGNET OF CUBIC SYMMETRY
IN A VICINITY OF THE MARTENSITIC
TRANSFORMATION

PACS 64.60.-i; 62.20.-de;
75.47.Np; 75.80.+q

The dispersion laws of coupled magnetoelastic waves have been calculated for all ground states
of a ferromagnet with the cubic symmetry. It is shown that the magnetoelastic interaction with
the first transverse sound takes place for all equilibrium directions of the magnetization vec-
tor. The obtained dispersion laws testify that the magnetoelastic interaction coefficient depends
on the magnetization and wave vector directions. The quantitative calculations of the disper-
sion relations for the shape memory alloy Ni–Mn–Ga are made on the basis of the obtained
results. The results of research demonstrate that a decrease in the elastic modulus gives rise
to an appreciably stronger magnetoelastic interaction.
K e yw o r d s: magnetoelastic interaction, dispersion law, cubic ferromagnet, shape memory
alloy, elastic modulus.

1. Introduction

Magnetoelastic waves have been studied for many
years [1,2], and the phenomenological model for their
description is well developed [3, 4]. Nowadays, the
study of the interaction between the magnetic and
elastic subsystems gets a new impetus owing to nu-
merous experiments [5–8] with magnetically ordered
systems, in which such interaction can be rather
strong. It is well known that the magnetoelastic in-
teraction increases, as such systems approach spin-
reorientation phase transitions [4, 9]. This fact in-
duced the active researches of coupled magnetoe-
lastic waves at phase transformations of different
types.

Recently, the so-called structural phase transi-
tions have been the objects of intense researches ow-
ing to their crucial role in such effects as supere-
lasticity and shape memory. Of special interest are
the so-called “martensitic transformations” and the
structural phase transitions of the first kind from a
highly symmetric structure into a low symmetric de-
formed one, which take place at low temperatures
[5–8]. In materials with those phase transitions, the
phenomenon of giant magnetostriction was discov-
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ered, which is governed by a drastic decrease of the
elastic energy in vicinities of martensitic transfor-
mations [10]. It is the interaction between the mag-
netic subsystem and elastic waves that plays the key
role in this phenomenon. In work [11], the influence
of such interaction on one of the elastic moduli of
a cubic ferromagnet with shape memory was cal-
culated. However, the experimental data [5, 7] tes-
tify that the relevant theoretical calculations are ex-
tremely necessary for other elastic moduli as well,
because they also appreciably change at martensitic
phase transitions.

2. Dispersion Laws for Coupled
Magnetoelastic Waves in a Cubic
Ferromagnet

Consider a ferromagnet with cubic symmetry. For the
description of the interaction between spin and elastic
waves, the total energy density in a cubic crystal can
be presented in the form

𝐹 = 𝐹𝑚 + 𝐹𝑒 + 𝐹𝑚𝑒. (1)

The first term in expression (1) is the magnetic part
of the energy density. In the case of cubic symmetry,
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it looks like [3]

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
+𝐾1

(︀
𝜇2
𝑥𝜇

2
𝑦 + 𝜇2

𝑥𝜇
2
𝑧 + 𝜇2

𝑦𝜇
2
𝑧

)︀
+

+𝐾2𝜇
2
𝑥𝜇

2
𝑦𝜇

2
𝑧 −MH, (2)

where 𝛼 is the inhomogeneous exchange interaction
constant; 𝐾1 and 𝐾2 are the constants of magnetic
anisotropy in the cubic ferromagnet; M and H are the
vectors of magnetization and external magnetic field,
respectively; 𝜇 = M

𝑀0
is the normalized magnetization

vector (since the constants in expression (2) have the
dimensionality of energy), and 𝑀0 is the saturation
magnetization. The energy of demagnetizing fields is
neglected in Eq. (2), because we do not consider the
specific shape of a ferromagnetic specimen.

The energy density of elastic deformations looks
like [12, 13]

𝐹𝑒 =
3

2
(𝐶11 + 2𝐶12)𝑢

2
1 +

1

6
𝐶 ′(𝑢2

2 + 𝑢2
3)+

+2𝐶44(𝑢
2
4 + 𝑢2

5 + 𝑢2
6). (3)

Here, the quantities 𝐶11, 𝐶12, 𝐶44, and 𝐶 ′ = (𝐶11 −
−𝐶12)/2 are the elastic moduli of the second order
of the crystal with cubic symmetry. The variables
𝑢1 = 1

3 (E𝑥𝑥 + E𝑦𝑦 + E𝑧𝑧), 𝑢2 =
√
3 (E𝑥𝑥 − E𝑦𝑦),

𝑢3 = (2E𝑧𝑧 − E𝑥𝑥 − E𝑦𝑦), 𝑢4 = 1
2 (E𝑦𝑧 + E𝑧𝑦), 𝑢5 =

= 1
2 (E𝑥𝑧 + E𝑧𝑥), and 𝑢6 = 1

2 (E𝑥𝑦 + E𝑦𝑥) are the lin-
ear combinations of strain tensor components, which
are transformed according to the one- (𝑢1), two-
(𝑢2 and 𝑢3), and three-dimensional (𝑢4, 𝑢5, and 𝑢6)
irreducible representations of the crystal symmetry
group.

The third term in Eq. (1) corresponds to the energy
density for the interaction between the magnetic and
elastic subsystems [13],

𝐹𝑚𝑒 = −𝛿0𝑢1(𝜇
2
𝑥 + 𝜇2

𝑦 + 𝜇2
𝑧)−

− 𝛿1{
√
3𝑢2(𝜇

2
𝑥 − 𝜇2

𝑦) + 𝑢3(2𝜇
2
𝑧 − 𝜇2

𝑥 − 𝜇2
𝑦)}−

− 𝛿2(𝑢4𝜇𝑦𝜇𝑧 + 𝑢5𝜇𝑥𝜇𝑧 + 𝑢6𝜇𝑥𝜇𝑦), (4)

where the constants 𝛿0, 𝛿1, and 𝛿2 describe the mag-
netoelastic interaction.

From the minimization condition for the magnetic
part of the energy, it is easy to show that there are
three ground states for the magnetization vector in

the cubic ferromagnet in the absence of an external
magnetic field (H = 0): along the fourth-order axis,
M ‖| ⟨001⟩, phase 1; along the diagonal of one of the
cube edges, M ‖| ⟨101⟩, phase 2; and along the spatial
cube diagonal, M ‖| ⟨111⟩, phase 3; every other possi-
ble direction of the magnetic moment is equivalent to
one of those given above. In real experiments aimed
at the study of the elastic and magnetic properties of
materials [5–8], the external magnetic field direction
coincides with one of the indicated directions of the
magnetic moment, and the magnitude of H is rather
large (∼1000 Oe). Hence, M in equilibrium can be
considered as directed along one of those directions.

We consider small adiabatic oscillations of the mag-
netic moment density 𝜇 in the ferromagnet [3]. Ac-
cordingly, we can write

𝜇(r, 𝑡) = 𝜇0 +m(r, 𝑡), (5)

where m(r, 𝑡) stands for small deviations from the
equilibrium 𝜇0-value as a result of fluctuations, and
the equilibrium value of magnetization vector has
the following components: 𝜇0 = (0, 0, 1) in phase 1,
𝜇0 = ( 1√

2
, 0, 1√

2
) in phase 2, and 𝜇0 = ( 1√

3
, 1√

3
, 1√

3
)

in phase 3. Using the condition 𝜕𝐹/𝜕E𝑖𝑘 = 0, we can
obtain the equilibrium values E0

𝑖𝑘 of the strain tensor
components for the ground states of a cubic ferromag-
net (below, the corresponding expressions are given
for each ground state of a cubic ferromagnet). Hence,
every strain tensor component can also be written as
the sum of a homogeneous part and a small deviation
from it,

E𝑖𝑘 = E0
𝑖𝑘 + 𝜀𝑖𝑘. (6)

The inhomogeneous part of the elastic strain tensor
can be expressed in terms of the vector of particle
displacement U, using the formula [4]

𝜀𝑖𝑘 =
1

2

(︂
𝜕𝑈𝑖

𝜕𝑥𝑘
+

𝜕𝑈𝑘

𝜕𝑥𝑖

)︂
. (7)

In order to obtain the dispersion laws for coupled
magnetoelastic waves in all ground states of a cubic
ferromagnet, let us use the dynamic equations for the
magnetization vector 𝜇 (the Landau–Lifshitz equa-
tions) and the particle displacement vector U [3, 4],

𝜕m

𝜕𝑡
= −𝛾𝜇×Heff , (8)
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𝜌Ü = − 𝛿𝐹

𝛿U
, (9)

where Heff = − 𝛿𝐹
𝛿m is an effective magnetic field, 𝛾

the gyromagnetic ratio, and 𝜌 the density. We should
expand the total energy density in a series in small
deviations 𝑚𝑖 and 𝜀𝑖𝑘, substitute it into Eqs. (8) and
(9), and linearize them.

It is well known [14] that the following elastic
waves can propagate in a crystal with cubic sym-
metry: longitudinal waves with 𝑠2𝑙1 = 𝐶11/𝜌 and
𝑠2𝑙2 = (𝐶11+𝐶12+2𝐶44)/2𝜌, where 𝑠𝑙1 and 𝑠𝑙2 are the
velocities of the first and second longitudinal sounds,
respectively; and transverse waves with 𝑠2𝑡1 = 𝐶44/𝜌,
𝑠2𝑡2 = 𝐶 ′/𝜌, where 𝑠𝑡1 and 𝑠𝑡2 are the velocities of the
first and second transverse sounds, respectively. The
first transverse sound can be described in the cases of
two directions of the wave vector of elastic vibrations
[14]: along the fourth-order axis and along the cube
face diagonal. Hence, for definiteness, let us consider
the directions k ‖ ⟨100⟩ and k ‖ ⟨110⟩.

Let us change in Eqs. (8) and (9) to the Fourier
components with respect to the time 𝑡 and the co-
ordinates r in the case of small deviations, m =
= m0 exp {𝑖(kr− 𝜔𝑡)} and U = U0 exp {𝑖(kr− 𝜔𝑡)},
where 𝜔 is the frequency, and k the wave vector of
collective waves. Then Eqs. (8) and (9) give rise to
a system of six equations for the components of the
vectors m0 and U0. From the condition that the de-
terminant of this system equals zero, we obtain the
dispersion laws for coupled magnetoelastic waves in
the ground states of a cubic ferromagnet.

Below, we present the results obtained for each
ground state.

Phase 1: H ‖ M ‖ ⟨001⟩.
The equilibrium values of strain tensor compo-

nents are

𝐸0
𝑥𝑥 = 𝐸0

𝑦𝑦 =
𝛿0

3(𝐶11 + 2𝐶12)
− 2𝛿1

𝐶11 − 𝐶12
,

𝐸0
𝑧𝑧 =

𝛿0
3(𝐶11 + 2𝐶12)

+
4𝛿1

𝐶11 − 𝐶12
,

𝐸0
𝑥𝑧 = 𝐸0

𝑧𝑥 = 𝐸0
𝑦𝑧 = 𝐸0

𝑧𝑦 = 𝐸0
𝑥𝑦 = 𝐸0

𝑦𝑥 = 0.

Case k ‖ ⟨100⟩:

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑙1𝑘

2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚1)− 𝛿23

{︂
𝜔𝑚1𝛾

2𝑘2

4𝜌

}︂]︂
= 0. (10)

Case k ‖ ⟨110⟩:

(𝜔2 − 𝑠2𝑡2𝑘
2)(𝜔2 − 𝑠2𝑙2𝑘

2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚1)− 𝛿23

{︂
𝜔𝑚1𝛾

2𝑘2

4𝜌

}︂]︂
= 0. (11)

In expressions (10) and (11), the notation 𝜔𝑚1 =
𝛼𝑘2/𝑀2

0 + 𝐻/𝑀0 + 2𝐾1/𝑀
2
0 + 72𝛿21/𝑀

2
0 (𝐶11 − 𝐶12)

was used.
Phase 2: H ‖ M ‖ ⟨101⟩.
The equilibrium values of strain tensor compo-

nents are

𝐸0
𝑥𝑥 = 𝐸0

𝑧𝑧 =
𝛿0

3(𝐶11 + 2𝐶12)
+

𝛿1
𝐶11 − 𝐶12

,

𝐸0
𝑦𝑦 =

𝛿0
3(𝐶11 + 2𝐶12)

− 2𝛿1
𝐶11 − 𝐶12

,

𝐸0
𝑥𝑧 = 𝐸0

𝑧𝑥 =
𝛿2

8𝐶44
,

𝐸0
𝑦𝑧 = 𝐸0

𝑧𝑦 = 𝐸0
𝑥𝑦 = 𝐸0

𝑦𝑥 = 0.

Case k ‖ ⟨100⟩:

(𝜔2 − 𝑠2𝑡1𝑘
2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑙1𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚2𝜔𝑚3)−

− 𝛿22

{︂
36𝜔𝑚2𝛾

2𝑘2

𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)

}︂
−

− 𝛿23

{︂
𝜔𝑚3𝛾

2𝑘2

8𝜌
(𝜔2 − 𝑠2𝑙1𝑘

2)

}︂]︂
= 0. (12)

Case k ‖ ⟨110⟩:

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑡2𝑘

2)(𝜔2 − 𝑠2𝑙2𝑘
2)×

×(𝜔2− 𝛾2𝑀2
0𝜔𝑚2𝜔𝑚3)− 𝛿22

{︂
18𝜔𝑚2𝛾

2𝑘2

𝜌
(𝜔2− 𝑠2𝑡1𝑘

2)×

×(𝜔2− (𝑠2𝑙2 + 𝑠2𝑡2)

2
𝑘2)

}︂
− 𝛿23

{︂
3𝜔𝑚3𝛾

2𝑘2

16𝜌
(𝜔2− 𝑠2𝑡2𝑘

2)×

×(𝜔2 − (𝑠2𝑙2 + 2𝑠2𝑡1)

3
𝑘2)

}︂
= 0. (13)

In expressions (12) and (13), the notations

𝜔𝑚2 = 𝛼𝑘2/𝑀2
0 +𝐻/𝑀0 +𝐾1/𝑀

2
0 +

+𝐾2/2𝑀
2
0 + 36𝛿21/𝑀

2
0 (𝐶11 − 𝐶12) + 𝛿22/8𝑀

2
0𝐶44,

𝜔𝑚3 = 𝛼𝑘2/𝑀2
0 +𝐻/𝑀0 − 2𝐾1/𝑀

2
0 + 𝛿22/4𝑀

2
0𝐶44.

were used.
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Coefficient of magnetoelastic interaction
with the first transverse sound in various ground states of a cubic ferromagnet

Wavevector Phase 1: H||M||⟨001⟩ Phase 2: H||M||⟨101⟩ Phase 3: H||M||⟨111⟩
direction 𝜔sw = 𝛾𝑀0𝜔𝑚1 𝜔sw = 𝛾𝑀0(𝜔𝑚2𝜔𝑚3)1/2 𝜔sw = 𝛾𝑀0𝜔𝑚4

k||⟨100⟩ 𝜉 = 𝜔𝑚1𝛾
2𝑘2

4𝜌
𝜉 = 𝜔𝑚3𝛾

2𝑘2

8𝜌
𝜉 = 𝜔𝑚4𝛾

2𝑘2

9𝜌

k||⟨110⟩ 𝜉 = 𝜔𝑚1𝛾
2𝑘2

4𝜌
𝜉 = 𝜔𝑚3𝛾

2𝑘2

16𝜌
𝜉 = 𝜔𝑚4𝛾

2𝑘2

36𝜌

Phase 3: H ‖ M ‖ ⟨111⟩.
The equilibrium values of strain tensor components

are

𝐸0
𝑥𝑥 = 𝐸0

𝑦𝑦 = 𝐸0
𝑧𝑧 =

𝛿0
3(𝐶11 + 2𝐶12)

,

𝐸0
𝑥𝑧 = 𝐸0

𝑧𝑥 = 𝐸0
𝑦𝑧 = 𝐸0

𝑧𝑦 = 𝐸0
𝑥𝑦 = 𝐸0

𝑦𝑥 =
𝛿2

12𝐶44
.

Case k ‖ ⟨100⟩:

(𝜔2 − 𝑠2𝑡1𝑘
2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑙1𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚4)− 𝛿22

{︂
32𝜔𝑚4𝛾

2𝑘2

𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)

}︂
−

− 𝛿23

{︂
𝜔𝑚4𝛾

2𝑘2

9𝜌
(𝜔2 − 𝑠2𝑙1𝑘

2)

}︂]︂
= 0. (14)

Case k ‖ ⟨110⟩:

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑡2𝑘

2)(𝜔2 − 𝑠2𝑙2𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚4)− 𝛿22

{︂
32𝜔𝑚4𝛾

2𝑘2

𝜌
×

× (𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − (3𝑠2𝑙2 + 𝑠2𝑡2)

4
𝑘2)

}︂
−

− 𝛿23

{︂
𝜔𝑚𝛾2𝑘2

12𝜌
(𝜔2 − 𝑠2𝑡2𝑘

2)(𝜔2 − (𝑠2𝑙2 + 2𝑠2𝑡1)

3
𝑘2)

}︂
−

− 𝛿2𝛿3

{︂
4𝜔𝑚𝛾2𝑘2

3𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑡2𝑘
2)

}︂
= 0. (15)

In expressions (14) and (15), the notation 𝜔𝑚4 =
= 𝛼𝑘2/𝑀2

0 + 𝐻/𝑀0 − 4𝐾1/3𝑀
2
0 − 4𝐾2/9𝑀

2
0 +

+ 𝛿22/4𝑀
2
0𝐶44 was used.

Hence, expressions (10)–(15) are the dispersion
laws for coupled magnetoelastic waves in a ferro-
magnet with cubic symmetry presented in the gen-
eral form. Those dispersion equations are standard
by their form [3, 4]. If the magnetoelastic interaction
is neglected (𝛿𝑖 → 0), they split into the classical dis-
persion laws for spin waves [3] and elastic waves in
cubic crystals [14].

3. First Transverse
Sound for a Shape Memory Alloy

The influence of the magnetic subsystem on the first
transverse sound and, accordingly, on the elastic
modulus 𝐶44 can be described, by considering the
magnetoacoustic resonance at the frequency 𝜔ph =
= (𝐶44/𝜌)

1/2𝑘. In this case, the dispersion laws (10)–
(15) transform into a dispersion equation, which has
the following general form for all ground states and
wave vector directions:

(𝜔2 − 𝜔2
ph)(𝜔

2 − 𝜔2
sw)− 𝛿22𝜉 = 0. (16)

Here, 𝜔𝑠𝑤 is the spin wave frequency, and 𝜉 the co-
efficient of magnetoelastic interaction. Their specific
values (see Table) depend on the direction of the fer-
romagnet magnetic moment and the direction of the
wave vector of collective waves, and are presented in
Table. The solution of Eq. (16) looks like

𝜔2
± =

1

2

{︁
𝜔2
ph + 𝜔2

sw ± [4𝜉𝛿22 + (𝜔2
ph − 𝜔2

sw)
2]1/2

}︁
. (17)

This dispersion law consists of two branches: qua-
simagnon and quasiphonon ones (see Fig. 1). From
Eq. (17), it is easy to see that, as the system approa-
ches the magnetoacoustic resonance (𝜔sw→𝜔ph), it is
the quantities 𝜉 and 𝛿2 that determine the “repulsion”
between the quasimagnon and quasiphonon branches.

For making some quantitative estimations, let us
plot the obtained dispersion law (17) in various cases,
by using a shape memory material as an exam-
ple (Fig. 1). The magnitudes of constants entering
Eq. (17) are taken in the case of Ni–Mn–Ga alloy,
since this alloy is one of the most interesting repre-
sentatives of shape memory materials for today. In a
vicinity of room temperature, it undergoes a marten-
sitic phase transformation: a transition from the cu-
bic phase to the tetragonal one [15].

In specific calculations for Ni–Mn–Ga alloy, we se-
lected the known experimental values of anisotropy
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Dispersion laws for magnetoelastic waves: (a) in the ground state H ‖ M ‖ ⟨001⟩ for two values
of elastic modulus 𝐶44 and (b) in the ground state H ‖ M ‖ ⟨101⟩ and H ‖ M ‖ ⟨111⟩for
𝐶44 = 40 GPa

constants in the cubic phase (austenite) [16],
which correspond to phase 1, namely, 𝐾1 = 2.7×
× 104 erg/cm

3 and 𝐾2 = −6.1 × 104 erg/cm
3, and

the magnitude of saturation magnetization 𝑀0 =
= 600 Gs. The constant of inhomogeneous exchange
interaction can be estimated from the expression [3]
𝛼 ∼= (𝑘B𝑇𝑐𝐴

2𝑀0)/𝜇B, where 𝑇𝑐 = 360 K is the Curie
temperature [16], 𝐴 = 0.41× 10−8 cm is the distance
between magnetic atoms [16], 𝜇B is the Bohr mag-
neton, and 𝑘B the Boltzmann constant. The external
magnetic field has to be strong enough in order to
satisfy the existence conditions for the ground states
(𝜔𝑚𝑖 > 0, where 𝑖 = 1, 2, 3, 4) and to correspond to
the conditions of experimental researches, which are
usually carried out with such materials. Therefore,
we selected 𝐻 = 1000 Gs. The elastic moduli were
also taken as those for austenite: 𝐶44 = 40 GPa and
𝐶 ′ = 14 GPa [17]. The constant of magnetoelastic
interaction 𝛿2 was not evaluated earlier. Proceeding
from the facts that it cannot be less that 𝛿1, and
𝛿1 ∼ 107 erg/cm

3 [13], we put 𝛿1 = 109 erg/cm
3 for

the sake of illustration.

4. Discussion and Conclusions

The dispersion laws (10)–(15) of coupled magnetoe-
lastic waves calculated for a ferromagnet with cubic
symmetry make it possible to estimate the influence
of the magnetic subsystem on the elastic properties
of the crystal, namely, on the corresponding elastic
moduli. From the obtained laws of dispersion in a cu-
bic ferromagnet, one can see that, contrary to other
sound modes [11], the magnetoelastic interaction with
the first transverse sound takes place for all equilib-

rium directions of the magnetic moment in a cubic
ferromagnet.

The coefficient 𝜉 of the magnetoelastic interaction
between spin waves and the first transverse sound de-
pends on the direction of the ferromagnet magnetic
moment (see Table and Fig. 1, b). This interaction
manifests itself most strongly in the ground state
H ‖ M ‖ ⟨001⟩. In addition, it turns out that, in
the ground states H ‖ M ‖ ⟨101⟩ and H ‖ M ‖ ⟨111⟩,
the coefficient of magnetoelastic interaction also de-
pends on the direction of the wave vector of collective
oscillations (Table).

Collective oscillations of spin waves and collective
vibrations of the first transverse sound are described
by the dispersion equation (17), which has identi-
cal character for each direction of the ferromagnet
magnetic moment. From Eq. (17), it follows that if
the elastic modulus 𝐶44 drastically decreases, the
magnetoelastic interaction grows considerably. From
Fig. 1, a plotted for Ni–Mn–Ga alloy as an example,
one can see that even the two-fold reduction of the
elastic modulus 𝐶44 brings about a considerable “re-
pulsion” between the quasimagnon and quasiphonon
branches in the dispersion law. Such a behavior of the
quasiphonon mode can be responsible for even more
undervalued 𝐶44-magnitudes at resonance measure-
ments.

It is also worth noting that the application of the
expression for the magnetoelastic energy in the form
(4) enables one to accurately determine the part of
this energy (i.e. the constant 𝛿𝑖) that is responsible
for the interaction with a definite sound mode (un-
like the classical form of the expression used, e.g., in
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work [4]). The analysis of the dispersion laws (10)–
(15) demonstrates that the constant 𝛿0 does not en-
ter them, so that the influence of the equilibrium
part of the magnetoelastic energy is not taken into
account. Really, while considering the dynamic phe-
nomena, e.g., the magnetoelastic resonance, the in-
fluence of this term cannot be taken into consider-
ation. A theoretical model that makes allowance for
the influence of the equilibrium part of the magnetoe-
lastic energy was proposed in work [18]. The constant
𝛿1 characterizes the influence of the magnetic subsys-
tem on the second transverse sound and, accordingly,
on the elastic modulus 𝐶 ′ [11]. From Eq. (10), one
can easily see that, as was shown earlier [11], the in-
teraction with this sound mode cannot be described
in phase 1. In turn, the constant 𝛿2 characterizes the
influence of the magnetic subsystem on the first trans-
verse sound and the elastic modulus 𝐶44.
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ВПЛИВ МАГНIТОПРУЖНОЇ
ВЗАЄМОДIЇ НА ПЕРШИЙ ПОПЕРЕЧНИЙ ЗВУК
В ФЕРОМАГНЕТИКУ КУБIЧНОЇ СИМЕТРIЇ
В ОКОЛI МАРТЕНСИТНОГО ПЕРЕТВОРЕННЯ

Р е з ю м е

Розраховано закони дисперсiї зв’язаних магнiтопружних
хвиль для всiх основних станiв феромагнетика кубiчної си-
метрiї. Показано, що магнiтопружня взаємодiя з першим
поперечним звуком має мiсце для всiх рiвноважних напрям-
кiв магнiтного моменту. Отриманi закони дисперсiї пока-
зують, що коефiцiєнт магнiтопружної взаємодiї залежить
як вiд напрямку магнiтного моменту феромагнетика, так
i вiд напрямку хвильового вектора колективних коливань.
На основi отриманих результатiв зроблено кiлькiснi розра-
хунки дисперсiйних залежностей для сплаву NiMnGa з ефе-
ктом пам’ятi форми. Отриманi розрахунки показують, що
зменшення пружного модуля приводить до помiтного зро-
стання магнiтопружної взаємодiї.
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