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LIGHT MODULATOR
ON THE BASIS OF MAGNETO-OPTICAL
CRYSTAL IN A BIMORPHIC STRUCTURE OPERATING
IN THE MAGNETO-MECHANICAL VIBRATION MODEPACS 78.20.Ls

A model of light modulator based on a bimorphic element consisting of a magneto-optical
crystal layer on a magnetically passive substrate has been proposed. An equation describing
magneto-mechanical vibrations in a rectangular bimorphic element with asymmetric thickness
is derived, and an algorithm of its solution in the case of a specimen with free edges is pro-
posed. The modulator is shown to be characterized by a two-dimensional distribution function
for the rotation angle of the polarization plane in a light-beam cross-section. Calculations for
bismuth-substituted yttrium ferrite garnet on a gadolinium-gallium substrate showed that the
rotation angle of the light-beam polarization plane owing to the Faraday effect can reach 3∘ for
the fundamental mode of bimorphic element vibrations.
K e yw o r d s: Faraday effect, magneto-optical crystal, bimorphic element.

1. Introduction

Embedding a magneto-optical crystal (MOC) into ex-
ternal dc and ac magnetic fields induces internal elas-
tic deformations connected with the magnetostric-
tion phenomenon. In the case of magneto-mechanic
resonance, the mechanical stresses give rise to addi-
tional changes in the specimen magnetization [1]. By
means of the Faraday and Cotton–Mouton effects,
those changes affect the light polarization in MOC
[2, 3]. In order to enhance the magnetization modu-
lation and to reduce the resonance frequency of the
specimen tension-compression vibrations, a compos-
ite structure was proposed in work [4]. Even a higher
gain can be expected, if the MOC is a part of the bi-
morphic structure. At vibrations of bimorphic plates,
the mechanical stress is known to be characterized
by a distribution function in the plane of a bimorphic
element. This circumstance is proposed to be used,
while developing a magneto-optical modulator with
a spatial distribution of polarization plane rotation
angles over a light-beam transverse cross-section.

Note that the bimorphic structures are widely used
in piezoelectric pressure sensors and acoustic radi-
ators [5]. The combination of two piezoelements or
a piezoelement and a metal plate into a bimorphic
structure is known to result in the appearance of low-
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frequency bending vibrations, and the sensitivity to
pressure becomes several tens of times higher [6].

Transverse bending vibrations of round bimorphic
plates have been studied the most completely. For in-
stance, in work [7], the equation of vibrations was
derived, and its solution for symmetric piezoceramic
round bimorphic plates was obtained. Magneto-me-
chanic vibrations of rectangular bimorphic plates
were studied experimentally [8], and the correspond-
ing sensitivity reached for them turned out by an or-
der of magnitude higher than that for piezoceramic
bimorphic transducers.

Vibrations of rectangular bimorphic plates were
calculated in the cases of the clamped or hinged
plate fastening, and the bimorphic element design
was mainly supposed to have a symmetric arrange-
ment of the neutral layer across the plate thick-
ness [9]. However, the issues concerning the deriva-
tion of equations for the vibrations of asymmetric
rectangular bimorphic plates, the determination of
the neutral-layer coordinate for them, and the solu-
tions of those equations under the condition of free
plate edges remained unresolved and challenging.

2. Model of Magneto-Optical Modulator

In this work, we consider a magneto-optical modu-
lator (Fig. 1) consisting of a rectangular bimorphic
plate with linear dimensions 𝑏 × 𝑙 fabricated from
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MOC 1 (ferrimagnet) of the thickness ℎ1, which was
grown up on a magnetically passive substrate 2 of the
thickness ℎ2. The plate edges are supposed to be free
of contact (the soft suspension).

If the specimen is arranged in the dc (polariz-
ing) magnetic field 𝐻0 (𝑥𝑘) and the ac magnetic
field 𝐻 (𝑥𝑘) 𝑒

𝑖𝜔𝑡 with the circular frequency 𝜔, the
ferrimagnet executes magneto-mechanic vibrations.
Those vibrations are described by a two-dimensional
stress distribution function in the plane 𝑥10𝑥2 and de-
pend on the coordinate 𝑥3. The mechanical stresses
in MOC induce additional changes of the magnetiza-
tion owing to the Villari effect [10]. The alternating
component of the magnetization vector, which coin-
cides with the axis 0𝑥3 (the axis of light propagation),
gives rise to a rotation of the light polarization plane
by the angle 𝜑 owing to the Faraday effect. This angle
depends on the stress at the given point in the plane
𝑥10𝑥2 of a bimorphic element and is characterized by
the distribution function 𝜑(𝑥1, 𝑥2) over the transverse
cross-section of the light beam.

In order to determine the function 𝜑(𝑥1, 𝑥2), we
have to find firstly the function 𝑤(𝑥1, 𝑥2) describing
the bending of a bimorphic element. In the general
case, the thicknesses and the elastic properties of lay-
ers 1 and 2 are different. Therefore, we adopt in what
follows that the neutral layer is located in the volume
of layer 2. Let us choose the right-handed Cartesian
coordinate system, whose 𝑥10𝑥2 plane coincides with
the neutral layer. Then the lower boundary of the fer-
rimagnet layer has the coordinate 𝑥03. While describ-
ing the two-dimensional transverse bending, let us use
the Kirchhoff hypotheses [9] for the plane transverse
cross-sections 𝑥1 = const and 𝑥2 = const (Fig. 1).

The amplitudes of the elastic stresses harmonically
changing in time in layers 1 and 2 will be denoted
by 𝜎

(1)
𝛼 (𝑥𝑘) and 𝜎

(2)
𝛼 (𝑥𝑘), respectively, where (𝛼 =

= 1, 2, ..., 6). Then

𝜎(1)
𝛼 = 𝑐𝐻𝛼𝛽𝜀

(1)
𝛽 (𝑥𝑘)−𝑚𝜌𝑘𝛼𝐻

0
𝜌𝐻𝑘, (1)

𝜎(2)
𝛼 (𝑥𝑘) = 𝑐𝛼𝛽𝜀

(2)
𝛽 (𝑥𝑘) , (2)

where 𝑐𝐻𝛼𝛽 are the elastic moduli of the elements, 𝜀𝛽
are the strains, and 𝑚𝑝𝑞𝛼 ≡ 𝑚𝑝𝑘𝑖𝑗 are the compo-
nents of the matrix of magnetostriction constants for
the demagnetized ferrimagnet. Using the relation be-
tween the strains 𝜀𝛽 and the bendings 𝑤(𝑥1 , 𝑥2) from

Fig. 1. Schematic diagram of a magneto-optical modulator:
(1 ) layer 1 (MOC), (2) layer 2 (magnetically passive), (3 )
plane transverse cross-section (𝑥2 = const), 𝑥0

3 is the coordi-
nate of the neutral layer

the theory of transverse bending [9] and taking for-
mulas (1) and (2) into account, we obtain

𝜎
(1)
1 = −𝑥3

(︂
𝑐𝐻11

𝜕2𝑤

𝜕𝑥21
+ 𝑐𝐻12

𝜕2𝑤

𝜕𝑥22

)︂
−𝑚𝜌𝑞1𝐻

0
𝜌𝐻𝑞;

𝜎
(1)
2 = −𝑥3

(︂
𝑐𝐻12

𝜕2𝑤

𝜕𝑥21
+ 𝑐𝐻11

𝜕2𝑤

𝜕𝑥22

)︂
−𝑚𝜌𝑞2𝐻

0
𝜌𝐻𝑞;

𝜎
(2)
1 = −𝑥3

(︂
𝑐11

𝜕2𝑤

𝜕𝑥21
+ 𝑐12

𝜕2𝑤

𝜕𝑥22

)︂
;

𝜎
(2)
2 = −𝑥3

(︂
𝑐12

𝜕2𝑤

𝜕𝑥21
+ 𝑐11

𝜕2𝑤

𝜕𝑥22

)︂
;

𝜎
(1)
6 = −𝑥3

(︀
𝑐𝐻11 − 𝑐𝐻12

)︀ 𝜕2𝑤

𝜕𝑥1𝜕𝑥2
−𝑚𝜌𝑞6𝐻

0
𝜌𝐻𝑞;

𝜎
(2)
6 = −𝑥3(𝑐11 − 𝑐12)

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
.

(3)

Consider an elementary rectangular prism with
the height ℎ1 + ℎ2 and the base sides 𝑑𝑥1 and
𝑑𝑥2. Proceeding from the dynamic equilibrium con-
dition, we find that the lateral faces (𝑥1, 𝑥1 + 𝑑𝑥1)
and (𝑥2, 𝑥2 + 𝑑𝑥2) undergo the action of forces with
the linear densities

𝑞13(𝑥1, 𝑥2) = −𝐷0
𝜕

𝜕𝑥1
(∇2𝑤), 𝑞23(𝑥1, 𝑥2) =

= −𝐷0
𝜕

𝜕𝑥2
(∇2𝑤), (4)
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respectively, where 𝐷0 is the bending stiffness of the
bimorphic element,

𝐷0 =
1

2
𝑐𝐻11

{︁
ℎ1(ℎ1 + 𝑥03)

2 − 1

3
[(ℎ1 + 𝑥03)

3 − (𝑥03)
3] +

+ℎ2[(ℎ1 + 𝑥03)
2 − (𝑥03)

2]
}︁
+

+
1

2
𝑐11

{︁
ℎ2(𝑥

0
3)

3 − 1

3
[(𝑥03)

2 + (ℎ2 − 𝑥03)
3]
}︁
.

The force of inertia characterized by the surface den-
sity 𝜎in = −(ℎ1𝜌1 + ℎ2𝜌2)

𝜕2𝑤
𝜕𝑡2 , where 𝜌1 and 𝜌2 are

the densities of layers 1 and 2, acts along the axis
𝑥3. According to Newton’s third law, in the absence
of external forces,

𝜕𝑞13(𝑥1, 𝑥2)

𝜕𝑥1
+
𝜕𝑞23(𝑥1, 𝑥2)

𝜕𝑥2
−

− (ℎ1𝜌1 + ℎ2𝜌2)
𝜕2𝑤

𝜕𝑡2
= 0. (5)

From expression (5) with regard for Eqs. (4), we ob-
tain the following equation for the vibrations of a
bimorphic element in the case of uniform magnetic
fields in its volume:

∇2∇2𝑤 − 𝜆4𝑤 = 0, (6)

where 𝜆4 = 𝜔2

𝐷0
(ℎ1𝜌1 + ℎ2𝜌2).

In order to solve Eq. (6), we have to know the
neutral-layer coordinate 𝑥03. For this purpose, let us
use the fact that the resultants of normal stresses in
the plane transverse cross-sections, which are paral-
lel to the axis 0𝑥3, are equal to zero. As a result, we
obtain the expression

1

2
𝜎(1)
𝛼 (𝑥03)𝑥

0
3 + 𝜎(1)

𝛼 (𝑥03)ℎ1 +
1

2
[𝜎(1)

𝛼 (ℎ1 + 𝑥03)−

−𝜎(1)
𝛼 (𝑥03)]ℎ1 =

1

2
𝜎(2)
𝛼 (−ℎ2 + 𝑥03)ℎ2, 𝛼 = 1, 2, 6 (7)

Taking into account that Newton’s third law is obeyed
at the interface between the layers, we find

−𝑥03(𝑐𝐻11 − 𝑐𝐻12)
𝜕2𝑤

𝜕𝑥1𝜕𝑥2
−𝑚𝑝𝑞6𝐻

0
𝑝𝐻𝑞

⃒⃒⃒
𝑥0
3

=

= −𝑥03(𝑐11 − 𝑐12)
𝜕2𝑤

𝜕𝑥1𝜕𝑥2
. (8)

Applying expressions (3) and (7) to, e.g., the tangen-
tial stresses 𝜎(1)

6 and 𝜎(2)
6 , we have{︂

1

2
(𝑐11 − 𝑐12)

[︂
𝑥03 −

(︂
ℎ2
𝑥03

− 1

)︂
(ℎ2 − 𝑥03)

]︂
+

+

(︂
ℎ1 +

1

2

ℎ2
𝑥03

)︂
(𝑐𝐻11 − 𝑐𝐻12)

}︂
𝑥03

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
=

= −ℎ1𝑚𝑝𝑞6(𝐻
0
𝑝𝐻𝑞)|𝑥0

3
+

+
1

2
ℎ1

[︂
𝑚𝑝𝑞6(𝐻

0
𝑝𝐻𝑞)

⃒⃒⃒
ℎ1+𝑥0

3

−𝑚𝑝𝑞6(𝐻
0
𝑝𝐻𝑞)

⃒⃒⃒
𝑥0
3

]︂
. (9)

Using Eqs. (8) and (9) and adopting the magnetic
fields to be uniform over the specimen volume, we
obtain the sought quantity,

𝑥03 =
ℎ22(𝑐11 − 𝑐12)− ℎ21(𝑐

𝐻
11 − 𝑐𝐻12)

2(ℎ1 + ℎ2)(𝑐11 − 𝑐12)
. (10)

Let us consider the algorithm of solution for
Eq. (6) under the condition of free bimorphic element
sides. The normal stresses distributed over the trans-
verse cross-sections 𝑥1 = const and 𝑥2 = const create
the bending moments 𝑀1 and 𝑀2, which are deter-
mined by the linear densities 𝑚1 and 𝑚2, so that
𝑑𝑀1 = 𝑚1𝑑𝑥2 and 𝑑𝑀2 = 𝑚2𝑑𝑥1. In turn, the densi-
ties are determined by the equations

𝑚1 = −𝐷*
1

(︂
𝜕2𝑤

𝜕𝑥21
+ 𝑘

𝜕2𝑤

𝜕𝑥22

)︂
−𝑚𝐻

1 ;

𝑚2 = −𝐷*
2

(︂
𝑘
𝜕2𝑤

𝜕𝑥21
+
𝜕2𝑤

𝜕𝑥22

)︂
−𝑚𝐻

2 ,

(11)

where the notations

𝐷*
1 =

1

3

{︁
𝑐11
[︀
(𝑥03)

3 + (ℎ2 − 𝑥03)
3
]︀
+

+ 𝑐𝐻11
[︀
(ℎ1 − 𝑥03)

3 − (𝑥03)
3
]︀}︁
,

𝐷*
2 =

1

3

{︁
𝑐12

[︁(︀
𝑥03
)︀3

+ (ℎ2 − 𝑥03)
3
]︁
+

+ 𝑐𝐻12
[︀
(ℎ1 − 𝑥03)

3 − (𝑥03)
3
]︀}︁

; 𝑘 = 𝐷*
2/𝐷

*
1 ;

𝑚𝐻
1 =

ℎ1+𝑥0
3∫︁

𝑥0
3

𝑥3𝑚𝜌𝑞1𝐻
0
𝜌𝐻𝑞𝑑𝑥3;

𝑚𝐻
2 =

ℎ1+𝑥0
3∫︁

𝑥0
3

𝑥3𝑚𝜌𝑞2𝐻
0
𝜌𝐻𝑞𝑑𝑥3.
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are used. If the magnetic field in the bimorphic ele-
ment volume is uniform, then we have

𝑚𝐻
𝛼 =

1

2

[︀
(ℎ1 + 𝑥03)

2 − (𝑥03)
2
]︀
𝑚𝑝𝑞𝛼𝐻

0
𝑝𝐻𝑞, 𝛼 = 1, 2.

The boundary conditions are reduced to the ex-
pressions

𝑞*13 = (±𝑏/2, 𝑥2) = 0, 𝑞*23 = (𝑥1,±𝑙/2) = 0, (12)

𝑚1 = (±𝑏/2, 𝑥2) = 0,𝑚2 = (𝑥1,±𝑙/2) = 0, (13)

where 𝑞*13 = 𝑞1 + 𝜕𝑚12

𝜕𝑥2
, 𝑞*23 = 𝑞2 + 𝜕𝑚21

𝜕𝑥1
, 𝑚12 =

= 𝑚21 = −𝐷12
𝜕2𝑤

𝜕𝑥1𝜕𝑥2
−𝑚𝐻

12,

𝐷12 =
1

3

{︁
(𝑐11 − 𝑐12)

[︀
(𝑥03)

3 + (ℎ2 − 𝑥03)
3
]︀
+

+ (𝑐𝐻11 − 𝑐𝐻12)
[︀
(ℎ1 + 𝑥03)

3 − (𝑥03)
3
]︀}︁
,

𝑚𝐻
12

= 𝑚𝐻
21 = 𝑚𝑝𝑞6

ℎ1+𝑥0
3∫︁

𝑥0
3

𝐻0
𝑝𝐻𝑞𝑑𝑥3.

The general solution of Eq. (6) is sought in the form

𝑤 = 𝑤1 + 𝑤2, (14)

where

𝑤1(𝑥1, 𝑥2) = cos𝛼𝑥1[𝐴 cos(𝑥2
√︀
𝛼2 + 𝜆2)+

+𝐵 cos(𝑥2
√︀
𝛼2 − 𝜆2)],

𝑤2(𝑥1, 𝑥2) = cos𝛽𝑥2[𝐶 cos(𝑥1
√︀
𝛽2 + 𝜆2)+

+𝐷 cos(𝑥1
√︀
𝛽2 − 𝜆2)].

Substituting expression (14) into the boundary con-
ditions (13), we obtain

𝑚𝐻
1 𝑁𝑚 = 𝐷*

1

𝑙

2

{︂[︀
𝛽2
𝑚(1 + 𝑘) + 𝜆2

]︀
𝐶𝑚 ×

× cos

(︂
𝑏

2

√︀
𝛽2
𝑚 + 𝜆2

)︂
+

+
[︀
𝛽2
𝑚(1 + 𝑘)− 𝜆2

]︀
𝐷𝑚 cos

(︂
𝑏

2

√︀
𝛽2
𝑚 − 𝜆2

)︂}︂
, (15)

𝑚𝐻
2 𝑀𝑛 = 𝐷*

1

𝑏

2

{︂[︀
𝛼2
𝑛(1 + 𝑘) + 𝜆2

]︀
𝐴𝑛 ×

× cos

(︂
𝑙

2

√︀
𝛼2
𝑛 + 𝜆2

)︂
+

+
[︀
𝛼2
𝑛(1 + 𝑘)− 𝜆2

]︀
𝐵𝑛 cos

(︂
𝑙

2

√︀
𝛼2
𝑛 − 𝜆2

)︂}︂
, (16)

where 𝑁𝑚 = 2𝑙
𝜋(1+2𝑚) (−1)𝑚, 𝑀𝑛 = 2𝑏

𝜋(1+2𝑛) (−1)𝑛,
𝛼𝑛 = 𝜋

𝑏 (1 + 2𝑛), 𝛽𝑚 = 𝜋
𝑙 (1 + 2𝑚).

Then, from Eqs. (15) and (16), it follows that

𝐶𝑚 = 𝐶0
𝑚 −𝐷𝑚𝑓𝑚, 𝐴𝑛 = 𝐴0

𝑛 −𝐵𝑛𝑓𝑛, (17)

where

𝐴0
𝑛 = (−1)𝑛 ×

× 4𝑚𝐻
2

𝜋(1 + 2𝑛) [𝛼2
𝑛(1 + 𝑘) + 𝜆2]𝐷*

1 cos
(︁
𝑙
2

√︀
𝛼2
𝑛 + 𝜆2

)︁ ,
𝐶0

𝑚 = (−1)𝑚×

× 4𝑚𝐻
1

𝜋(1 + 2𝑚) [𝛽2
𝑚(1 + 𝑘) + 𝜆2]𝐷*

1 cos
(︁
𝑏
2

√︀
𝛽2
𝑚 + 𝜆2

)︁ ,
𝑓𝑚 =

[︀
𝛽2
𝑚(1 + 𝑘)− 𝜆2

]︀
cos
(︁
𝑏
2

√︀
𝛽2
𝑚 − 𝜆2

)︁
[𝛽2

𝑚(1 + 𝑘) + 𝜆2] cos
(︁
𝑏
2

√︀
𝛽2
𝑚 + 𝜆2

)︁ ,
𝑓𝑛 =

[︀
𝛼2
𝑛(1 + 𝑘)− 𝜆2

]︀
cos
(︁
𝑙
2

√︀
𝛼2
𝑛 − 𝜆2

)︁
[𝛼2

𝑛(1 + 𝑘) + 𝜆2] cos
(︁
𝑙
2

√︀
𝛼2
𝑛 + 𝜆2

)︁ .
Hence, we arrive at the following formula for a bend-
ing of the bimorphic element 𝑤(𝑥1, 𝑥2):

𝑤(𝑥1, 𝑥2) = 𝐵𝑛 cos𝛼𝑛𝑥1

[︁
cos
(︁
𝑥2
√︀
𝛼2
𝑛 − 𝜆2

)︁
−

− 𝑓𝑛(𝛼𝑛) cos
(︁
𝑥2
√︀
𝛼2
𝑛 + 𝜆2

)︁]︁
+

+𝐷𝑚

[︁
cos
(︁
𝑥1
√︀
𝛽2
𝑚 − 𝜆2

)︁
− 𝑓𝑚(𝛽𝑚)×

× cos
(︁
𝑥1
√︀
𝛽2
𝑚 + 𝜆2

)︁]︁
cos𝛽𝑚𝑥2 + 𝑤0(𝑥1, 𝑥2), (18)

where

𝑤0(𝑥1, 𝑥2) = 𝐴0
𝑛 cos(𝛼𝑛𝑥1) cos

(︁
𝑥2
√︀
𝛼2
𝑛 + 𝜆2

)︁
+

+𝐶0
𝑚 cos

(︁
𝑥1
√︀
𝛽2
𝑚 + 𝜆2

)︁
cos𝛽𝑚𝑥2.

In order to find the coefficients 𝐵𝑛 and 𝐷𝑚, let us
rewrite the boundary conditions (12) in the form

𝜕

𝜕𝑥1
𝜓2(𝑥1, 𝑥2)

⃒⃒
𝑥1=±𝑏/2 = 0 , (19)

𝜕

𝜕𝑥2
𝜓1(𝑥1, 𝑥2)

⃒⃒
𝑥2=±𝑙/2 = 0 , (20)
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where the notations 𝜓1(𝑥1, 𝑥2) = (1+𝜉)𝜕
2𝑤

𝜕𝑥2
1
+ +𝜕2𝑤

𝜕𝑥2
2
,

𝜓2(𝑥1, 𝑥2) =
𝜕2𝑤
𝜕𝑥2

1
+ (1 + 𝜉)𝜕

2𝑤
𝜕𝑥2

2
, 𝜉 = 𝐷12/𝐷0 were in-

troduced. One can easily see that condition (19) looks
like
(−1)𝑛𝛼𝑛𝛽𝑚

{︁
[𝛼2

𝑛 + (1 + 𝜉)(𝛼2
𝑛 − 𝜆2)]×

× cos(𝑥2
√︀
𝛼2
𝑛−𝜆2−𝑓𝑛(𝛼𝑛)[𝛼

2
𝑛+(1 + 𝜉)(𝛼2

𝑛 + 𝜆2)]×

× cos(𝑥2
√︀
𝛼2
𝑛 + 𝜆2)

}︁
±𝐷𝑚

{︂√︀
𝛽2
𝑚 − 𝜆2[𝛽2

𝑚 − 𝜆2 +

+(1 + 𝜉)𝛽2
𝑚] sin

(︂
𝑏

2

√︀
𝛽2
𝑚 − 𝜆2

)︂
− 𝑓𝑚

√︀
𝛽2
𝑚 + 𝜆2 ×

× [𝛽2
𝑚 + 𝜆2 + (1 + 𝜉)𝛽2

𝑚] sin

(︂
𝑏

2

√︀
𝛽2
𝑚 + 𝜆2

)︂}︂
×

× cos(𝛽𝑚𝑥2) = − 𝜕

𝜕𝑥1

[︂
𝜕2𝑤0

𝜕𝑥21
+

+(1 + 𝜉)
𝜕2𝑤0

𝜕𝑥22

]︂
𝑥1=±𝑏/2

. (21)

Let us multiply both sides of equality (21) by
cos(𝛽𝑚𝑥2) and integrate over the variable 𝑥2 from
−𝑙/2 to 𝑙/2. The obtained result can be expressed in
the form

∓
∞∑︁

𝑛=0

𝐵𝑛𝐹𝑛𝑚 ± 𝑙

2
𝐷𝑚𝐹𝑚 =

= ±
∞∑︁

𝑛=0

𝐴0
𝑛𝑎𝑛𝑚 ∓ 𝑙

2
𝐶0

𝑚𝑐𝑚, (22)

where

𝑎𝑛𝑚 = 2(−1)𝑛(−1)𝑚𝛼𝑛𝛽𝑚
𝛼2
𝑛 + (1 + 𝜉)(𝛼2

𝑛 + 𝜆2)

𝛼2
𝑛 + 𝜆2 − 𝛽2

𝑚

×

× cos

(︂
𝑙

2

√︀
𝛼2
𝑛 + 𝜆2

)︂
,

𝑐𝑚=
√︀
𝛽2
𝑚+𝜆2[𝛽2

𝑚+𝜆2+(1+𝜉)𝛽2
𝑚] sin

(︂
𝑏

2

√︀
𝛽2
𝑚+𝜆2

)︂
,

𝐹𝑛𝑚 = 2(−1)𝑛(−1)𝑚𝛽𝑚𝛼𝑛

{︃
𝛼2
𝑛 + (1 + 𝜉)(𝛼2

𝑛 − 𝜆2)

𝛼2
𝑛 − 𝜆2 − 𝛽2

𝑚

×

× cos

(︂
𝑏

2

√︀
𝛼2
𝑛 − 𝜆2

)︂
−

− 𝑓𝑛
𝛼2
𝑛 + (1 + 𝜉)(𝛼2

𝑛 + 𝜆2)

𝛼2
𝑛 + 𝜆2 − 𝛽2

𝑚

cos

(︂
𝑏

2

√︀
𝛼2
𝑛 + 𝜆2

)︂}︃
,

𝐹𝑚 =
√︀
𝛽2
𝑚 − 𝜆2[𝛽2

𝑚 − 𝜆2 + (1 + 𝜉)𝛽2
𝑚]×

× sin

(︂
𝑏

2

√︀
𝛽2
𝑚 − 𝜆2

)︂
−

− 𝑓𝑚
√︀
𝛽2
𝑚 + 𝜆2[𝛽2

𝑚 + 𝜆2 + (1 + 𝜉)𝛽2
𝑚]×

× sin

(︂
𝑏

2

√︀
𝛽2
𝑚 + 𝜆2

)︂
.

Analogous transformations of the boundary condi-
tions (20) bring us to the equality

∓ 𝑏
2
𝐵𝑛𝐹𝑛 ±

∞∑︁
𝑚=0

𝐷𝑚𝐹𝑚𝑛 =

= ± 𝑏
2
𝐴0

𝑛𝑎𝑛 ∓
∞∑︁

𝑚=0

𝐶0
𝑚𝑐𝑚𝑛, (23)

where

𝑎𝑛=
√︀
𝛼2
𝑛 + 𝜆2[(1 + 𝜉)𝛼2

𝑛+𝛼
2
𝑛+𝜆

2] sin

(︂
𝑙

2

√︀
𝛼2
𝑛+𝜆

2

)︂
,

𝑐𝑚𝑛 = 2(−1)𝑚(−1)𝑛𝛼𝑛𝛽𝑚
𝛽2
𝑚 + (1 + 𝜉)(𝛽2

𝑚 + 𝜆2)

𝛽2
𝑚 + 𝜆2 − 𝛼2

𝑛

×

× cos

(︂
𝑏

2

√︀
𝛽2
𝑚 + 𝜆2

)︂
,

𝐹𝑛 =
√︀
𝛼2
𝑛 − 𝜆2[(1 + 𝜉)𝛼2

𝑛 + 𝛼2
𝑛 − 𝜆2]×

× sin

(︂
𝑙

2

√︀
𝛼2
𝑛 − 𝜆2

)︂
− 𝑓𝑛

√︀
𝛼2
𝑛 + 𝜆2[(1 + 𝜉)𝛼2

𝑛 +

+𝛼2
𝑛 + 𝜆2] sin

(︂
𝑙

2

√︀
𝛼2
𝑛 + 𝜆2

)︂
,

𝐹𝑚𝑛 = 2(−1)𝑚(−1)𝑛𝛽𝑚𝛼𝑛

{︃
𝛽2
𝑚 + (1 + 𝜉)(𝛽2

𝑚 + 𝜆2)

𝛽2
𝑚 − 𝜆2 − 𝛼2

𝑛

×

× cos

(︂
𝑏

2

√︀
𝛽2
𝑚 − 𝜆2

)︂
−

− 𝑓𝑚
𝛽2
𝑚 + (1 + 𝜉)(𝛽2

𝑚 + 𝜆2)

𝛽2
𝑚 + 𝜆2 − 𝛼2

𝑛

cos

(︂
𝑏

2

√︀
𝛽2
𝑚 + 𝜆2

)︂}︃
.

The solution of the system of equations (22), (23)
should be substituted into formula (18) to obtain an
expression for the calculated bending 𝑤(𝑥1, 𝑥2). Note
that the solutions of Eq. (18) contain the quanti-
ties proportional to the linear moments 𝑚𝐻

1 and 𝑚𝐻
2 ,

which are determined, in turn, by the parameters of
an ac magnetic field.

Shear deformations in the ferrimagnetic layer give
rise to an additional variation of the projection 𝐽3
of the alternating magnetization vector component
directed along the light beam, as well as to the rota-
tion of the polarization plane, owing to the Faraday
effect, by the angle 𝜑 =

∫︀ ℎ1+𝑥0
3

𝑥0
3

𝜎
(1)
6 Λ𝛼𝑓𝑑𝑥3, where

Λ = 𝜕𝐽3/𝜕𝜎
(1)
6 [10], and 𝛼F is the specific angle of

a polarization plane rotation. In view of expressions
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(3) and (14), we obtain the distribution function of
the polarization plane rotation 𝜑(𝑥1, 𝑥2) over the light
beam position on the bimorphic element area,

𝜑 =
𝛼FΛ

[︁(︀
ℎ1 + 𝑥03

)︀2 − (︀𝑥03)︀2]︁ (︀𝑐𝐻11 − 𝑐𝐻12
)︀

2
×

×
{︁
𝛼𝑛 sin𝛼𝑛𝑥1

[︁
𝐴𝑛

√︀
𝛼2
𝑛 + 𝜆2 sin(𝑥2

√︀
𝛼2
𝑛 + 𝜆2)+

+𝐵𝑛

√︀
𝛼2
𝑛 − 𝜆2 sin(𝑥2

√︀
𝛼2
𝑛 − 𝜆2)

]︁
+

+𝛽𝑚 sin𝛽𝑚𝑥2

[︁
𝐶𝑚

√︀
𝛽2
𝑚 + 𝜆2 sin(𝑥1

√︀
𝛽2
𝑚 + 𝜆2)+

+𝐷𝑚

√︀
𝛽2
𝑚 − 𝜆2 sin(𝑥1

√︀
𝛽2
𝑚 − 𝜆2)

]︁}︁
. (24)

3. Main Results and Their Discussion

The system of equations (22), (23) has no exact so-
lution. They will be solved approximately for the
fundamental mode (𝑚 = 0, 𝑛 = 0) of a bimorphic el-
ement 𝑏 × 𝑙 = 10 × 10 mm2 in dimensions, in which
layer 1 is made of bismuth-substituted yttrium fer-
rite garnet Y3−𝑥Bi𝑥Fe5O12. The relevant parameters
are ℎ1 = 0.3 mm, 𝑐𝐻11 = 269 GPa, 𝑐12 = 108 GPa,
𝜌1 = 5.7 × 103 kg/m

3, 𝑚111 = 𝑚112 = 2 N/A
2 (for

𝐻0
1 = 600 A/m [1]), Λ = 2 × 10−5 T−1, and 𝛼F =

= 3.2 A−1 [11]. For layer 2 made of gadolinium-
gallium garnet (Gd3Ga5O12), ℎ2 = 0.5 mm, 𝑐11 =
=287 GPa, 𝑐12=163 GPa, and 𝜌1=7.08×103 kg/m3.

While searching the approximate solutions, we
transform the system of equations (22), (23) into the
form(︃
∓2

∞∑︁
𝑛=0

𝐵𝑛𝐹𝑛𝑚/𝑙𝐹𝑚

)︃
±𝐷𝑚 = Δ1 (25)

∓𝐵𝑛 ± 2

∞∑︁
𝑚=0

𝐷𝑚𝐹𝑚𝑛/𝑏𝐹𝑛 = Δ2, (26)

where

Δ1 = 2

(︃
±

∞∑︁
𝑛=0

𝐴0
𝑛𝑎𝑛𝑚 ∓ 𝑙

2
𝐶0

𝑚𝑐𝑚

)︃⧸︂
𝑙𝐹𝑚,

Δ2 = 2

(︃
± 𝑏
2
𝐴0

𝑛𝑎𝑛 ∓
∞∑︁

𝑚=0

𝐶0
𝑚𝑐𝑚𝑛

)︃⧸︂
𝑏𝐹𝑛.

The right-hand sides of expressions (25) and (26)
are frequency-dependent constants. Note that, in the
course of numerical calculations, the error obtained
while keeping six first terms in the series for Δ1 and

Fig. 2. Dependence of the real part of the bending function
𝑤 at the center of a bimorphic plate on the linear resonance
frequency for the fundamental mode of magneto-mechanical
vibrations

Δ2 did not exceed one percent of the exact result
in vicinities of the magneto-mechanic resonance fre-
quencies.

At the linear resonance frequency 𝑓𝑝 = 21.641 kHz
for the fundamental mode, the values of Δ1 and Δ2

are substantially larger in comparison with the corre-
sponding values for higher modes. For example, the
ratio Δ1|𝑛=0,𝑚=0/Δ1|𝑛=0,𝑚=1 ≈ 103 at the frequency
𝑓𝑝. A similar relation is also observed for Δ2. On the
other hand, if the bimorphic plate shape approaches
a square, then, at the equal 𝑚 and 𝑛, it is possible
to consider that the quantities 𝐵𝑛 and 𝐷𝑚 are of the
same order of magnitude. Therefore, when the first
term of the series, 2𝐵0𝐹/𝑙𝐹𝑚|

𝑚=0
, and the next one,

2𝐵1𝐹1𝑚/𝑙𝐹𝑚|
𝑚=0

, in Eq. (25) are numerically com-
pared with each other at the frequency 𝑓𝑝, the latter
and all the following terms can be neglected. As a
result, Eq. (25) acquires a simplified form

∓ 2𝐵0𝐹𝑛𝑚/𝑙𝐹𝑚 ±𝐷0 = Δ1, 𝑛 = 0, 𝑚 = 0. (27)

In a similar way, Eq. (26) can be transformed to
the form

± 2𝐷0𝐹𝑚𝑛/𝑏𝐹𝑛 ∓𝐵0 = Δ2, 𝑛 = 0, 𝑚 = 0 (28)

The further solution of the system of equations (27),
(28) allows one to easily determine the coefficients 𝐵0

and 𝐷0.
In Fig. 2, the dependence of the real part of the

bending function 𝑤 on the linear frequency 𝑓 at
the center of a bimorphic plate with the dimen-
sions corresponding to the fundamental mode of
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Fig. 3. Distribution function 𝜑(𝑥1, 𝑥2) of the light-beam po-
larization plane rotation angle over the position of a light beam
on the surface of the bimorphic element at the resonance fre-
quency for the fundamental vibration mode

magneto-mechanic vibrations is plotted using expres-
sion (18). The amplitude of the alternating compo-
nent of the magnetic field strength vector was taken
to equal 𝐻1 = 100 A/m. The 𝑄-factor of the vi-
brating system was taken into account, by substi-
tuting the wave number 𝜆 by 𝜆 (1 + 𝑖/2𝑄), where
𝑄 = 500, in all expressions. In accordance with ex-
pression (10), the coordinate of the neutral layer was
equal to 𝑥03 = 0.083 mm.

In Fig. 3, the calculated dependence of the function
𝜑(𝑥1, 𝑥2) describing the rotation angle of the polar-
ization plane on the light-beam coordinates on the
bimorphic element area is shown for the linear reso-
nance frequency 𝑓𝑝 = 21.641 kHz. One can see that
the magneto-optical light modulator on the basis of
a magneto-optical crystal as a part of the bimorphic
structure operating in the mode of magneto-mechanic
vibrations and fabricating with the use of bismuth-
substituted yttrium ferrite garnet on the gallium-
gadolinium substrate can provide the amplitude of
a polarization plane rotation angle up to 3∘ in the
optical-beam cross-section.

The resonance frequency of the fundamental mode
for a square bimorphic element 1 × 1 mm2 in size
amounts to 21.6 kHz. The obtained value of resonance
frequency is an order of magnitude lower than the
corresponding values obtained at tension-compression
deformations of thin rods [1].

The Cotton–Mouton effect results in modulations
of the optical radiation ellipticity. As a result of the
square-law dependence of this effect on the transverse
magnetization component and the relation 𝐻1 ≪ 𝐻0

1 ,

the alternating component of the ellipticity does not
have a pronounced character and, therefore, was not
taken into account.

4. Conclusions

On the basis of the model of magneto-mechanic vibra-
tions of a bimorphic element asymmetric across the
thickness and with free edges, the equation for speci-
men vibrations is obtained with the help of Kirchhoff
hypotheses, and the position of the neutral layer in
the asymmetric bimorphic element is found. To find
the solution of this equation, an approximate tech-
nique is applied, which provides an error of about
10−3 for the bending amplitude within the interval of
resonance frequencies for the fundamental mode. An
expression was obtained for the two-dimensional dis-
tribution function for rotation angles of the light-
beam polarization plane at the output of the opti-
cal modulator with the bimorphic structure consist-
ing of a bismuth-substituted yttrium ferrite garnet
crystal on the gallium-gadolinium substrate. Using
this expression, it is shown that, owing to the Fara-
day effect, the amplitude of this angle can reach
a value of 3∘ for the fundamental mode of vibra-
tions of the bimorphic element. Modulators with the
two-dimensional distribution function for polarization
plane rotation angles can be used in rotation angle
sensors.
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МОДУЛЯТОР СВIТЛА
НА МАГНIТООПТИЧНОМУ КРИСТАЛI
В СКЛАДI БIМОРФНОЇ СТРУКТУРИ
У РЕЖИМI МАГНIТОМЕХАНIЧНИХ КОЛИВАНЬ

Р е з ю м е

Запропоновано модель модулятора свiтла на основi бiмор-
фного елемента, що складається з шару магнiтооптичного
кристала, вирощеного на магнiтопасивнiй пiдкладцi. Отри-

мано рiвняння магнiтомеханiчних коливань асиметрично-
го по товщинi бiморфного елемента прямокутної форми i
запропоновано алгоритм його розв’язку для вiльного вiд
закрiплення гранями зразка. Показано, що такий модуля-
тор характеризується двовимiрною функцiєю розподiлу ку-
та повороту площини поляризацiї в площинi перетину свi-
тлового пучка. На прикладi кристала вiсмут iтрiєвого фе-
рит гранату на галiй гадолiнiєвiй основi показано, що ам-
плiтуда кута повороту площини поляризацiї свiтлового про-
меня внаслiдок ефекту Фарадея може досягати значень 3
град для основної моди коливань бiморфного елемента.

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 10 979


