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LIGHT MODULATOR

ON THE BASIS OF MAGNETO-OPTICAL
CRYSTAL IN A BIMORPHIC STRUCTURE OPERATING

PACS 78.20.Ls

IN THE MAGNETO-MECHANICAL VIBRATION MODE

A model of light modulator based on a bimorphic element consisting of a magneto-optical
crystal layer on a magnetically passive substrate has been proposed. An equation describing
magneto-mechanical vibrations in a rectangular bimorphic element with asymmetric thickness
is derived, and an algorithm of its solution in the case of a specimen with free edges is pro-
posed. The modulator is shown to be characterized by a two-dimensional distribution function
for the rotation angle of the polarization plane in a light-beam cross-section. Calculations for
bismuth-substituted yttrium ferrite garnet on a gadolinium-gallium substrate showed that the
rotation angle of the light-beam polarization plane owing to the Faraday effect can reach 3° for
the fundamental mode of bimorphic element vibrations.
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1. Introduction

Embedding a magneto-optical crystal (MOC) into ex-
ternal dc and ac magnetic fields induces internal elas-
tic deformations connected with the magnetostric-
tion phenomenon. In the case of magneto-mechanic
resonance, the mechanical stresses give rise to addi-
tional changes in the specimen magnetization [1]. By
means of the Faraday and Cotton—Mouton effects,
those changes affect the light polarization in MOC
[2, 3]. In order to enhance the magnetization modu-
lation and to reduce the resonance frequency of the
specimen tension-compression vibrations, a compos-
ite structure was proposed in work [4]. Even a higher
gain can be expected, if the MOC is a part of the bi-
morphic structure. At vibrations of bimorphic plates,
the mechanical stress is known to be characterized
by a distribution function in the plane of a bimorphic
element. This circumstance is proposed to be used,
while developing a magneto-optical modulator with
a spatial distribution of polarization plane rotation
angles over a light-beam transverse cross-section.
Note that the bimorphic structures are widely used
in piezoelectric pressure sensors and acoustic radi-
ators [5]. The combination of two piezoelements or
a piezoelement and a metal plate into a bimorphic
structure is known to result in the appearance of low-
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frequency bending vibrations, and the sensitivity to
pressure becomes several tens of times higher [6].

Transverse bending vibrations of round bimorphic
plates have been studied the most completely. For in-
stance, in work [7], the equation of vibrations was
derived, and its solution for symmetric piezoceramic
round bimorphic plates was obtained. Magneto-me-
chanic vibrations of rectangular bimorphic plates
were studied experimentally [8], and the correspond-
ing sensitivity reached for them turned out by an or-
der of magnitude higher than that for piezoceramic
bimorphic transducers.

Vibrations of rectangular bimorphic plates were
calculated in the cases of the clamped or hinged
plate fastening, and the bimorphic element design
was mainly supposed to have a symmetric arrange-
ment of the neutral layer across the plate thick-
ness [9]. However, the issues concerning the deriva-
tion of equations for the vibrations of asymmetric
rectangular bimorphic plates, the determination of
the neutral-layer coordinate for them, and the solu-
tions of those equations under the condition of free
plate edges remained unresolved and challenging.

2. Model of Magneto-Optical Modulator

In this work, we consider a magneto-optical modu-
lator (Fig. 1) consisting of a rectangular bimorphic
plate with linear dimensions b x [ fabricated from
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MOC 1 (ferrimagnet) of the thickness hy, which was
grown up on a magnetically passive substrate 2 of the
thickness ho. The plate edges are supposed to be free
of contact (the soft suspension).

If the specimen is arranged in the dc (polariz-
ing) magnetic field H° (z;) and the ac magnetic
field H (z1)e™? with the circular frequency w, the
ferrimagnet executes magneto-mechanic vibrations.
Those vibrations are described by a two-dimensional
stress distribution function in the plane z10xz5 and de-
pend on the coordinate x3. The mechanical stresses
in MOC induce additional changes of the magnetiza-
tion owing to the Villari effect [10]. The alternating
component of the magnetization vector, which coin-
cides with the axis Ox3 (the axis of light propagation),
gives rise to a rotation of the light polarization plane
by the angle ¢ owing to the Faraday effect. This angle
depends on the stress at the given point in the plane
210z of a bimorphic element and is characterized by
the distribution function ¢(x1, x2) over the transverse
cross-section of the light beam.

In order to determine the function ¢(z1,z2), we
have to find firstly the function w(z1,z2) describing
the bending of a bimorphic element. In the general
case, the thicknesses and the elastic properties of lay-
ers 1 and 2 are different. Therefore, we adopt in what
follows that the neutral layer is located in the volume
of layer 2. Let us choose the right-handed Cartesian
coordinate system, whose x10x2 plane coincides with
the neutral layer. Then the lower boundary of the fer-
rimagnet layer has the coordinate x3. While describ-
ing the two-dimensional transverse bending, let us use
the Kirchhoff hypotheses [9] for the plane transverse
cross-sections x1 = const and xo = const (Fig. 1).

The amplitudes of the elastic stresses harmonically
changing in time in layers 7 and 2 will be denoted

by ol (zx) and ol (xr), respectively, where (o =

=1,2,...,6). Then
((11) =C 55(51) (-Tk) - mpkozHSHka (1)
U((f) (J?k;) = C(xﬂeg) (mk) ) (2)

where cfﬁ are the elastic moduli of the elements, €3
are the strains, and mpqa = mpri; are the compo-
nents of the matrix of magnetostriction constants for
the demagnetized ferrimagnet. Using the relation be-
tween the strains 3 and the bendings w(x; , x2) from
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Fig. 1. Schematic diagram of a magneto-optical modulator:
(1) layer 1 (MOC), (2) layer 2 (magnetically passive), (3)
plane transverse cross-section (z2 = const), zg is the coordi-

nate of the neutral layer

the theory of transverse bending [9] and taking for-
mulas (1) and (2) into account, we obtain

1 8211) 82
Ui) xS({{az‘Fga )‘mpququ5
7
0? w
0_51) = —x3 <C{{2 8 3 > mquH Hq,
L1
0(2) T (c O w)
=-—x3|C11 55
! oz % 8x§ 3)
2) 82w 82w
0y = —T3 0128 5 +011 22
D)
1
Ué ) = I3 (leql C{Iz) Bxlé?x mpq6H Hg;
0w
O'éQ) = 7.’1]3(011 — ClQ)m.

Consider an elementary rectangular prism with
the height h; + ho and the base sides dr; and
dxo. Proceeding from the dynamic equilibrium con-
dition, we find that the lateral faces (x1,x1 + dz1)
and (z9,x9 + dxs) undergo the action of forces with
the linear densities

q13(z1,22) = —Dg (V2w), gog (w1, 2) =

oz,

0 (o), (4)

=-D
06:62
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respectively, where Dy is the bending stiffness of the
bimorphic element,

1 1
Do = Gefi{h (b +a3)? = S[(h +25) - (@§)") +

+ hal(h + )2 — (@9)2)} +

+gen{haa)® - S16D)? + (e — ad)¥]}.

The force of inertia characterized by the surface den-
sity o = —(h1p1 + hgpg)%%7 where p; and py are
the densities of layers 1 and 2, acts along the axis
x3. According to Newton’s third law, in the absence
of external forces,

Oqi3(xy,x2)

n 0qa3(1,2)
8x1

(933‘2

O%w

S5 =0, (5)

— (h1p1 + h2p2)
From expression (5) with regard for Eqgs. (4), we ob-
tain the following equation for the vibrations of a
bimorphic element in the case of uniform magnetic
fields in its volume:

V2V — Mw = 0, (6)

where )\4 = %z(hlpl + h2p2).

In order to solve Eq. (6), we have to know the
neutral-layer coordinate z9. For this purpose, let us
use the fact that the resultants of normal stresses in
the plane transverse cross-sections, which are paral-
lel to the axis Ox3, are equal to zero. As a result, we
obtain the expression

1 1
50 @)a8 + oD (@) + S0l (b +23) -

1
— ol (@) = 5‘7((12)(—712 +aghy, a=1,2,6 (7)

Taking into account that Newton’s third law is obeyed
at the interface between the layers, we find

0/ H iy 0w 0
—x3(cy — 012)8x18$2 —mypgeHpHy 0o
T3
0w (8)
8931(91’2.

= —a9(c11 — c12)
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Applying expressions (3) and (7) to, e.g., the tangen-
(1) (2)
6

tial stresses og
1 h

{2(011 — 612) |:£L’g — (J)é — ].) (h2 — ng):| +

o O%w

1ha\, g o
+ (hl + 2$g> (c11 — c12) x3m =

= _hlmpqﬁ(H;(o)Hq”mg +

and og ', we have

_mqu(Hz?Hq)

0 0
hi+x9 z3

1
+5h [mqu(Hqu) ] (9)
Using Egs. (8) and (9) and adopting the magnetic
fields to be uniform over the specimen volume, we
obtain the sought quantity,

0 _ Mo —e1) — hi(ef] — efh)
’ 2(h1 + h2)(e11 — c12)

(10)

Let us consider the algorithm of solution for
Eq. (6) under the condition of free bimorphic element
sides. The normal stresses distributed over the trans-
verse cross-sections x; = const and x9 = const create
the bending moments M; and M, which are deter-
mined by the linear densities m; and ms, so that
dM; = mydxo and dMs = madzy. In turn, the densi-
ties are determined by the equations

L (P 0w "
m = —Dj (836% * k8x§> EE
(11)
(P Py
22 Uoa? T 042 20
where the notations
1
D = 3{en (@) + (ha —a})"] +
et [(h — ) - @)},
* 1 0\3 _,.0\3
D2 = 3 C12 (QC3) + (hg 1’3) +
+cfh [(h — a§)° = @$)*] }; k= D3/Di;
h1+$g
m{{ = / :Egmpququdl'g;
$0
3
h1+$g
mg = Igmpngqudl’g.
3
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are used. If the magnetic field in the bimorphic ele-
ment volume is uniform, then we have

1
mf =3 [(hl + xg)Q — (xg)2] mpanSHq, a=1,2.

The boundary conditions are reduced to the ex-
pressions

q>1k3 - (ib/Qa 562) = OvQ;S = (‘Tlvil/Q) = 07
my = (ib/za ‘TQ) = OamQ = (‘r17:|:l/2) = 05

(12)
(13)

where ¢js = q1 + 8521227 G353 = q2 + 6521, miz =
2
=mg = —D12% —mib,
1
Dyp = g{(cll —c12) [(29)% + (hy — 29)°] +
H H
+ (eft = efb) [(hn +29)* — (23]},
h1+l’g

12

mf =mll = Mpg6 / Hqudxg,.
.’IJO
3
The general solution of Eq. (6) is sought in the form
w = wi + wa, (14)

where

wy (z1,22) = cos axq[A cos(z \/m) +
+ Bcos(xg\/m)},
w1, 2) = cos Bas[C cos(x1 /B2 + N2) +
+ D cos(z11/B% — A2)].

Substituting expression (14) into the boundary con-
ditions (13), we obtain

mi’ Ny, = D;;{[ﬁfnu + k) + N G x

X CcOs <l2)\//872n + )\2> +

T [B2(1+ k) — A%] Dy cos (Z\/ﬁ% - A)} (15)

mil M, = ng{[ai(l + k) 4+ X] A, x

« cos (L
cos { 3

+ [a2(1 + k) — X?] B, cos <;\/a% - )\2>},
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a2 + )\2> +

(16)

_ 21 m _ 2b n
where Nm = m(*l) s Mﬂ = m(*l) s
an = 5 (1+2n), B = F(1+2m).

Then, from Egs. (15) and (16), it follows that

Crm = Cpy = Dinfms An = A} = By fu, (17)
where

AD = (-1)" x

" 4mil

(14 2n) [0 (14 k) + A2] Dj cos (%\/a,% + )\2) 7
C’?n = (_1)mx
4mit

m(142m) [B2,(1+ k) + A2?] D5 cos (%\/ﬁfn + )\2) 7
[B2,(1+ k) = X2] cos (5 /2 — V)

X

fm = 7
[82,(1 + k) + X2 cos (5 /B, + )
[ (1 + k) — X?] cos (é \/W)
fn =

[02(1 + k) + A2 cos (g \/W) '

Hence, we arrive at the following formula for a bend-
ing of the bimorphic element w(x1,x3):

w(z1,T2) = Bn €08 ant [cos (xz\/m) -

— falem) cos (z21/aZ +32) |+

o+ Din[cos (21V/BZ, = 22) = fon () %

X CoS (xlm)] C08 Bz + wo(x1,22),  (18)
where

wor, 25) = A cos(ane) cos (z2v/a2 + %) +
+C0 cos (xl \/W) C08 B T2

In order to find the coefficients B,, and D,,, let us
rewrite the boundary conditions (12) in the form

875811#2(9317562) lerztbye =0, (19)
2 pwr, ) | ~0 (20)
By L T1,22) |go==x1/2 =0,
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where the notations 1y (21, z2) = (1 —1—5)6 % o 'é’,

Yo, 22) = g;" +(1+E2Y 5, &= DlZ/DO were in-
troduced. One can easily see that condition (19) looks
like

(~1)"anBn {02 + (1 +€)(a2 -
Va2 =2 — fu(an)lap+(1+&)(aj + 1)) x
X cos(x2\/W)} + Dm{\/m[ﬁfn A2y
(1 O sin (VTR =) — fo/FE T2 x
<[4 4 (1 2 sin (5 V) b

M) x

X cos(xa

o [0?
X COS(ﬁml‘g) - _871 l:axu;o +
62w0 !
+(1+¢) ] . (21)
al’% Ilzﬂ:b/Q

Let us multiply both sides of equality (21) by
cos(Bma2) and integrate over the variable xzo from
—1/2 to 1/2. The obtained result can be expressed in
the form

- z
n= 0

=+ Z A T 00 0 Coms (22)

where

G = 2(—1)" (~1) "t B
e =V TR N+ (1) 85 s (3TN0,
Fo = 2(—1)"(—1)m5man{0‘2 +(1+ 800 =X

A2 7”
X COS (g\/a% - )\2> -

a2 + (1+&(a2 +2?)

a2+ (1+&)(a2 +\?)
oz + A\ - B2,

b
— I a%—i—)@—ﬁ?n CcoS (2\/CW)}a
= /B2 — N2[B2, — A2+ (14 6)B%] x
X sm( m)
S /B T R(B N+ (14 )82
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X sin (;\/ 2+ /\2>.

Analogous transformations of the boundary condi-
tions (20) bring us to the equality

b o0
:F§B71,Fn + Z Dman =

m=0

b oo
= :téA?Lan F Z C’roncmn7

m=0

where

an=+/a2 + N?[(1 + §)ai—|—ai—|—/\2] sin <;\/a%—|—/\2>,

+ (14 5)(52 + A?)
e "

Cmn = 2(—1>m<—1>“anﬁm
F.= W[ﬂ +6)aZ +a
« sin (;m> /a2 TR+ E)a? +
+aj + X’ sin (é\/m)

P = 21" (1) Bna n{ﬂ’%’ e

ﬁfn + (14882, +2?)
B2, + X2 — a2 ¢

— A% x

7fm

The solution of the system of equations (22), (23)
should be substituted into formula (18) to obtain an
expression for the calculated bending w(z1,x2). Note
that the solutions of Eq. (18) contain the quanti-
ties proportional to the linear moments mi’ and mi,
which are determined, in turn, by the parameters of
an ac magnetic field.

Shear deformations in the ferrimagnetic layer give
rise to an additional variation of the projection J3
of the alternating magnetization vector component
directed along the light beam, as well as to the rota-
tion of the polarization plane, owmg to the Faraday

effect, by the angle ¢ = fhﬁ_ws
3

A= 8J3/80é1) [10], and aF is the specific angle of
a polarization plane rotation. In view of expressions

él)ACVfd"Eg, where
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(3) and (14), we obtain the distribution function of
the polarization plane rotation ¢(z1, o) over the light
beam position on the bimorphic element area,

ar | (b +29)” = (29)"] (cff - cfh)
¢ = x

2
X {an sin ay, @y [An\/msin(xg Va2 +22) +
+ Bpv/a2 — X2sin(z2y/a2 — X2) |+
+ B sin B2 [C’mmsin(xl 2+ A2+
+ D/ B, = Msin(a1 /B2, — V)] }.

3. Main Results and Their Discussion

(24)

The system of equations (22), (23) has no exact so-
lution. They will be solved approximately for the
fundamental mode (m = 0,n = 0) of a bimorphic el-
ement b x [ = 10 x 10 mm? in dimensions, in which
layer I is made of bismuth-substituted yttrium fer-
rite garnet Y3_,Bi,FesO15. The relevant parameters
are hy = 0.3 mm, ¢} = 269 GPa, c12 = 108 GPa,
P1 = 5.7 X 103 kg/md, mi11 = Mi12 = 2 N/A2 (fOI'
HY =600 A/m [1]), A = 2x 107° T~} and ap =
= 3.2 A~! [11]. For layer 2 made of gadolinium-
gallium garnet (GdzGasO13), hy = 0.5 mm, ¢1; =
=287 GPa, c12 =163 GPa, and p; =7.08 x 103 kg/m?>.

While searching the approximate solutions, we
transform the system of equations (22), (23) into the
form

<:|:2 > BuFum /lFm> + D, = Ay (25)
n=0
FBny£2 Y Dy Fon /bF, = A, (26)
m=0
where
= l
Ay =2 (j:nZOAganm T chcm>/sz,
b oo
Ay =2 (iQAgan T n;)cgcmn>/bFn.

The right-hand sides of expressions (25) and (26)
are frequency-dependent constants. Note that, in the
course of numerical calculations, the error obtained
while keeping six first terms in the series for A; and
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Fig. 2. Dependence of the real part of the bending function
w at the center of a bimorphic plate on the linear resonance
frequency for the fundamental mode of magneto-mechanical
vibrations

Ao did not exceed one percent of the exact result
in vicinities of the magneto-mechanic resonance fre-
quencies.

At the linear resonance frequency f, = 21.641 kHz
for the fundamental mode, the values of A; and A,
are substantially larger in comparison with the corre-
sponding values for higher modes. For example, the
ratio At |p—0.m=0/A1|n=0m=1 ~ 103 at the frequency
fp- A similar relation is also observed for Ay. On the
other hand, if the bimorphic plate shape approaches
a square, then, at the equal m and n, it is possible
to consider that the quantities B,, and D,, are of the
same order of magnitude. Therefore, when the first
term of the series, 2BOF/lFm|m:07 and the next one,

2B Fim/IF, |, _,, in Eq. (25) are numerically com-
pared with each other at the frequency f,, the latter
and all the following terms can be neglected. As a
result, Eq. (25) acquires a simplified form

$230an/1Fm:|:D0:A1, n:O, m = 0. (27)

In a similar way, Eq. (26) can be transformed to
the form

i?DQan/bFn:FBO :AQ, n:O, m=20 (28)

The further solution of the system of equations (27),
(28) allows one to easily determine the coefficients By
and Dy.

In Fig. 2, the dependence of the real part of the
bending function w on the linear frequency f at
the center of a bimorphic plate with the dimen-
sions corresponding to the fundamental mode of
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Fig. 3. Distribution function ¢(z1,x2) of the light-beam po-
larization plane rotation angle over the position of a light beam
on the surface of the bimorphic element at the resonance fre-
quency for the fundamental vibration mode

magneto-mechanic vibrations is plotted using expres-
sion (18). The amplitude of the alternating compo-
nent of the magnetic field strength vector was taken
to equal H; = 100 A/m. The @Q-factor of the vi-
brating system was taken into account, by substi-
tuting the wave number A\ by A(1+4/2Q), where
@ = 500, in all expressions. In accordance with ex-
pression (10), the coordinate of the neutral layer was
equal to 2§ = 0.083 mm.

In Fig. 3, the calculated dependence of the function
@(x1,x2) describing the rotation angle of the polar-
ization plane on the light-beam coordinates on the
bimorphic element area is shown for the linear reso-
nance frequency f, = 21.641 kHz. One can see that
the magneto-optical light modulator on the basis of
a magneto-optical crystal as a part of the bimorphic
structure operating in the mode of magneto-mechanic
vibrations and fabricating with the use of bismuth-
substituted yttrium ferrite garnet on the gallium-
gadolinium substrate can provide the amplitude of
a polarization plane rotation angle up to 3° in the
optical-beam cross-section.

The resonance frequency of the fundamental mode
for a square bimorphic element 1 x 1 mm? in size
amounts to 21.6 kHz. The obtained value of resonance
frequency is an order of magnitude lower than the
corresponding values obtained at tension-compression
deformations of thin rods [1].

The Cotton—Mouton effect results in modulations
of the optical radiation ellipticity. As a result of the
square-law dependence of this effect on the transverse
magnetization component and the relation H; < HY,

978

the alternating component of the ellipticity does not
have a pronounced character and, therefore, was not
taken into account.

4. Conclusions

On the basis of the model of magneto-mechanic vibra-
tions of a bimorphic element asymmetric across the
thickness and with free edges, the equation for speci-
men vibrations is obtained with the help of Kirchhoff
hypotheses, and the position of the neutral layer in
the asymmetric bimorphic element is found. To find
the solution of this equation, an approximate tech-
nique is applied, which provides an error of about
103 for the bending amplitude within the interval of
resonance frequencies for the fundamental mode. An
expression was obtained for the two-dimensional dis-
tribution function for rotation angles of the light-
beam polarization plane at the output of the opti-
cal modulator with the bimorphic structure consist-
ing of a bismuth-substituted yttrium ferrite garnet
crystal on the gallium-gadolinium substrate. Using
this expression, it is shown that, owing to the Fara-
day effect, the amplitude of this angle can reach
a value of 3° for the fundamental mode of vibra-
tions of the bimorphic element. Modulators with the
two-dimensional distribution function for polarization
plane rotation angles can be used in rotation angle
sensors.
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MOAVJIATOP CBITJIA

HA MATHITOOIITUYHOMY KPUCTAJII

B CKJIAJII BIMOP®HOI CTPYKTYPU

YV PE?KVMI MATHITOMEXAHIYHUX KOJIMBAHB

Peszowme

3aIpOIIOHOBAHO MOJEJb MOJIYJISATOPA CBiT/Ia Ha OCHOBI GiMOp-
dHOro esleMeHTa, IO CKJIAJAETHCS 3 MIapy MAarHiTOOITHYHOI'O
KPUCTAJIa, BUPOIIEHOr0 Ha MarHiTonacupHin miaksiaami. Orpu-

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 10

MaHO PIiBHSIHHSI MarHiTOMEXaHIYHUX KOJIMBAHb ACHMETPUIHO-
ro 1Mo TOBHIMHI GIMOpPdHOro ejeMeHTa NPSIMOKYTHOI dhopMmu i
3aIIPOMIOHOBAHO AJTOPUTM Or0 PO3B’fA3KY MJIs BiIBHOTO Bif
3aKpinsieHHs: rpaHsMu 3paska. [lokazaHo, 110 Takuit MoOLyIs-
TOP XapaKTEPU3Y€EThCsl JIBOBUMIPHOIO (DYHKIIEIO PO3IIOIIITY Ky-
Ta IIOBOPOTY ILJIOLIMHU IIOJIApU3allil B IJIOIIWHI IIEPETUHY CBi-
TJIOBOTO mydYka. Ha npukiani Kkpucraja BicMyT iTpieBoro de-
PUT T'DaHaTy Ha raJiil rajoJiiHieBiil OCHOBI IIOKa3aHO, IO aM-
IJIITy1a KyTa HOBOPOTY IIOIIMHU ITOJISIPU3AILI1T CBITJIOBOTO IIPO-
MeHsI BHacainok edexrty Papagess MOXKe JOCATaTH 3HAYEHDb 3
rpaJji Jijisi OCHOBHOI MO/IX KOJIMBaHb OIMOP(MHOIO ejleMeHTa.
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