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ASYMPTOTIC WAVE
SOLUTIONS FOR THE MODEL OF A MEDIUM
WITH VAN DER POL OSCILLATORS

A one-dimensional mathematical model for a compler medium with van der Pol oscillators
has been studied. Using the Bogolyubov—Mitropolsky method, the wave solutions for a weakly
nonlinear model are derived, with their amplitudes being described by a three-dimensional dy-
namical system analyzed in more details by numerical and qualitative methods. In particular,
periodic, multiperiodic, and chaotic trajectories are found in the phase space of the dynam-
ical system. Bifurcations of those regimes were considered using the Poincaré section tech-
nique. Ezxact solutions are derived in the case where the three-dimensional system for ampli-

tudes is reduced to the two-dimensional one.
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1. Introduction

The majority of natural media are hierarchical forma-
tions of structural elements, the dynamics of which
cannot be neglected under certain loading conditions
[1,2]. For the description of such structured media, a
mathematical model dealing with two continua was
used: a background medium and particle oscillators
coupled with it [3, 4]. Those models were extended
onto nonlinear media in works [5-7] and nonlocal ones
in works [8, 9]. In the cited works, the nonlinearity
and the non-locality of a background medium were
taken into account in the corresponding equations of
state, whereas the dynamics of oscillating inclusions
remained linear. In work [10], it was proposed to de-
scribe the dynamics of oscillating inclusions by non-
linear equations, in particular, by the van der Pol
equations. In this work, the case of a linear back-
ground medium together with the nonlinear dynamics
of oscillating inclusions, which are described by three
forms of the van der Pol equations, is studied. Hence,
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nonlinear waves, van der Pol oscillator, chaotic attractor.

the mathematical model of a complex medium looks
like
N

0%u o 82wj E ou

S = XM 0= o

ot ox = ot p Ox (1)
82wk

W‘FFk(wk*U) :O7 k= 1,...,N,

where u is a shift of the background medium charac-
terized by the density p, o is the strain, F is Young’s
modulus, wy, is a shift of the oscillating inclusion char-
acterized by the density mgp and the characteristic
frequency wg, and t and x are the time and space vari-
ables, respectively. The operator F}, which describes
the dynamics of the partial oscillator, has the follow-
ing form:

F (y) = — (A — mey?) % + Wiy,
where £ = 1,..., N, i.e. the oscillating inclusion is
considered as a set of van der Pol oscillators.

Using the characteristic quantities 7, ¢g, and ug, we
can make model (1) to be dimensionless, by executing
the transformations t — 7¢, z — Tcox, U — UU, W —>
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= upw, A = AT, w — wET L Ue = )\kalan.

Then, model (1) looks like

Pu 0% e 0w
o A DL
j=1
82wk
ot?
+ wi (wy, —u) =0,

0 (wy, — u) (2)

— A [1 — (wy, — u)2] ot +

where ¢> = Ep~'cy?. Let us consider the wave solu-
tions of model (2),
U:U(S),U)k:Wk(S),S:l'+Dt, (3)

and analyze the dependence of their structure on the
parameters Ar and D.

2. Construction
of the Asymptotic Solution for Model (2)

Substituting expressions (3) into system (2), we ob-
tain a system of ordinary differential equations

Wi +QF (Wi —U) = Ry, (W, = U),

N
(4)
7j=1

where Ri(y) = an(l — y?)y, ap = 35, Qp = &,
or = =2osmy, () = d(...)/ds, k = 1,..,N. Let
us consider the wave solutions for the model with re-
gard for the dynamics of oscillators of three types,
i.e. N = 3. The dynamic system (4) belongs to the
model class of coupled oscillators. The main interest
in the researches of those models consists in new ef-
fects, which are governed by the type of interaction
between partial oscillators. As a rule, those models
involve either the oscillator coupling with the near-
est neighbor [11, 12| or oscillators globally coupled
through the average field [13-15]. System (4) is an ex-
ample of the latter variant. The major means to study
such models are asymptotic and numerical methods.

Let us consider the case of weak nonlinearity, when
ap = eay, where e < 1. In this case, the Bogolyubov—
Mitropolsky method [16,17] can be applied to system
(4). At £ = 0, the solutions of system (4) are sought
in the form

W1 = arqysinfy + brigsinfy + cri3 sin s,
W2 = argoy sin 91 + bT’QQ sin 02 + cros sin 93, (5)

W3 = arzy sinfy + brss sinfy + crss sin 3,
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where a, b, ¢, 75, ki, and B; are constants, 8; =
= k;s+ fB;, and i, j = 1,2, 3. Substituting expressions
(5) into Eq. (4), we obtain, for ¢ = 0, a system of
linear equations for r;;. The condition of consistency
is the equation

K1 Qfps Qs
Qo1 Ko 3z | =0, (6)
Q1 QB K
where K; = k2402 (¢; — 1), i = 1,2, 3. Taking condi-
tion (6) into account and adopting r; =1, j =1,2,3,
we obtain
o2 -%)
Qt (kf —Q3)”
KR (30— ) + 031 )
0F (k3 — Q3) ¢
_ Q103 (1 — 1 — o)
0Ff (k7 — Q3) o3

'I’Qj

- (7)

T34

At small € # 0, we suppose the solution of system
(4) to be determined by expressions (5), in which a,
b, ¢, and f3; are functions of the “slow” variable es. We
also adopt that

dW-
dsl = aky cos 0y + bky cos Oy + cks cos O3,
dW-
2 — arorky cos by +
ds
+ bTQQk‘Q COS 02 + CT23]€3 COS 03, (8)
dWs

— = ars1 ki cos 6y +
+ braoks cos s + crasks cos s,

provided the additional condition

%singl + d—ﬂlacosel + @ sin 0 + d—ﬁzbcosﬁz +
ds ds ds ds

de

+ds

ds-
sin 03 + ﬂccos 03 =0,

ds
d d db
—argl sin 61 + ﬁa7ﬂ21 cos 01 + —raasinfy +
ds ds ds 9)
d d d
+ ﬁbrgg cos Oy + —crzg sin 03 + ﬁCT’gQ cosfs3 =0,

ds ds ds

d d db
—argl sin 61 + ﬁargl cosfy + —r3gsinfy +
ds ds ds

d d d
+ ﬁbrgg cos Oy + —crgg sin 3 + ﬁcrgg cosfs = 0.
ds ds ds
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Substituting Egs. (5)and (8) into Eq. (4) and taking
Eq. (6) into account, we obtain the following system
written in the normal form:

d 0
i E0%A (Ry (ra3rs2 — roarss) +

ds )

+ Ry (133 — r32) + R3 (raa — 123)),

db  ecosby

o7 R _

ds ligd ( 1 (ro17m33 — 123731) + (10)

dc  ecosbs
= (Ry (raors1 — ra17ms2) +

)
)
+ Ry (r31 — 733) + R3 (23 — 721)),
)
)

ds k3o

+ R (r32 — r31) + R3 (r21 — 722)),

where , )

R, = «y, [1 — <Wk — Zaij]) ]x
j=1

3
d
X (Wk - ; SDjo>,
§ =193 (132 — r31) + 721 (133 — r'32) + T22 (731 — 7'33).

After the averaging according to the formula

d 1 21 2w 27
0= 5 / / / (x)d6, B,
0 0 O

system (10) reads

=X (Ao + Ala: + Agy + 1432:)7

d
465% =y (Bo+ Biz + Bay + By), (11)

=z (Co + 01$ + C’gy + 032),

where z = a2, y = b2, z = ¢, and T = 5. The other

parameters are

Ao = 4(a1Hy1(ra3rse — raarss) + aaHai (33 — r32) +
+ azHsq (o2 — 7"23)),

Ay = on HY (ra3rss — T2a133) — o H3y (133 — 132) —
— azH3 (rag — 1r93),

Ay = 2(aq Hy1 Hiy(roarss — Ta37T32) +

+ aoHo1 Hyy (132 — r33) — agHa1 H3 (192 — 123)),

Az = 2(a Hi1 Hi5(ra2rss — ra3rss) +

+ apHa1 H34(r32 — r33) — a3 Ha1 His(ron — 723)),
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By = 4(—aiHia(rasrsy — ra1rss) +

+ apHyo(rs) — r33) — azHsa(rar — ra3)),

By = —2(ay HioH? (121733 — T23731) +

+ apHaoH3, (r31 — raz) — agHsaH3, (ro1 — 1r23)),
By = a1 Hiy(rasrs1 — ra17ss) — o Hao(r3y — r33) +
+ azH3,(ra
Bs =

— T23),
—2(—ay1HiaHig(ragrsy — rairss) +
+ oHooH35(r31 — 133) — s Hso Hag (191 — 723)),
Co = 4(o1 Hi3(roarsy — r21732) —
— agHos(rs1 — 732) + asHss(ra1 — 722)),
Ci = 2(a1 Hiz H (ra1maz — T22r31) +
+ o Ha3 H3 (131 — 132) — asHaz H3 (ro1 — ra2)),
Co = 2(—ayHi3Hiy(raar31 — ra1732) +
+ agHog Hay(r31 — r32) — agHaz Hy(r21 — 122)),
C3 = —a1 Hiy(roar31 — ro1732) + o Hag (131 — 732) —
— azH3s(ra1 — 122),
where
Hyj = o1 — 1+ parej + 3735,
Hyj = o1+ (2 — 1)ra; + @33,
Hsj = o1+ @araj + (g3 — D)rs;.
Hence, we come to studying the structure of the
first octant in the phase space of system (11).
3. Analysis of Two-Dimensional

Subsystems of the Dynamic System (11)

It is evident that, on the coordinate planes, the
three-dimensional system (11) is reduced to two-
dimensional ones. For instance, on the plane z = 0,
it looks like

d
i—:ﬂ(Ao+A11’+A2y),

d
d;/" y (Bo + Bix + Bay), z=0.

The dynamic system (12) describes the amplitude dy-
namics for the two-frequency solution (5). Carrying
out the scaling

VES:T,UC:@@ZU:U@
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Ao Ag

Ao Ay A
V= 45’ - A1777* A25

the dynamic system (12) is transformed into the form
(the bars over the variables are omitted)

d

eaaty-1),

! (13)
% =y (i + poy — p13) ,

where

_B B B
MI_A17N2_A27MS_AO‘

Without making a detailed analysis of this amplitude
system (this was done in work [10]), let us point to
the main properties of the dynamic system (13).

System (13) has four stationary points with the
coordinates

O<0;0>,X<1;0>,Y(0;“3>,Q(”2“3;“3’”>.
2 M2 — K1 2 — [

In view of the sense of the variables x and y, it follows
that points Y and @ lie in the first quadrant of the
phase plane if

&ZO and u>0

M2 M2 — p1

MZO,

M2 — {1
respectively.
The eigenvalues of the linearization matrix

2z -1 T

J (203 40) = ( ’ :158 p1zo + 2l?2y0 - M3)
are as follows:

— for point O, Ao = ( —1; —pu3);

~ for point X, Ax = (1; 1 — p3);

~ for point Y, Ay = (ua; papis * — 1);
p2 — fiipio — p3 + popis = VA

2 (2 — p1)

where A = (i —puafi2 — i+ pizpts) "+ 4z — 1) (2 —
— p3) (k1 — p3)-
The stationary points X and Y evidently correspond
to the existence of harmonic modes with frequencies
k1 and ko in the system. Point @) corresponds to a
biharmonic mode.

As was shown in work [18], system (13) has no
closed trajectories, because there exists the function

— for point @, A\g =

3

_Hezpape o p2 1
n1 — p2 ' H1 — p2 ’
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B(z,y)=a"""y" " p

for which
G—Q(Ba:(x—i- —1))+E(B (z + -
= oz Y By YlH1 K2y
— sz —1
)y = el s = D 4 s
H1 — H2
The curve G = 0 has no branches, in particu-

lar, in the first quadrant if po (1 — pus — 1) + ps #
# 0. Therefore, according to the Dulac criterion, the
first quadrant does not contain closed trajectories. In
work [10], all typical phase portraits of the dynamic
system and their dependences on the parameter D
were analyzed, and special cases were indicated, when
the exact solutions of the dynamic dynamic system
can be found. In particular, the exact solution

x(x—1)
xT) = 14
v(@) —x £ /22 + const (z — 1) z2~2s 14
was found under the additional conditions
1
M2 =2p3,  p1 = 5 (1+2us), (15)

which is absent from work [19].

4. Qualitative Analysis
of Stationary Points in the Dynamic System
(11)

Let us consider the phase space structure of the dy-
namic system (11) in a vicinity of the stationary point
S(zo; yo; z0) with the coordinates that satisfy the sys-
tem of linear algebraic equations

Ag+ Ayxg + Asyg + Azzg =0,

By + Bixo + Bayo + B3z =0,
Co+ Crzg + Coyg + C329 = 0.

(16)

According to Cramer’s rule, z; = A;A~!. Using the
Andronov—Hopf theorem [20], let us determine con-
ditions, under which oscillatory modes can emerge in
a vicinity of the stationary point S. According to the
theorem, one of the necessary conditions for a peri-
odic solution to exist consists in that the linearization
matrix

Arxo Asxo Asxg

Biyo Bayo Bsyo
Clzo CQZ() 0320

J =

935
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0.0013

y-¥,

-0.001
=025

x-x) 025

Fig. 1. Phase portrait of the limiting cycle in the phase space
of the dynamic system (11) for A3 = —0.035

0.13

0.09

0.06

-0.035 A, -0.0315

Fig. 2. Bifurcation diagram for the development of the lim-
iting cycle of the dynamic system (11) with the growth of the
parameter A3

should possess a pair of purely imaginary eigenvalues.
Then the matrix J must satisfy the relation

3

det J =trJ Y Jii.

i=1
It is convenient to express this condition in the form

114, A
(A1A1 4 BaAg + C3A3) <A3 Bi B; ‘
L | Ay A L | By B3|\ _

ta ol &)= (17)

Expression (17) describes the curve of neutral sta-
bility. It is a definite manifold in the parametric
space. While crossing this manifold, the saddle-focus
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Fig. 3. Poincaré section of the chaotic attractor for A3 =
= —0.032

0.0018
-3,
-0.001

-0.25 x-xp 025

Fig. 4. Limiting cycle of the period 3T in the phase space of
the dynamic system (11) for A3 = —0.03213

S with a stable one-dimensional manifold can be
transformed into a limiting cycle. In order to study
the limiting cycle while going away from the neutral
stability curve, the methods of qualitative and nu-
merical analyses turn out rather effective [21].

5. Numerical Analysis of System (11)

Let us so choose the values of model parameters that
(i) solutions of Eq. (6) are real-valued and (ii) solu-
tions of system (16) are positive, i.e. the stationary
point S is located in the first octant. Taking those
requirements into account, we fix the following pa-
rameters: w; = 0.2, wy = 04, wg = 0.6, m; = 0.5,
mo = 0.6, mg = 0.8, \; = 1.8, Ay = 0.5, c =1, and
D =1.3.
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It is convenient to choose one of the A\;-parameters,
e.g., A3, as a bifurcation one. Then the quantities k?
and r;; do not depend on A3, and their values are
not changed in the course of numerical experiments.
Hence,

{k2} = {0.0290475; 0.121186; 0.766635},
{ra;} = {—0.327842; 14.7132; 4.42268},
{ra;} = {0.291313; —33.4464; —25.641},
§=1229.779, i =1,2,3.

(18)

Substituting values (18) into condition (17), we ob-
tain a high-order algebraic equation for A3. One of
the roots of this equation, Az = A5 = —0.406295,
corresponds to the existence of two purely imaginary
and one negative eigenvalues in the spectrum of the
linearization matrix J. The analysis of eigenvalues of
the matrix J also shows that the point S is a stable
focus, if A3 < A3, and an unstable one, if Az > Aj.

Let us consider the behavior of trajectories of sys-
tem (11) at A3 > Aj. Proceeding from A3 = —0.035,
we can integrate system (11) with initial conditions
selected near the stationary point S to be convinced
that the trajectory of the system converges to the
limiting cycle (Fig. 1).

The evolution of a limiting cycle with the growth of
the parameter A3 is convenient to be studied with the
help of the Poincaré section technique. Let the plane
y = 0 be selected as a secant one. The coordinate x of
the intersection point between the trajectory and the
secant plane is reckoned along the ordinate axis, and
the parameter A3 along the abscissa one. The analy-
sis of the obtained bifurcation diagram (Fig. 2) shows
that the limiting cycle undergoes a few doubling bi-
furcations followed by the emergence of a chaotic at-
tractor with rather a typical structure (Fig. 3). One
of the features in the chaotic diagram region is a win-
dow of periodicity for A3 = —0.03213, which corre-
sponds to the existence of a periodic trajectory with
the period 3T (Fig. 4). A jump of the oscillation am-
plitude is also observed at this point. Despite all
that, the form of Poincaré sections remains similar
to parabolic, as is shown in Fig. 3, with the changes
manifesting themselves only in the addition of seg-
ments to the branches of this parabola.

6. Conclusions

Hence, the three-frequency wave solution for a weakly
nonlinear model of the medium, Eq. (1), is described

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 9

by an amplitude system which has periodic, multi-
periodic, and chaotic solutions. It is evident that the
increase in the number of partial oscillators in the
model stimulates the growth of the phase space di-
mensionality for the amplitude system, which may
result in the emergence of new modes.

Note that the three-frequency mode manifests itself
when two partial oscillators, in the absence of a cou-
pling, are in the limiting cycle mode (A; > 0, Ay > 0),
whereas the equilibrium position of the third oscilla-
tor is a stable focus (A3 < 0). The coupling between
the oscillators through the background medium is ca-
pable of redistributing the energy between the oscil-
lators, as well as creating new localized modes.

It should also be emphasized that the results ob-
tained should be used with a certain caution, because,
as follows from the analysis of expressions (7) and
(10), the results were obtained under the condition
that the solution frequencies, kZ, and the partial fre-
quencies of the linear system, QZ, differ substantially
(the absence of resonances). This means that the
parameter € must be smaller than the differences be-
tween the indicated frequencies.

Despite that the results obtained with the use of
asymptotic methods have the known restrictions, we
may assert that the account for processes in the
medium model at the microstructure level makes it
possible to describe the capability of such media to
manifest their self-organization properties: the for-
mation of multiperiodic localized waves, their bifur-
cations, and so forth.

The results obtained testify that the variety of, at
least, wave solutions for model (1) is much wider than
that of solutions for classical models, which do not
consider a complicated rheology of media. Instead,
the direct application of generalized models, like
model (1), to the description of a physical object be-
comes more complicated. The separate formulations
of problems — in particular, concerning the propaga-
tion of vibrations along a one-dimensional rod — were
considered in work [22], where the necessity to use ex-
perimental data on the distribution of quantities my,
and wj, was stressed.

Other statements of problems are devoted to the
resonance phenomena in geomaterials [7], where the
characteristic oscillator frequencies wy were identi-
fied with the dominating frequencies in geomedia
[23]. Therefore, the development of similar models
stimulates the planning of new experiments, outlines
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the scope of tasks for natural and numerical experi-
ments, and allows the known data and the methods
of their collection to be specified and ordered.
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ACUMIITOTUYHI XBUJILOBI
PO3B’SI3KU MOJIEJII CEPE/IOBUIIIA
3 OCHUJISITOPAMU BAH JEP I10JId

Peswowme

Y poboTi po3rIsiacThCd OJHOBUMIpHA MaTeMaTHYHAa MOJEJb
CKJIAJTHOTO CEPEJIOBUINA, sIKAa CKJIATAE€THCH 13 XBHJIBOBOI'O PiB-
HSITHHS JIJ1s1 OCHOBHOI'O CEPEJIOBHINA Ta 3B’ sI3aHUX 3 HUM PiBHSIHB
BaH Aep HOJ’IH AJIdd KOJIMBHUX BKJIFOYCHD. BI/IKOpI/ICTOByIO‘II/I
meron, BoromoboBa—MuTponoabcbKoro, mobyqoBaHi XBUILOBI
PO3B’sI3KU CJIaOKOHEIHIMHOT MOJIeJl, aMIUITyJa AKUX OIKCY-
€TbCsl TPUBUMIPHOK JUHAMIYHOIO CUCTEMOI. AMIUITY HA CHU-
cTeMa JOKJIaHO BUBYAJIaCh METOJAMU METOJAMH SIKICHOI'O Ta
9UCJIOBOrO aHaJji3y. 30Kpema, OyJI0 BUSIBJIEHO (pa30BOMY IIPO-
CTOPi CHCTEMH IE€PIOJNUYHHUX, MYJIBTUIIEPIOJUIHUX Ta XAOTH-
YHUX TPAEKTOPIii, JocimzkeHo 6idbypKalil X pexKuMiB 3a J10-
nomoroio TexHiku mepepisis Ilyankape, Takox 6ys10 3HaIEHO
TOYHI PO3B’SI3KU Y BUIAJKY PEIYKII CHCTEMH JI0 JBOBUMIPHOI.
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