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ASYMPTOTIC WAVE
SOLUTIONS FOR THE MODEL OF A MEDIUM
WITH VAN DER POL OSCILLATORSPACS 05.45.Ac, 83.60.Uv

A one-dimensional mathematical model for a complex medium with van der Pol oscillators
has been studied. Using the Bogolyubov–Mitropolsky method, the wave solutions for a weakly
nonlinear model are derived, with their amplitudes being described by a three-dimensional dy-
namical system analyzed in more details by numerical and qualitative methods. In particular,
periodic, multiperiodic, and chaotic trajectories are found in the phase space of the dynam-
ical system. Bifurcations of those regimes were considered using the Poincaré section tech-
nique. Exact solutions are derived in the case where the three-dimensional system for ampli-
tudes is reduced to the two-dimensional one.
K e yw o r d s: nonlinear waves, van der Pol oscillator, chaotic attractor.

1. Introduction

The majority of natural media are hierarchical forma-
tions of structural elements, the dynamics of which
cannot be neglected under certain loading conditions
[1, 2]. For the description of such structured media, a
mathematical model dealing with two continua was
used: a background medium and particle oscillators
coupled with it [3, 4]. Those models were extended
onto nonlinear media in works [5–7] and nonlocal ones
in works [8, 9]. In the cited works, the nonlinearity
and the non-locality of a background medium were
taken into account in the corresponding equations of
state, whereas the dynamics of oscillating inclusions
remained linear. In work [10], it was proposed to de-
scribe the dynamics of oscillating inclusions by non-
linear equations, in particular, by the van der Pol
equations. In this work, the case of a linear back-
ground medium together with the nonlinear dynamics
of oscillating inclusions, which are described by three
forms of the van der Pol equations, is studied. Hence,
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the mathematical model of a complex medium looks
like

𝜕2𝑢

𝜕𝑡2
=

𝜕𝜎

𝜕𝑥
−

𝑁∑︁
𝑗=1

𝑚𝑗
𝜕2𝑤𝑗

𝜕𝑡2
, 𝜎 =

𝐸

𝜌

𝜕𝑢

𝜕𝑥
,

𝜕2𝑤𝑘

𝜕𝑡2
+ 𝐹𝑘 (𝑤𝑘 − 𝑢) = 0, 𝑘 = 1, ..., 𝑁,

(1)

where 𝑢 is a shift of the background medium charac-
terized by the density 𝜌, 𝜎 is the strain, 𝐸 is Young’s
modulus, 𝑤𝑘 is a shift of the oscillating inclusion char-
acterized by the density 𝑚𝑘𝜌 and the characteristic
frequency 𝜔𝑘, and 𝑡 and 𝑥 are the time and space vari-
ables, respectively. The operator 𝐹𝑘, which describes
the dynamics of the partial oscillator, has the follow-
ing form:

𝐹𝑘 (𝑦) = −
(︀
𝜆𝑘 − 𝜇𝑘𝑦

2
)︀ 𝜕𝑦
𝜕𝑡

+ 𝜔2
𝑘𝑦,

where 𝑘 = 1, ..., 𝑁 , i.e. the oscillating inclusion is
considered as a set of van der Pol oscillators.

Using the characteristic quantities 𝜏 , 𝑐0, and 𝑢0, we
can make model (1) to be dimensionless, by executing
the transformations 𝑡 → 𝜏𝑡, 𝑥 → 𝜏𝑐0𝑥, 𝑢 → 𝑢0𝑢, 𝑤 →
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→ 𝑢0𝑤, 𝜆𝑘 → 𝜆𝑘𝜏
−1, 𝜔𝑘 → 𝜔𝑘𝜏

−1, 𝜇𝑘 = 𝜆𝑘𝜏
−1𝑢−2

0 .
Then, model (1) looks like

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
−

𝑁∑︁
𝑗=1

𝑚𝑗
𝜕2𝑤𝑗

𝜕𝑡2
,

𝜕2𝑤𝑘

𝜕𝑡2
− 𝜆𝑘

[︀
1− (𝑤𝑘 − 𝑢)

2]︀𝜕 (𝑤𝑘 − 𝑢)

𝜕𝑡
+

+ 𝜔2
𝑘 (𝑤𝑘 − 𝑢) = 0,

(2)

where 𝑐2 = 𝐸𝜌−1𝑐−2
0 . Let us consider the wave solu-

tions of model (2),

𝑢 = 𝑈 (𝑠), 𝑤𝑘 = 𝑊𝑘 (𝑠), 𝑠 = 𝑥+𝐷𝑡, (3)

and analyze the dependence of their structure on the
parameters 𝜆𝑘 and 𝐷.

2. Construction
of the Asymptotic Solution for Model (2)

Substituting expressions (3) into system (2), we ob-
tain a system of ordinary differential equations

𝑊𝑘
′′ +Ω2

𝑘 (𝑊𝑘 − 𝑈) = 𝑅𝑘 (𝑊𝑘 − 𝑈) ,

𝑈 =

𝑁∑︁
𝑗=1

𝜙𝑗𝑊𝑗 ,
(4)

where 𝑅𝑘(𝑦) = 𝛼𝑘(1 − 𝑦2)𝑦′, 𝛼𝑘 = 𝜆𝑘

𝐷 , Ω𝑘 = 𝜔𝑘

𝐷 ,
𝜙𝑘 = 𝐷2

𝑐2−𝐷2𝑚𝑘, (...)′ = 𝑑(...)/𝑑𝑠, 𝑘 = 1, ..., 𝑁 . Let
us consider the wave solutions for the model with re-
gard for the dynamics of oscillators of three types,
i.e. 𝑁 = 3. The dynamic system (4) belongs to the
model class of coupled oscillators. The main interest
in the researches of those models consists in new ef-
fects, which are governed by the type of interaction
between partial oscillators. As a rule, those models
involve either the oscillator coupling with the near-
est neighbor [11, 12] or oscillators globally coupled
through the average field [13–15]. System (4) is an ex-
ample of the latter variant. The major means to study
such models are asymptotic and numerical methods.

Let us consider the case of weak nonlinearity, when
𝛼𝑘 = 𝜀𝛼𝑘, where 𝜀 ≪ 1. In this case, the Bogolyubov–
Mitropolsky method [16,17] can be applied to system
(4). At 𝜀 = 0, the solutions of system (4) are sought
in the form

𝑊1 = 𝑎𝑟11 sin 𝜃1 + 𝑏𝑟12 sin 𝜃2 + 𝑐𝑟13 sin 𝜃3,

𝑊2 = 𝑎𝑟21 sin 𝜃1 + 𝑏𝑟22 sin 𝜃2 + 𝑐𝑟23 sin 𝜃3,

𝑊3 = 𝑎𝑟31 sin 𝜃1 + 𝑏𝑟32 sin 𝜃2 + 𝑐𝑟33 sin 𝜃3,

(5)

where 𝑎, 𝑏, 𝑐, 𝑟𝑖𝑗 , 𝑘𝑖, and 𝛽𝑖 are constants, 𝜃𝑖 =
= 𝑘𝑖𝑠+𝛽𝑖, and 𝑖, 𝑗 = 1, 2, 3. Substituting expressions
(5) into Eq. (4), we obtain, for 𝜀 = 0, a system of
linear equations for 𝑟𝑖𝑗 . The condition of consistency
is the equation⃒⃒⃒⃒
⃒⃒ 𝐾1 Ω2

1𝜙2 Ω2
1𝜙3

Ω2
2𝜙1 𝐾2 Ω2

2𝜙3

Ω2
3𝜙1 Ω2

3𝜙2 𝐾3

⃒⃒⃒⃒
⃒⃒ = 0, (6)

where 𝐾𝑖 = 𝑘2+Ω2
𝑖 (𝜙𝑖 − 1), 𝑖 = 1, 2, 3. Taking condi-

tion (6) into account and adopting 𝑟1𝑗 = 1, 𝑗 = 1, 2, 3,
we obtain

𝑟2𝑗 =
Ω2

2

(︀
𝑘2𝑗 − Ω2

1

)︀
Ω2

1

(︀
𝑘2𝑗 − Ω2

2

)︀ ,
𝑟3𝑗 =

𝑘4𝑗 + 𝑘2𝑗
(︀
Ω2

1(1− 𝜙1) + Ω2
2(1− 𝜙2)

)︀
Ω2

1

(︀
𝑘2𝑗 − Ω2

2

)︀
𝜙3

−

− Ω2
1Ω

2
2 (1− 𝜙1 − 𝜙2)

Ω2
1

(︀
𝑘2𝑗 − Ω2

2

)︀
𝜙3

.

(7)

At small 𝜀 ̸= 0, we suppose the solution of system
(4) to be determined by expressions (5), in which 𝑎,
𝑏, 𝑐, and 𝛽𝑖 are functions of the “slow” variable 𝜀𝑠. We
also adopt that

𝑑𝑊1

𝑑𝑠
= 𝑎𝑘1 cos 𝜃1 + 𝑏𝑘2 cos 𝜃2 + 𝑐𝑘3 cos 𝜃3,

𝑑𝑊2

𝑑𝑠
= 𝑎𝑟21𝑘1 cos 𝜃1 +

+ 𝑏𝑟22𝑘2 cos 𝜃2 + 𝑐𝑟23𝑘3 cos 𝜃3,

𝑑𝑊3

𝑑𝑠
= 𝑎𝑟31𝑘1 cos 𝜃1 +

+ 𝑏𝑟32𝑘2 cos 𝜃2 + 𝑐𝑟33𝑘3 cos 𝜃3,

(8)

provided the additional condition

𝑑𝑎

𝑑𝑠
sin 𝜃1 +

𝑑𝛽1

𝑑𝑠
𝑎 cos 𝜃1 +

𝑑𝑏

𝑑𝑠
sin 𝜃2 +

𝑑𝛽2

𝑑𝑠
𝑏 cos 𝜃2 +

+
𝑑𝑐

𝑑𝑠
sin 𝜃3 +

𝑑𝛽3

𝑑𝑠
𝑐 cos 𝜃3 = 0,

𝑑𝑎

𝑑𝑠
𝑟21 sin 𝜃1 +

𝑑𝛽1

𝑑𝑠
𝑎𝑟21 cos 𝜃1 +

𝑑𝑏

𝑑𝑠
𝑟22 sin 𝜃2 +

+
𝑑𝛽2

𝑑𝑠
𝑏𝑟22 cos 𝜃2 +

𝑑𝑐

𝑑𝑠
𝑟23 sin 𝜃3 +

𝑑𝛽3

𝑑𝑠
𝑐𝑟32 cos 𝜃3 = 0,

𝑑𝑎

𝑑𝑠
𝑟31 sin 𝜃1 +

𝑑𝛽1

𝑑𝑠
𝑎𝑟31 cos 𝜃1 +

𝑑𝑏

𝑑𝑠
𝑟32 sin 𝜃2 +

+
𝑑𝛽2

𝑑𝑠
𝑏𝑟32 cos 𝜃2 +

𝑑𝑐

𝑑𝑠
𝑟33 sin 𝜃3 +

𝑑𝛽3

𝑑𝑠
𝑐𝑟33 cos 𝜃3 = 0.

(9)
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Substituting Eqs. (5)and (8) into Eq. (4) and taking
Eq. (6) into account, we obtain the following system
written in the normal form:

𝑑𝑎

𝑑𝑠
=

𝜀 cos 𝜃1
𝑘1𝛿

(︀
𝑅1 (𝑟23𝑟32 − 𝑟22𝑟33)+

+𝑅2 (𝑟33 − 𝑟32) +𝑅3 (𝑟22 − 𝑟23)
)︀
,

𝑑𝑏

𝑑𝑠
=

𝜀 cos 𝜃2
𝑘2𝛿

(︀
𝑅1 (𝑟21𝑟33 − 𝑟23𝑟31)+

+𝑅2 (𝑟31 − 𝑟33) +𝑅3 (𝑟23 − 𝑟21)
)︀
,

𝑑𝑐

𝑑𝑠
=

𝜀 cos 𝜃3
𝑘3𝛿

(︀
𝑅1 (𝑟22𝑟31 − 𝑟21𝑟32)+

+𝑅2 (𝑟32 − 𝑟31) +𝑅3 (𝑟21 − 𝑟22)
)︀
,

(10)

where

𝑅𝑘 = 𝛼𝑘

[︃
1−

(︃
𝑊𝑘 −

3∑︁
𝑗=1

𝜙𝑗𝑊𝑗

)︃2]︃
×

× 𝑑

𝑑𝑠

(︃
𝑊𝑘 −

3∑︁
𝑗=1

𝜙𝑗𝑊𝑗

)︃
,

𝛿 = 𝑟23 (𝑟32 − 𝑟31) + 𝑟21 (𝑟33 − 𝑟32) + 𝑟22 (𝑟31 − 𝑟33).

After the averaging according to the formula

𝑑

𝑑𝑠
(⋆) =

1

(2𝜋)3

2𝜋∫︁
0

2𝜋∫︁
0

2𝜋∫︁
0

(⋆)𝑑𝜃1𝑑𝜃2𝑑𝜃3,

system (10) reads

4𝛿
𝑑𝑥

𝑑𝑇
= 𝑥 (𝐴0 +𝐴1𝑥+𝐴2𝑦 +𝐴3𝑧),

4𝛿
𝑑𝑦

𝑑𝑇
= 𝑦 (𝐵0 +𝐵1𝑥+𝐵2𝑦 +𝐵3𝑧),

4𝛿
𝑑𝑧

𝑑𝑇
= 𝑧 (𝐶0 + 𝐶1𝑥+ 𝐶2𝑦 + 𝐶3𝑧),

(11)

where 𝑥 = 𝑎2, 𝑦 = 𝑏2, 𝑧 = 𝑐2, and 𝑇 = 𝜀𝑠. The other
parameters are

𝐴0 = 4
(︀
𝛼1𝐻11(𝑟23𝑟32 − 𝑟22𝑟33) + 𝛼2𝐻21(𝑟33 − 𝑟32)+

+ 𝛼3𝐻31(𝑟22 − 𝑟23)
)︀
,

𝐴1 = 𝛼1𝐻
3
11(𝑟23𝑟32 − 𝑟22𝑟33)− 𝛼2𝐻

3
21(𝑟33 − 𝑟32)−

− 𝛼3𝐻
3
31(𝑟22 − 𝑟23),

𝐴2 = 2(𝛼1𝐻11𝐻
2
12(𝑟22𝑟33 − 𝑟23𝑟32)+

+ 𝛼2𝐻21𝐻
2
22(𝑟32 − 𝑟33)− 𝛼3𝐻31𝐻

2
32(𝑟22 − 𝑟23)),

𝐴3 = 2(𝛼1𝐻11𝐻
2
13(𝑟22𝑟33 − 𝑟23𝑟32)+

+ 𝛼2𝐻21𝐻
2
23(𝑟32 − 𝑟33)− 𝛼3𝐻31𝐻

2
33(𝑟22 − 𝑟23)),

𝐵0 = 4
(︀
−𝛼1𝐻12(𝑟23𝑟31 − 𝑟21𝑟33)+

+ 𝛼2𝐻22(𝑟31 − 𝑟33)− 𝛼3𝐻32(𝑟21 − 𝑟23)
)︀
,

𝐵1 = −2(𝛼1𝐻12𝐻
2
11(𝑟21𝑟33 − 𝑟23𝑟31)+

+ 𝛼2𝐻22𝐻
2
21(𝑟31 − 𝑟33)− 𝛼3𝐻32𝐻

2
31(𝑟21 − 𝑟23)),

𝐵2 = 𝛼1𝐻
3
12(𝑟23𝑟31 − 𝑟21𝑟33)− 𝛼2𝐻

3
22(𝑟31 − 𝑟33)+

+ 𝛼3𝐻
3
32(𝑟21 − 𝑟23),

𝐵3 = −2(−𝛼1𝐻12𝐻
2
13(𝑟23𝑟31 − 𝑟21𝑟33)+

+ 𝛼2𝐻22𝐻
2
23(𝑟31 − 𝑟33)− 𝛼3𝐻32𝐻

2
33(𝑟21 − 𝑟23)),

𝐶0 = 4
(︀
𝛼1𝐻13(𝑟22𝑟31 − 𝑟21𝑟32)−

− 𝛼2𝐻23(𝑟31 − 𝑟32) + 𝛼3𝐻33(𝑟21 − 𝑟22)
)︀
,

𝐶1 = 2(𝛼1𝐻13𝐻
2
11(𝑟21𝑟32 − 𝑟22𝑟31)+

+ 𝛼2𝐻23𝐻
2
21(𝑟31 − 𝑟32)− 𝛼3𝐻33𝐻

2
31(𝑟21 − 𝑟22)),

𝐶2 = 2(−𝛼1𝐻13𝐻
2
12(𝑟22𝑟31 − 𝑟21𝑟32)+

+ 𝛼2𝐻23𝐻
2
22(𝑟31 − 𝑟32)− 𝛼3𝐻33𝐻

2
32(𝑟21 − 𝑟22)),

𝐶3 = −𝛼1𝐻
3
13(𝑟22𝑟31 − 𝑟21𝑟32) + 𝛼2𝐻

3
23(𝑟31 − 𝑟32)−

− 𝛼3𝐻
3
33(𝑟21 − 𝑟22),

where

𝐻1𝑗 = 𝜙1 − 1 + 𝜙2𝑟2𝑗 + 𝜙3𝑟3𝑗 ,

𝐻2𝑗 = 𝜙1 + (𝜙2 − 1)𝑟2𝑗 + 𝜙3𝑟3𝑗 ,

𝐻3𝑗 = 𝜙1 + 𝜙2𝑟2𝑗 + (𝜙3 − 1)𝑟3𝑗 .

Hence, we come to studying the structure of the
first octant in the phase space of system (11).

3. Analysis of Two-Dimensional
Subsystems of the Dynamic System (11)

It is evident that, on the coordinate planes, the
three-dimensional system (11) is reduced to two-
dimensional ones. For instance, on the plane 𝑧 = 0,
it looks like
𝑑𝑥

𝑑𝑇
= 𝑥 (𝐴0 +𝐴1𝑥+𝐴2𝑦) ,

𝑑𝑦

𝑑𝑇
= 𝑦 (𝐵0 +𝐵1𝑥+𝐵2𝑦) , 𝑧 = 0.

(12)

The dynamic system (12) describes the amplitude dy-
namics for the two-frequency solution (5). Carrying
out the scaling

𝜈𝜀𝑠 = 𝑇, 𝑥 = 𝜉�̄�, 𝑦 = 𝜂𝑦,
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𝜈 = −𝐴0

4𝛿
, 𝜉 = −𝐴0

𝐴1
, 𝜂 = −𝐴0

𝐴2
,

the dynamic system (12) is transformed into the form
(the bars over the variables are omitted)

𝑑𝑥

𝑑𝑇
= 𝑥 (𝑥+ 𝑦 − 1) ,

𝑑𝑦

𝑑𝑇
= 𝑦 (𝜇1𝑥+ 𝜇2𝑦 − 𝜇3) ,

(13)

where

𝜇1 =
𝐵1

𝐴1
, 𝜇2 =

𝐵2

𝐴2
, 𝜇3 =

𝐵0

𝐴0
.

Without making a detailed analysis of this amplitude
system (this was done in work [10]), let us point to
the main properties of the dynamic system (13).

System (13) has four stationary points with the
coordinates

𝑂 (0; 0) , 𝑋 (1; 0) , 𝑌

(︂
0;

𝜇3

𝜇2

)︂
, 𝑄

(︂
𝜇2 − 𝜇3

𝜇2 − 𝜇1
;
𝜇3 − 𝜇1

𝜇2 − 𝜇1

)︂
.

In view of the sense of the variables 𝑥 and 𝑦, it follows
that points 𝑌 and 𝑄 lie in the first quadrant of the
phase plane if

𝜇3

𝜇2
≥ 0 and

𝜇2 − 𝜇3

𝜇2 − 𝜇1
≥ 0,

𝜇3 − 𝜇1

𝜇2 − 𝜇1
≥ 0,

respectively.
The eigenvalues of the linearization matrix

𝐽 (𝑥0; 𝑦0) =
(︁
2𝑥0 + 𝑦0 − 1 𝑥0

𝜇1𝑦0 𝜇1𝑥0 + 2𝜇2𝑦0 − 𝜇3

)︁
are as follows:

– for point 𝑂, 𝜆𝑂 = ( −1;−𝜇3);
– for point 𝑋, 𝜆𝑋 = (1;𝜇1 − 𝜇3);
– for point 𝑌 , 𝜆𝑌 =

(︀
𝜇3;𝜇3𝜇

−1
2 − 1

)︀
;

– for point 𝑄, 𝜆𝑄 =
𝜇2 − 𝜇1𝜇2 − 𝜇3 + 𝜇2𝜇3 ±

√
Δ

2 (𝜇2 − 𝜇1)
,

where Δ =
(︀
𝜇2−𝜇1𝜇2−𝜇3+𝜇2𝜇3

)︀2
+ 4(𝜇2−𝜇1)(𝜇2 −

−𝜇3)(𝜇1 − 𝜇3).
The stationary points 𝑋 and 𝑌 evidently correspond
to the existence of harmonic modes with frequencies
𝑘1 and 𝑘2 in the system. Point 𝑄 corresponds to a
biharmonic mode.

As was shown in work [18], system (13) has no
closed trajectories, because there exists the function

𝐵 (𝑥, 𝑦) = 𝑥𝑝−1𝑦𝑞−1, 𝑝 =
𝜇2 − 𝜇1𝜇2

𝜇1 − 𝜇2
, 𝑞 =

𝜇2 − 1

𝜇1 − 𝜇2
,

for which

𝐺 =
𝜕

𝜕𝑥
(𝐵𝑥(𝑥+ 𝑦 − 1)) +

𝜕

𝜕𝑦
(𝐵𝑦(𝜇1𝑥+ 𝜇2𝑦−

−𝜇3)) =
𝜇2(𝜇1 − 𝜇3 − 1) + 𝜇3

𝜇1 − 𝜇2
𝐵.

The curve 𝐺 = 0 has no branches, in particu-
lar, in the first quadrant if 𝜇2 (𝜇1 − 𝜇3 − 1) + 𝜇3 ̸=
̸= 0. Therefore, according to the Dulac criterion, the
first quadrant does not contain closed trajectories. In
work [10], all typical phase portraits of the dynamic
system and their dependences on the parameter 𝐷
were analyzed, and special cases were indicated, when
the exact solutions of the dynamic dynamic system
can be found. In particular, the exact solution

𝑦 (𝑥) =
𝑥 (𝑥− 1)

−𝑥±
√︀
𝑥2 + const (𝑥− 1)𝑥2−2𝜇3

(14)

was found under the additional conditions

𝜇2 = 2𝜇3, 𝜇1 =
1

2
(1 + 2𝜇3) , (15)

which is absent from work [19].

4. Qualitative Analysis
of Stationary Points in the Dynamic System
(11)

Let us consider the phase space structure of the dy-
namic system (11) in a vicinity of the stationary point
𝑆(𝑥0; 𝑦0; 𝑧0) with the coordinates that satisfy the sys-
tem of linear algebraic equations

𝐴0 +𝐴1𝑥0 +𝐴2𝑦0 +𝐴3𝑧0 = 0,

𝐵0 +𝐵1𝑥0 +𝐵2𝑦0 +𝐵3𝑧0 = 0,

𝐶0 + 𝐶1𝑥0 + 𝐶2𝑦0 + 𝐶3𝑧0 = 0.

(16)

According to Cramer’s rule, 𝑥𝑖 = Δ𝑖Δ
−1. Using the

Andronov–Hopf theorem [20], let us determine con-
ditions, under which oscillatory modes can emerge in
a vicinity of the stationary point 𝑆. According to the
theorem, one of the necessary conditions for a peri-
odic solution to exist consists in that the linearization
matrix

𝐽 =

⎛⎝𝐴1𝑥0 𝐴2𝑥0 𝐴3𝑥0

𝐵1𝑦0 𝐵2𝑦0 𝐵3𝑦0
𝐶1𝑧0 𝐶2𝑧0 𝐶3𝑧0

⎞⎠
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Fig. 1. Phase portrait of the limiting cycle in the phase space
of the dynamic system (11) for 𝜆3 = −0.035

Fig. 2. Bifurcation diagram for the development of the lim-
iting cycle of the dynamic system (11) with the growth of the
parameter 𝜆3

should possess a pair of purely imaginary eigenvalues.
Then the matrix 𝐽 must satisfy the relation

det 𝐽 = tr 𝐽
3∑︁

𝑖=1

𝐽𝑖𝑖.

It is convenient to express this condition in the form

(𝐴1Δ1 +𝐵2Δ2 + 𝐶3Δ3)

(︂
1

Δ3

⃒⃒⃒
𝐴1 𝐴2
𝐵1 𝐵2

⃒⃒⃒
+

+
1

Δ2

⃒⃒⃒
𝐴1 𝐴3
𝐶1 𝐶3

⃒⃒⃒
+

1

Δ1

⃒⃒⃒
𝐵2 𝐵3
𝐶2 𝐶3

⃒⃒⃒)︂
= 1. (17)

Expression (17) describes the curve of neutral sta-
bility. It is a definite manifold in the parametric
space. While crossing this manifold, the saddle-focus

Fig. 3. Poincaré section of the chaotic attractor for 𝜆3 =

= −0.032

Fig. 4. Limiting cycle of the period 3𝑇 in the phase space of
the dynamic system (11) for 𝜆3 = −0.03213

𝑆 with a stable one-dimensional manifold can be
transformed into a limiting cycle. In order to study
the limiting cycle while going away from the neutral
stability curve, the methods of qualitative and nu-
merical analyses turn out rather effective [21].

5. Numerical Analysis of System (11)

Let us so choose the values of model parameters that
(i) solutions of Eq. (6) are real-valued and (ii) solu-
tions of system (16) are positive, i.e. the stationary
point 𝑆 is located in the first octant. Taking those
requirements into account, we fix the following pa-
rameters: 𝜔1 = 0.2, 𝜔2 = 0.4, 𝜔3 = 0.6, 𝑚1 = 0.5,
𝑚2 = 0.6, 𝑚3 = 0.8, 𝜆1 = 1.8, 𝜆2 = 0.5, 𝑐 = 1, and
𝐷 = 1.3.
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Asymptotic wave solutions for the model of a medium

It is convenient to choose one of the 𝜆𝑖-parameters,
e.g., 𝜆3, as a bifurcation one. Then the quantities 𝑘2𝑖
and 𝑟𝑖𝑗 do not depend on 𝜆3, and their values are
not changed in the course of numerical experiments.
Hence,

{𝑘2𝑖 } = {0.0290475; 0.121186; 0.766635},
{𝑟2𝑖} = {−0.327842; 14.7132; 4.42268},
{𝑟3𝑖} = {0.291313;−33.4464;−25.641},
𝛿 = 229.779, 𝑖 = 1, 2, 3.

(18)

Substituting values (18) into condition (17), we ob-
tain a high-order algebraic equation for 𝜆3. One of
the roots of this equation, 𝜆3 = 𝜆⋆

3 = −0.406295,
corresponds to the existence of two purely imaginary
and one negative eigenvalues in the spectrum of the
linearization matrix 𝐽 . The analysis of eigenvalues of
the matrix 𝐽 also shows that the point 𝑆 is a stable
focus, if 𝜆3 < 𝜆⋆

3, and an unstable one, if 𝜆3 > 𝜆⋆
3.

Let us consider the behavior of trajectories of sys-
tem (11) at 𝜆3 > 𝜆⋆

3. Proceeding from 𝜆3 = −0.035,
we can integrate system (11) with initial conditions
selected near the stationary point 𝑆 to be convinced
that the trajectory of the system converges to the
limiting cycle (Fig. 1).

The evolution of a limiting cycle with the growth of
the parameter 𝜆3 is convenient to be studied with the
help of the Poincaré section technique. Let the plane
𝑦 = 0 be selected as a secant one. The coordinate 𝑥 of
the intersection point between the trajectory and the
secant plane is reckoned along the ordinate axis, and
the parameter 𝜆3 along the abscissa one. The analy-
sis of the obtained bifurcation diagram (Fig. 2) shows
that the limiting cycle undergoes a few doubling bi-
furcations followed by the emergence of a chaotic at-
tractor with rather a typical structure (Fig. 3). One
of the features in the chaotic diagram region is a win-
dow of periodicity for 𝜆3 = −0.03213, which corre-
sponds to the existence of a periodic trajectory with
the period 3𝑇 (Fig. 4). A jump of the oscillation am-
plitude is also observed at this point. Despite all
that, the form of Poincaré sections remains similar
to parabolic, as is shown in Fig. 3, with the changes
manifesting themselves only in the addition of seg-
ments to the branches of this parabola.

6. Conclusions

Hence, the three-frequency wave solution for a weakly
nonlinear model of the medium, Eq. (1), is described

by an amplitude system which has periodic, multi-
periodic, and chaotic solutions. It is evident that the
increase in the number of partial oscillators in the
model stimulates the growth of the phase space di-
mensionality for the amplitude system, which may
result in the emergence of new modes.

Note that the three-frequency mode manifests itself
when two partial oscillators, in the absence of a cou-
pling, are in the limiting cycle mode (𝜆1 > 0, 𝜆2 > 0),
whereas the equilibrium position of the third oscilla-
tor is a stable focus (𝜆3 < 0). The coupling between
the oscillators through the background medium is ca-
pable of redistributing the energy between the oscil-
lators, as well as creating new localized modes.

It should also be emphasized that the results ob-
tained should be used with a certain caution, because,
as follows from the analysis of expressions (7) and
(10), the results were obtained under the condition
that the solution frequencies, 𝑘2𝑖 , and the partial fre-
quencies of the linear system, Ω2

𝑖 , differ substantially
(the absence of resonances). This means that the
parameter 𝜀 must be smaller than the differences be-
tween the indicated frequencies.

Despite that the results obtained with the use of
asymptotic methods have the known restrictions, we
may assert that the account for processes in the
medium model at the microstructure level makes it
possible to describe the capability of such media to
manifest their self-organization properties: the for-
mation of multiperiodic localized waves, their bifur-
cations, and so forth.

The results obtained testify that the variety of, at
least, wave solutions for model (1) is much wider than
that of solutions for classical models, which do not
consider a complicated rheology of media. Instead,
the direct application of generalized models, like
model (1), to the description of a physical object be-
comes more complicated. The separate formulations
of problems – in particular, concerning the propaga-
tion of vibrations along a one-dimensional rod – were
considered in work [22], where the necessity to use ex-
perimental data on the distribution of quantities 𝑚𝑘

and 𝜔𝑘 was stressed.
Other statements of problems are devoted to the

resonance phenomena in geomaterials [7], where the
characteristic oscillator frequencies 𝜔𝑘 were identi-
fied with the dominating frequencies in geomedia
[23]. Therefore, the development of similar models
stimulates the planning of new experiments, outlines
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the scope of tasks for natural and numerical experi-
ments, and allows the known data and the methods
of their collection to be specified and ordered.
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АСИМПТОТИЧНI ХВИЛЬОВI
РОЗВ’ЯЗКИ МОДЕЛI СЕРЕДОВИЩА
З ОСЦИЛЯТОРАМИ ВАН ДЕР ПОЛЯ

Р е з ю м е

У роботi розглядається одновимiрна математична модель
складного середовища, яка складається iз хвильового рiв-
няння для основного середовища та зв’язаних з ним рiвнянь
Ван дер Поля для коливних включень. Використовуючи
метод Боголюбова–Митропольського, побудованi хвильовi
розв’язки слабконелiнiйної моделi, амплiтуда яких опису-
ється тривимiрною динамiчною системою. Амплiтудна си-
стема докладно вивчалась методами методами якiсного та
числового аналiзу. Зокрема, було виявлено фазовому про-
сторi системи перiодичних, мультиперiодичних та хаоти-
чних траєкторiй, дослiджено бiфуркацiї цих режимiв за до-
помогою технiки перерiзiв Пуанкаре, також було знайдено
точнi розв’язки у випадку редукцiї системи до двовимiрної.
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