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The band spectrum of bosonic atoms in two-dimensional honeycomb optical lattices with the
graphene-type structure has been studied. The dispersion laws in the bands and the one-particle
spectral densities are calculated for the normal phase in the random phase approximation. The
temperature-dependent gapless spectrum with Dirac points located at the Brillouin zone bound-
ary is obtained for the lattice with energetically equivalent sites, with the corresponding chemi-
cal potential lying outside the allowed energy band. Different on-site energies in the sublattices
are shown to induce the appearance of a gap in the spectrum, so that the chemical potential can
be located between the subbands, which gives rise to a substantial reconstruction of the band
spectrum. The frequency dependences of the one-particle spectral density for both sublattices
are determined as functions of the chemical potential level, the spectral gap magnitude, and
the temperature.
K e yw o r d s: optical lattice, honeycomb lattice, phase transition, spectral density, hard-core
bosons, Dirac points.

1. Introduction

Within the last decade, the considerable attention has
been focused on the research and the description of
the phenomena occurring at very low temperatures in
subsystems of atoms that are located in the so-called
optical lattices. Such lattices are created under lab-
oratory conditions, using the interference of counter-
propagating coherent laser beams [1, 2]. The electro-
magnetic field that arises in this case is periodic in
space, with its period being determined by the length
of light waves and the relative angle between the
beams. As a result, the potential that acts on parti-
cles (atoms) in this field is also periodic. Atoms in the
optical lattice compose a perfect quantum-mechanical
system, almost all parameters of which can be con-
trolled. This fact makes it possible to study phenom-
ena which are hard to be observed in ordinary crys-
tals. Depending on the number and the orientation of
interfering beams, one-, two-, and three-dimensional
lattices with various symmetries and structures can
be created [3].

Two important directions of modern quantum
physics were combined to research and to describe the
behavior of ultracold Bose atoms in two-dimensional
optical lattices with the honeycomb structure. On the
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one hand, in optical lattices, phase transitions associ-
ated with the Bose condensation in the bosonic sub-
system take place, and new phases of specific types
can also emerge. An additional interest in such ob-
jects is related to the fact that a number of phenom-
ena in the physics of condensed state and systems
with strong particle correlations can be reproduced
by analyzing the behavior of atoms arranged in op-
tical lattices. On the other hand, a two-dimensional
hexagonal carbon structure known as graphene be-
came the object of a special attention recently. It
has the unique physical properties resulting from the
so-called Dirac energy spectrum of conduction elec-
trons (a linear dispersion law in a vicinity of 𝐾-points
in the Brillouin zone). Therefore, the study of the
thermodynamics and the energy spectrum of Bose
atoms, as well as Fermi ones, in optical lattices of the
graphene type attracts a considerable attention. The
corresponding important problems include, in partic-
ular, the research of how the mentioned feature in the
energy spectrum affects the scenario of phase transi-
tions in the system of ultra-cold atoms. The inverse
problem concerning a modification of the spectrum
structure at the transitions from one phase to the
others is also of interest.

Quantum states in the system of bosonic atoms
and a transition into the phase with the Bose con-
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densate (the so-called superfluid (SF) phase) in an
optical lattice of the graphene type were observed in
work [4]. The revealed regions of existence of various
phases (in the case concerned, these were the Mott
insulator and the SF phases) were in a qualitative
agreement with the phase diagrams calculated in the
mean-field approximation. The specification of phase
region boundaries by making allowance for site-to-
site correlations with the help of the cluster gener-
alization of the Gutzwiller scheme was carried out
later [5]. The attention was also paid to honeycomb
lattices; here, in contrast to graphene, the states lo-
calized at the optical lattice sites are energetically
nonequivalent if those sites belong to different sub-
lattices, 𝐴 and 𝐵. The cases of different on-site re-
pulsion energies (𝑈𝐴 ̸= 𝑈𝐵) [6] and different poten-
tial well depths (𝜀𝐴 ̸= 𝜀𝐵) [7, 8] were examined. In
the latter case, it was taken into consideration that,
besides 𝑠-states of atoms, the excited 𝑝𝑥,𝑦-states of
atoms localized in deeper wells can also participate in
the particle transfer and condensate formation pro-
cesses. This circumstance made it possible to study
mechanisms governing the formation of the so-called
orbital (multiorbital) superfluid phase.

The features in the energy spectrum of bosons in
optical lattices with the graphene-type structure were
considered in a few works. In work [9], changes in the
arrangement of Dirac points and the spectrum topol-
ogy under the influence of the interaction between
particles were considered, and the weak coupling ap-
proximation (in the framework of Bogolyubov’s ap-
proach) was applied. In works [8, 10], the issues con-
cerning the displacement and the possible disappear-
ance of Dirac points as a result of the anisotropic
(𝑡𝑖𝑗 ̸= 𝑡𝑖𝑗′) variations of parameters for the parti-
cle transfer between the neighbor lattice sites (such a
variation can be stimulated by a mechanical shaking
[10]) were analyzed; however, a more complete anal-
ysis of the spectrum and its reconstruction at tran-
sitions from one phases to the others was not carri-
ed out.

The theoretical description of the condensation of
Bose particles in optical lattices in general and, in
particular, in lattices with the graphene-type struc-
ture is mainly carried out on the basis of the Bose–
Hubbard model [11, 12] and in its limiting (𝑈 → ∞)
case, the hard-core boson model [13]. This model ade-
quately describes the thermodynamics and the energy
spectrum of a bosonic system at low population levels

(0 ≤ 𝑛 ≤ 1). Being applied (in the simplest formula-
tion) to honeycomb lattices, it enables one to find
the boundaries of the regions, where the main phases
exist: Mott insulator (MI), superfluid (SF) and mod-
ulated (CDW) phases; the latter exists if the sublat-
tices are nonequivalent. The extension of the hard-
core boson model by allowing the particle hopping 𝑡𝑖𝑗 ,
besides the nearest, to farther lattice sites, revealed
the existence of new phases. As was shown in work
[14], a large radius of the function 𝑡𝑖𝑗 gives rise to the
appearance of a specific phase in the graphene-type
lattice, the so-called Bose metal.

The hard-core boson model is known already since
the 1950s. Its first application was associated with the
liquid helium theory in the framework of the lattice
model [15]. The model was also used in the theory
of Josephson contact systems [16] and the theory of
high-temperature superconductivity (in the local-pair
approach) [17]. It was also made a basis for the cal-
culations of ionic conductivity in crystals [18]. During
last years, besides the description of the systems of
ultracold Bose particles in optical lattices, the model
was also applied to study the physical processes as-
sociated with ionic intercalation and adsorption of
quantum particles on a metal surface [19, 20].

This work continues our theoretical researches [21–
24] dealing with the energy spectrum and the spectral
characteristics of a quantum lattice Bose gas, and, in
particular, the hard-core boson model. In the frame-
work of the pseudospin approach, by applying the
fermionization procedure in the one-dimensional case
[21] and the random phase approximation in the more
general three-dimensional one [22], modifications in
the one-particle spectral densities at the transition
from the non-ordered (NO) state into the ordered
one, in which ⟨𝑆𝑥⟩ = ⟨𝑏+⟩ = ⟨𝑏⟩ ≠ 0 and which is
an analog of the phase with the lattice Bose conden-
sate (the SF phase), were studied. The spectral den-
sities and their frequency dependences obtained in
work [22] qualitatively agree with the corresponding
frequency dependences calculated on the basis of the
fermionization model and using the method of exact
diagonalization at one-dimensional clusters [23].

Our present research aimed at studying the spec-
tral characteristics of a one-particle spectrum in the
hard-core boson model in the case of a plane honey-
comb (of the graphene type) lattice with energetically
nonequivalent sites. A similar problem for a three-
dimensional lattice with a model density of states
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for the nonperturbed one-particle spectrum was con-
sidered in work [24], where some general regulari-
ties in the structure of the hard-core boson band
spectrum were elucidated. The graphene-type lattice,
however, introduces its specificity into the spectrum
structure, and this issue had to be analyzed. We ap-
plied an approach expounded in works [22, 24]. It is
based on the pseudo-spin formalism and the appli-
cation of Green’s function technique while calculat-
ing the spectral densities. At the first stage of cal-
culations, the results of which are the topic of this
paper, we found a band structure and one-particle
spectral densities for the non-ordered (normal) phase
and studied their dependences on the location level of
the chemical potential of Bose particles with respect
to the band spectrum, the difference between on-site
energies, 𝛿 = (𝜀𝐴 − 𝜀𝐵)/2, and the temperature.

2. Model

In the general case, the Hamiltonian of the quantum
lattice gas is given by the expression

𝐻 = −
∑︁
𝑖,𝑗

𝑡𝑖𝑗𝑏
+
𝑖 𝑏𝑗 +

∑︁
𝑖

(𝜀𝛼 − 𝜇)𝑛𝑖, (1)

where 𝑡𝑖𝑗 is the transfer integral, 𝜀𝛼 are the on-site
energies (𝛼 = 𝐴 or 𝐵 is the sublattice index), 𝜇 is
the chemical potential, 𝑏+𝑖 (𝑏𝑖) is the operator of par-
ticle creation (annihilation), and 𝑛𝑖 is the number of
particles at the 𝑖-th site. The site-to-site interaction
energy is neglected.

In the case of optical lattices with deep poten-
tial wells, the energy of the on-site repulsion of Bose
atoms is high, so that the hard-core boson model, in
which the site population number is restricted (𝑛𝑖 = 0
or 1), is a good approximation. Such bosons are de-
scribed by the Pauli operators with the commutation
relations

[𝑏+𝑖 , 𝑏
+
𝑗 ]=[𝑏𝑖, 𝑏𝑗 ]=[𝑏+𝑖 , 𝑏𝑗 ]=0, 𝑖 ̸=𝑗; {𝑏𝑖, 𝑏+𝑖 }=1. (2)

The model becomes equivalent to the problem with
the pseudospin 𝑆 = ↓ (𝑆 = ↑) after the transforma-
tion

𝑏+𝑖 = 𝑆−
𝑖 , 𝑏𝑖 = 𝑆+

𝑖 , 𝑏+𝑖 𝑏𝑖 = 𝑛𝑖 =
1

2
− 𝑆𝑧

𝑖 . (3)

In the spin representation, the Hamiltonian looks like

𝐻 = −
∑︁
𝑖,𝑗

𝑡𝑖𝑗𝑆
−
𝑖 𝑆+

𝑗 −
∑︁
𝑖

ℎ𝛼𝑆
𝑧
𝑖 + const, (4)

where

ℎ𝛼 = (𝜀𝛼 − 𝜇), const =
∑︁

𝛼=𝐴,𝐵

(𝜀𝛼 − 𝜇)
𝑁

2
. (5)

Below, the constant term in the Hamiltonian is omit-
ted. The summation over 𝑖 implies the summation
over the cell index 𝑛 and the sublattice index 𝛼.

Taking the aforesaid into account, in the case of
two sublattices (𝛼 = 𝐴,𝐵), we obtain the following
expression for the Hamiltonian:

𝐻 = −
∑︁
𝑛𝑛′

𝐽𝐴𝐵
𝑛𝑛′ (𝑆𝑥

𝑛𝐴𝑆
𝑥
𝑛′𝐵 + 𝑆𝑦

𝑛𝐴𝑆
𝑦
𝑛′𝐵)−

−
∑︁
𝑛𝑛′

𝐽𝐵𝐴
𝑛𝑛′ (𝑆𝑥

𝑛𝐵𝑆
𝑥
𝑛′𝐴 + 𝑆𝑦

𝑛𝐵𝑆
𝑦
𝑛′𝐴)−

−ℎ𝐴

∑︁
𝑛

𝑆𝑧
𝑛𝐴 − ℎ𝐵

∑︁
𝑛′

𝑆𝑧
𝑛′𝐵 . (6)

Making a rotation by a certain angle 𝜃 in the spin
space,

𝑆𝑧
𝑛𝛼 = 𝜎𝑧

𝑛𝛼 cos 𝜃𝛼 + 𝜎𝑥
𝑛𝛼 sin 𝜃𝛼

𝑆𝑥
𝑛𝛼 = 𝜎𝑥

𝑛𝛼 cos 𝜃𝛼 − 𝜎𝑧
𝑛𝛼 sin 𝜃𝛼, (7)

𝑆𝑦
𝑛𝛼 = 𝜎𝑦

𝑛𝛼,

we obtain

𝐻 =

=−
∑︁
𝑛𝑛′

[︀
𝐿𝐴𝐵
1 (𝑛, 𝑛′)𝜎𝑥

𝑛𝐴𝜎
𝑥
𝑛′𝐵+𝐿𝐴𝐵

2 (𝑛, 𝑛′)𝜎𝑧
𝑛𝐴𝜎

𝑧
𝑛′𝐵

]︀
+

+
∑︁
𝑛𝑛′

[︀
𝐿𝐴𝐵
3 (𝑛, 𝑛′)𝜎𝑥

𝑛𝐴𝜎
𝑧
𝑛′𝐵 + 𝐿𝐴𝐵

4 (𝑛, 𝑛′)𝜎𝑧
𝑛𝐴𝜎

𝑥
𝑛′𝐵

]︀
−

−
∑︁
𝑛𝑛′

𝐿𝐴𝐵
5 (𝑛, 𝑛′)𝜎𝑦

𝑛𝐴𝜎
𝑦
𝑛′𝐵 −

−
∑︁
𝛼

ℎ𝛼

∑︁
𝑛

(𝜎𝑧
𝑛𝛼 cos 𝜃𝛼 + 𝜎𝑥

𝑛𝛼 sin 𝜃𝛼), (8)

where the notations

𝐿𝐴𝐵
1 (𝑛, 𝑛′) = (𝐽𝐴𝐵

𝑛𝑛′ + 𝐽𝐵𝐴
𝑛′𝑛 ) cos 𝜃𝐴 cos 𝜃𝐵 ,

𝐿𝐴𝐵
2 (𝑛, 𝑛′) = (𝐽𝐴𝐵

𝑛𝑛′ + 𝐽𝐵𝐴
𝑛′𝑛 ) sin 𝜃𝐴 sin 𝜃𝐵 ,

𝐿𝐴𝐵
3 (𝑛, 𝑛′) = (𝐽𝐴𝐵

𝑛𝑛′ + 𝐽𝐵𝐴
𝑛′𝑛 ) cos 𝜃𝐴 sin 𝜃𝐵 , (9)

𝐿𝐴𝐵
4 (𝑛, 𝑛′) = (𝐽𝐴𝐵

𝑛𝑛′ + 𝐽𝐵𝐴
𝑛′𝑛 ) sin 𝜃𝐴 cos 𝜃𝐵 ,

𝐿𝐴𝐵
5 (𝑛, 𝑛′) = 𝐽𝐴𝐵

𝑛𝑛′ + 𝐽𝐵𝐴
𝑛′𝑛 .
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were introduced. Carrying out the Fourier transfor-
mation, we change to the wavevectors,∑︁
𝑛′

(𝐽𝐴𝐵
𝑛𝑛′ + 𝐽𝐵𝐴

𝑛′𝑛 )e
𝑖q(R𝑛𝐴−R𝑛′𝐵) =

= 𝐽𝐴𝐵(q) ≡ 𝐽(q),∑︁
𝑛′

(𝐽𝐵𝐴
𝑛𝑛′ + 𝐽𝐴𝐵

𝑛′𝑛 )e
𝑖q(R𝑛𝐵−R𝑛′𝐴) =

= 𝐽𝐵𝐴(q) ≡ 𝐽(−q).

(10)

Then

𝐿𝐴𝐵
1 (q) = 𝐽(q) cos 𝜃𝐴 cos 𝜃𝐵 ,

𝐿𝐴𝐵
2 (q) = 𝐽(q) sin 𝜃𝐴 sin 𝜃𝐵 ,

𝐿𝐴𝐵
3 (q) = 𝐽(q) cos 𝜃𝐴 sin 𝜃𝐵 , (11)

𝐿𝐴𝐵
4 (q) = 𝐽(q) sin 𝜃𝐴 cos 𝜃𝐵 ,

𝐿𝐴𝐵
5 (q) = 𝐽(q).

Taking into account that the environments of sites
belonging to different sublattices are equivalent, we
may write 𝐽𝐴𝐵(0) = 𝐽𝐵𝐴(0) ≡ 𝐽(0) = 3𝑡, where 𝑡 is
the doubled transfer integral between neighbor lattice
sites (see Appendix A). In the Hamiltonian, we single
out a part that corresponds to the mean-field (MF)
approximation,

𝜎𝜈
𝑛𝐴𝜎

𝜈′

𝑛′𝐵 → ⟨𝜎𝜈
𝐴⟩𝜎𝜈′

𝑛′𝐵 + ⟨𝜎𝜈′

𝐵 ⟩𝜎𝜈
𝑛𝐴 − ⟨𝜎𝜈

𝐴⟩⟨𝜎𝜈′

𝐵 ⟩,
𝜈, 𝜈′ = 𝑥, 𝑦, 𝑧, ⟨𝜎𝑥

𝛼⟩ = ⟨𝜎𝑦
𝛼⟩ = 0.

(12)

As a result, the mean-field Hamiltonian reads

𝐻MF = −
∑︁
𝑛𝛼

𝐸𝛼𝜎
𝑧
𝑛𝛼. (13)

The corresponding eigenvalues and the rotation an-
gles 𝜃𝛼 are determined from the system of equations

𝐸𝛼 = (𝜀𝛼 − 𝜇) cos 𝜃𝛼 − 𝐽(0)⟨𝑆𝑥
𝛽⟩ sin 𝜃𝛼,

(𝜀𝛼 − 𝜇) sin 𝜃𝛼 + 𝐽(0)⟨𝑆𝑥
𝛽⟩ cos 𝜃𝛼 = 0,

(14)

where

⟨𝑆𝑥
𝛼⟩ = −⟨𝜎𝑧

𝛼⟩ sin 𝜃𝛼, ⟨𝑆𝑧
𝛼⟩ = ⟨𝜎𝑧

𝛼⟩ cos 𝜃𝛼,

⟨𝜎𝑧
𝛼⟩ = 1

2 tanh
𝛽𝐸𝛼

2 , 𝛼, 𝛽 = 𝐴,𝐵, 𝛼 ̸= 𝛽.
(15)

In the non-ordered phase (for the system of bosons,
this is the so-called normal phase), 𝜃𝛼 = 0, ⟨𝑆𝑥

𝛼⟩ = 0,
⟨𝑆𝑧

𝛼⟩ = ⟨𝜎𝑧
𝛼⟩, and 𝐸𝛼 = 𝜀𝛼. The solution 𝜃𝛼 ̸= 0

describes the “ordered” phase (the phase with the

condensate of hard-core bosons), for which ⟨𝑆𝑥
𝛼⟩ ≡

≡ ⟨𝑏𝛼⟩ ̸= 0 is the order parameter. The system of
equations (14), together with formulas (15), deter-
mines the behavior of the order parameter and the
average ⟨𝑆𝑧

𝛼⟩, i.e. ⟨𝑛𝛼⟩, as the temperature in the or-
dered phase varies. The temperature-induced varia-
tion of the order parameter ⟨𝑆𝑥⟩ in the case where
the crystal is not separated into sublattices [5], for
the given on-site energy, and in the mean-field ap-
proximation is the same as in the Ising model with the
transverse field acting on the spin (the role of the field
in this work is played by the quantity ℎ𝛼 = 𝜀𝛼−𝜇). In
the further calculations, we will study the bosonic
band spectrum in the non-ordered (NO) phase at a
fixed temperature and its dependence on the fields
ℎ𝛼 at various distances from the curves on the phase
diagrams (see work [24]) that correspond to the tran-
sitions into the phase with a Bose condensate (the SF
phase).

3. Green’s Functions
and the Energy Spectrum of the Model

The one-particle energy spectrum can be calculated
using the Green’s function method and the ran-
dom phase approximation. The one-particle Green’s
function on the operators ⟨⟨𝑏𝑙𝛼|𝑏+𝑛𝛽⟩⟩ equals Green’s
function on the pseudospin operators ⟨⟨𝑆+

𝑙𝛼|𝑆
−
𝑛𝛽⟩⟩ ≡

≡ 𝐺+−
𝑙𝛼,𝑛𝛽 [22, 24]:

⟨⟨𝑆+
𝑙𝛼|𝑆

−
𝑛𝛽⟩⟩ = ⟨⟨𝑆𝑥

𝑙𝛼|𝑆𝑥
𝑛𝛽⟩⟩ − 𝑖⟨⟨𝑆𝑥

𝑙𝛼|𝑆
𝑦
𝑛𝛽⟩⟩+

+ 𝑖⟨⟨𝑆𝑦
𝑙𝛼|𝑆

𝑥
𝑛𝛽⟩⟩+ ⟨⟨𝑆𝑦

𝑙𝛼|𝑆
𝑦
𝑛𝛽⟩⟩. (16)

In the NO-phase (cos 𝜃𝛼 = 1, sin 𝜃𝛼 = 0),

𝐺+−
𝑙𝛼,𝑛𝛽 = ⟨⟨𝜎𝑥

𝑙𝛼|𝜎𝑥
𝑛𝛽⟩⟩ − 𝑖⟨⟨𝜎𝑥

𝑙𝛼|𝜎
𝑦
𝑛𝛽⟩⟩+

+ 𝑖⟨⟨𝜎𝑦
𝑙𝛼|𝜎

𝑥
𝑛𝛽⟩⟩+ ⟨⟨𝜎𝑦

𝑙𝛼|𝜎
𝑦
𝑛𝛽⟩⟩. (17)

The equation of motion for Green’s functions in the
pseudospin component representation looks like

~𝜔⟨⟨𝜎𝜈
𝑙𝛼|𝜎𝜈′

𝑛𝛽⟩⟩=
~
2𝜋

⟨[𝜎𝜈
𝑙𝛼, 𝜎

𝜈′

𝑛𝛽 ]⟩+⟨⟨[𝜎𝜈
𝑙𝛼, 𝐻]|𝜎𝜈′

𝑛𝛽⟩⟩,

𝜈, 𝜈′ = 𝑥, 𝑦.

(18)

Let us perform the decoupling of Green’s function of
the higher order, which corresponds to the random
phase approximation. At this decoupling, [𝜎𝑧

𝑙𝛼, 𝐻] →
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→ 0 and, as a result, [𝜎𝑧
𝑙𝛼, 𝐻] → 0. For Green’s func-

tions with transverse pseudospin components, we ob-
tain the system of equations

~𝜔⟨⟨𝜎𝑥
𝑙𝛼|𝜎𝑥

𝑛𝛼⟩⟩ = 𝑖𝐸𝛼⟨⟨𝜎𝑦
𝑙𝛼|𝜎

𝑥
𝑛𝛼⟩⟩−

− 𝑖⟨𝜎𝑧
𝛼⟩
∑︁
𝑛

𝐿𝛼𝛽
5 ⟨⟨𝜎𝑦

𝑛𝛽 |𝜎
𝑥
𝑛𝛼⟩⟩,

~𝜔⟨⟨𝜎𝑦
𝑙𝛼|𝜎

𝑥
𝑛𝛼⟩⟩ = −𝑖

~
2𝜋

⟨𝜎𝑧
𝛼⟩𝛿𝑙𝑛 − 𝑖𝐸𝛼⟨⟨𝜎𝑥

𝑙𝛼|𝜎𝑥
𝑛𝛼⟩⟩+

+ 𝑖⟨𝜎𝑧
𝛼⟩
∑︁
𝑛

𝐿𝛼𝛽
1 ⟨⟨𝜎𝑥

𝑛𝛽 |𝜎𝑥
𝑛𝛼⟩⟩,

~𝜔⟨⟨𝜎𝑥
𝑙𝛽 |𝜎𝑥

𝑛𝛼⟩⟩ = 𝑖𝐸𝛽⟨⟨𝜎𝑦
𝑙𝛽 |𝜎

𝑥
𝑛𝛼⟩⟩−

− 𝑖⟨𝜎𝑧
𝛽⟩
∑︁
𝑛

𝐿𝛽𝛼
5 ⟨⟨𝜎𝑦

𝑛𝛼|𝜎𝑥
𝑛𝛼⟩⟩,

~𝜔⟨⟨𝜎𝑦
𝑙𝛽 |𝜎

𝑥
𝑛𝛼⟩⟩ = −𝑖𝐸𝛽⟨⟨𝜎𝑥

𝑙𝛽 |𝜎𝑥
𝑛𝛼⟩⟩+

+ 𝑖⟨𝜎𝑧
𝛽⟩
∑︁
𝑛

𝐿𝛽𝛼
1 ⟨⟨𝜎𝑥

𝑛𝛼|𝜎𝑥
𝑛𝛼⟩⟩,

(19)

Hereafter, 𝛼 ̸= 𝛽. The system of equations for the
functions ⟨⟨𝜎𝑦

...|𝜎𝑥
𝑛𝛼⟩⟩ has a similar form. After the

Fourier transformation to the wave vectors,

𝐺𝜈𝜈′

𝛼𝛽 (q) ≡
∑︁
𝑙−𝑛

⟨⟨𝜎𝜈
𝑙𝛼|𝜎𝜈′

𝑛𝛽⟩⟩e𝑖q(R𝑙𝛼−R𝑛𝛽), (20)

where 𝐿𝐴𝐵
1 (q) = 𝐿𝐴𝐵

5 (q) = 𝐽(q) and 𝐿𝐵𝐴
1 (q) =

= 𝐿𝐵𝐴
5 (q) = 𝐽(−q), the system of equations (19)

reads

~𝜔𝐺𝑥𝑥
𝛼𝛼(q) = 𝑖𝐸𝛼𝐺

𝑦𝑥
𝛼𝛼(q)− 𝑖𝐽(q)⟨𝜎𝑧

𝛼⟩𝐺
𝑦𝑥
𝛽𝛼(q),

~𝜔𝐺𝑦𝑥
𝛼𝛼(q) = −𝑖

~
2𝜋

⟨𝜎𝑧
𝛼⟩ − 𝑖𝐸𝛼𝐺

𝑥𝑥
𝛼𝛼(q)+

+ 𝑖𝐽(q)⟨𝜎𝑧
𝛼⟩𝐺𝑥𝑥

𝛽𝛼(q),

~𝜔𝐺𝑥𝑥
𝛽𝛼(q) = 𝑖𝐸𝛽𝐺

𝑦𝑥
𝛽𝛼(q)− 𝑖𝐽(−q)⟨𝜎𝑧

𝛽⟩𝐺𝑦𝑥
𝛼𝛼(q),

~𝜔𝐺𝑦𝑥
𝛽𝛼(q) = −𝑖𝐸𝛽𝐺

𝑥𝑥
𝛽𝛼(q) + 𝑖𝐽(−q)⟨𝜎𝑧

𝛽⟩𝐺𝑥𝑥
𝛼𝛼(q).

(21)

The system of equations for Green’s functions 𝐺𝜈𝑦
𝛼𝛼(q)

and 𝐺𝜈𝑦
𝛽𝛼(q) has a similar form (with the substitution

𝐽(q) → 𝐽(−q) at proper places). The sought Green’s
function is

𝐺+−
𝛼 (q) = ⟨⟨𝑏𝛼|𝑏+𝛼 ⟩⟩q = 𝐺+𝑥

𝛼 (q)− 𝑖𝐺+𝑦
𝛼 (q). (22)

Here,

𝐺+𝑥
𝛼 (q) = ⟨⟨𝜎𝑥

𝛼|𝜎𝑥
𝛼⟩⟩q + 𝑖⟨⟨𝜎𝑦

𝛼|𝜎𝑥
𝛼⟩⟩q, (23)

𝐺+𝑦
𝛼 (q) = ⟨⟨𝜎𝑥

𝛼|𝜎𝑦
𝛼⟩⟩q + 𝑖⟨⟨𝜎𝑦

𝛼|𝜎𝑦
𝛼⟩⟩q. (24)

The equations given above have the following solu-
tions:

𝐺±𝑥
𝛼𝛼(𝜔,q) = ± ~

2𝜋
⟨𝜎𝑧

𝛼⟩×

× ~𝜔 ∓ 𝐸𝛽

(~𝜔 − 𝐸𝛼)(~𝜔 − 𝐸𝛽)− ⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩|𝐽(q)|2
, (25)

𝐺±𝑦
𝛼𝛼(𝜔,q) = 𝑖

~
2𝜋

⟨𝜎𝑧
𝛼⟩×

× ~𝜔 ∓ 𝐸𝛽

(~𝜔 − 𝐸𝛼)(~𝜔 − 𝐸𝛽)− ⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩|𝐽(q)|2
. (26)

The ultimate expressions for one-particle Green’s
functions are

𝐺+−
𝛽𝛼 (𝜔,q) = −

⟨𝜎𝑧
𝛽⟩𝐽(q)

~𝜔 − 𝐸𝛽
𝐺+−

𝛼𝛼 (𝜔,q), (27)

𝐺+−
𝛼𝛼 (𝜔,q) =

~
𝜋
⟨𝜎𝑧

𝛼⟩×

× ~𝜔 − 𝐸𝛽

(~𝜔 − 𝐸𝛼)(~𝜔 − 𝐸𝛽)− ⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩|𝐽(q)|2
. (28)

In the normal phase, the spectrum of bosonic exci-
tations determined from Eq. (28) looks like (see also
work [24])

𝜀1, 2(q) =
ℎ𝐴 + ℎ𝐵

2
±

± 1

2

√︁
(ℎ𝐴 − ℎ𝐵)2 + 4⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|𝐽(q)|2, (29)

𝐽(q) = 𝑡
(︁
e𝑖𝑞𝑦𝑎 + 2e−𝑖𝑞𝑦𝑎 cos

(︁√
3
2 𝑎𝑞𝑥

)︁)︁
(see Appendix A). Using the notations ℎ = ℎ𝐴+ℎ𝐵

2

and 𝛿 = ℎ𝐴−ℎ𝐵

2 , the expression for the spectrum can
be written in the form

𝜀1, 2(q) = ℎ±
√︂

𝛿2 +
1

9
⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩𝐽2(0)|𝛾(q)|2. (30)

The regions and the boundaries of existence for the
normal (NO) phase, as well as for the phase with
the Bose condensate (the SF phase), follow from the
divergence condition for the function 𝐺+−

𝛼𝛼 at 𝜔 → 0
and q → 0. The corresponding equation looks like

ℎ2 − 𝛿2 = ⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩𝐽2(0) ≡ ⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩9𝑡2. (31)

The relevant (𝑇, ℎ) phase diagram in terms of 𝐽(0)
units is plotted in Fig. 1.
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4. Spectrum of Bosonic Excitations.
One-Particle Spectral Density of States

Let us determine the spectral density of bosonic exci-
tations per one 𝛼-sublattice site (𝛼 = 𝐴,𝐵) for both
sublattices as the imaginary part of Green’s function
⟨⟨𝑏𝑖𝛼|𝑏+𝑖𝛼⟩⟩𝜔+𝑖𝜀:

𝜌𝛼(𝜔) = − 1

𝑁

∑︁
q

Im ⟨⟨𝑏𝛼|𝑏+𝛼 ⟩⟩q,𝜔+𝑖𝜀. (32)

On the basis of Eq. (28), we obtain

𝜌𝛼(𝜔) =
⟨𝜎𝑧

𝛼⟩
𝑁

∑︁
q

(︂
𝐶1(q)𝛿

(︂
𝜔 − 𝜀1(q)

~

)︂
+

+𝐶2(q)𝛿

(︂
𝜔 − 𝜀2(q)

~

)︂)︂
, (33)

where the coefficients before 𝛿-functions equal

𝐶1,2(q) =
1

2
± 𝛿𝛼

2
√︁
𝛿2 + 1

9 ⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩𝐽2(0)|𝛾(q)|2
. (34)

Here, 𝛼 ̸= 𝛽,

𝛿𝛼 =
{︁
𝛿, 𝛼 = 𝐴,
−𝛿, 𝛼 = 𝐵,

and 𝜀1(q) and 𝜀2(q) are the branches of spectrum
(30). This expression for the spectral density in the
NO phase formally coincides with that obtained in
work [24] for the case of a cubic lattice.

The dependence of 𝜌𝛼(𝜔,q) on the wave vector is
expressed through the dependence of 𝐽(q) on q. The
summation over q is carried out within the limits of
the first Brillouin zone Ω. In order to calculate this
sum, we change to the integral over the variable 𝑥 ≡
≡ |𝛾q|2 and introduce the function 𝜌0(𝑥):
1

𝑁

∑︁
q∈Ω

Φ(|𝐽(q)|2) = 1

𝑁

∑︁
q∈Ω

Φ(𝑡2|𝛾(q)|2) =

=

∫︁
d𝑥𝜌0(𝑥)Φ(𝑡

2𝑥),

𝜌0(𝑥) =
1

𝑁

∑︁
q∈Ω

𝛿(𝑥− |𝛾(q)|2). (35)

The transition from the summation over q to the in-
tegation within the first Brillouin zone Ω is done ac-
cording to the formula
1

𝑁

∑︁
q∈Ω

(...) =
𝑆

(2𝜋)2𝑁

∫︁
Ω

d𝑞𝑥d𝑞𝑦 (...), (36)

Fig. 1. Phase diagrams in the plane (𝑇, ℎ) for various values
𝛿 = 0, 0.25, 0.45, 0.5, and 0.55 [24]. In this and other figures,
all energy quantities are reckoned in 𝐽(0)-units

where 𝑆 is the area of the so-called main crystal re-
gion, and 𝑁 is the number of cells. The sense of the
ratio 𝑆/𝑁 is the area of the elementary cell formed
by the vectors a1 and a2 in the coordinate space:
|a1| = |a2| = 𝑎

√
3, 𝑆

𝑁 = 3
√
3

2 𝑎2.
Let us consider the integration limits over 𝑞𝑥 and

𝑞𝑦. From Fig. 2, one can see that, instead of the in-
tegration over the region Ω, it is possible to integrate
within the limits of the marked rectangle. Since the
integrand is an even function of the variables 𝑞𝑥 and
𝑞𝑦, for the summation over q ∈ Ω, we have

1

𝑁

∑︁
q

(...) =
3
√
3𝑎2

(2𝜋)2

2𝜋√
3𝑎∫︁

0

d𝑞𝑥

2𝜋
3𝑎∫︁
0

d𝑞𝑦 (...). (37)

In terms of the variables 2𝜗 =
√
3
2 𝑞𝑥𝑎 and 𝜙 = 3

2𝑞𝑦𝑎,
this formula looks like

1

𝑁

∑︁
q

(...) =
2

𝜋2

𝜋
2∫︁

0

d𝜗

𝜋∫︁
0

d𝜙(...). (38)

The final expression for 𝜌0(𝑥) in the case concerned
has the form

𝜌0(𝑥) =
1

𝜋2

𝜋∫︁
0

d𝜗

𝜋∫︁
0

d𝜙×

× 𝛿(𝑥− 1− 4 cos 2𝜗 cos𝜙− 4 cos2 2𝜗). (39)

Formula (39) directly corresponds to the expression
for the distribution function over the squared en-
ergy, 𝑔(𝜀2), for noninteracting particles in the lattice
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Fig. 2. First Brillouin zone Ω in the reciprocal lattice (iden-
tical figures mark translationally equivalent regions)

with the graphene-type structure [25, 26], according
to which 𝜌0(𝑥) can be expressed by means of the com-
plete elliptic integral of the first kind, 𝐹 (𝜋2 ,𝑚):

𝜌0(𝑥) =
1

𝜋2

1√
𝑍0

𝐹

(︃
𝜋

2
,

√︂
𝑍1

𝑍0

)︃
, (40)

where

𝑍0 =

{︂
(1 +

√
𝑥)2 − 1

4 (𝑥− 1)2, 𝑥 6 1,

4
√
𝑥, 1 6 𝑥 6 9;

𝑍1 =

{︂
4
√
𝑥, 𝑥 6 1,

(1 +
√
𝑥)2 − 1

4 (𝑥− 1)2, 1 6 𝑥 6 9.

The obtained function can be used to calculate the
spectral density,

𝜌𝛼(𝜔) = ⟨𝜎𝑧
𝛼⟩
∫︁

d𝑥𝜌0(𝑥)

(︂
𝐶1(𝑥)𝛿

(︂
𝜔 − 𝜀1(q)

~

)︂
+

+ 𝐶2(𝑥)𝛿

(︂
𝜔 − 𝜀2(q)

~

)︂)︂
, (41)

where

𝐶1,2(𝑥) =
1

2

⎛⎝1± 𝛿𝛼√︁
𝛿2 + ⟨𝜎𝑧

𝛼⟩⟨𝜎𝑧
𝛽⟩𝑡2𝑥

⎞⎠, (42)

⟨𝜎𝑧
𝛼⟩ =

1

2
tanh

𝛽ℎ𝛼

2
. (43)

For the 𝛿-functions in the expression for 𝜌𝛼(𝜔), we
use the formula 𝛿(𝑓(𝑥)) =

∑︀
𝑖
𝛿(𝑥−𝑥𝑖)
|𝑓 ′(𝑥𝑖)| , where 𝑥𝑖 are

the roots of the equation 𝑓(𝑥) = 0. In our case,

𝑥0 =
(~𝜔 − ℎ)2 − 𝛿2

⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩𝑡2

is a root for both 𝛿-functions, with the first one giving
a nonzero contribution at ~𝜔 > ℎ, and the second one
at ~𝜔 < ℎ. The corresponding derivative

|𝑓 ′(𝑥1,2)| =
𝑡2

~

⃒⃒⃒⃒ ⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩
2(~𝜔 − ℎ)

⃒⃒⃒⃒
.

After simplifications, we obtain

𝜌𝛼(~𝜔) =
𝜌𝛼(𝜔)

~
=

⟨𝜎𝑧
𝛼⟩
𝑡2

(︁
𝜌(1)𝛼 (𝜔) + 𝜌(2)𝛼 (𝜔)

)︁
. (44)

Here, the spectral density per unit energy interval was
introduced:

𝜌(1,2)𝛼 (𝜔) = 𝜌0(𝑥0)

⃒⃒⃒⃒
⃒ ~𝜔 − ℎ

⟨𝜎𝑧
𝛼⟩⟨𝜎𝑧

𝛽⟩

⃒⃒⃒⃒
⃒ ~𝜔 − ℎ+ 𝛿𝛼

~𝜔 − ℎ
, (45)

𝛼, 𝛽 = 𝐴,𝐵, 𝛼 ̸= 𝛽.

The quantity 𝜌
(1)
𝛼 (𝜔) concerns the region ~𝜔 > ℎ, and

𝜌
(2)
𝛼 (𝜔) the region ~𝜔 < ℎ.
Let us consider the limits for the energies 𝜀1(𝑥) and

𝜀2(𝑥) of the band bosonic spectrum, if their argument
changes in the interval 0 6 𝑥 6 9. For definiteness, let
𝛿 be positive (𝛿 > 0). The following cases are possible.

1) ⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩ > 0.
This inequality is satisfied if ℎ𝐴 > 0 and ℎ𝐵 > 0

(ℎ > 0), or ℎ𝐴 < 0 and ℎ𝐵 < 0 (ℎ < 0) (ℎ𝐴 = ℎ+ 𝛿,
ℎ𝐵 = ℎ−𝛿). The spectral density 𝜌𝛼(~𝜔) differs from
zero if

ℎ−
√︁

𝛿2 + 9⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩𝑡2 6 ~𝜔 6 ℎ− 𝛿 (46)

and
ℎ+ 𝛿 6 ~𝜔 6 ℎ+

√︁
𝛿2 + 9⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩𝑡2. (47)

The limits of the bands are given by the maximum
and minimum values of the energies 𝜀2(𝑥) and 𝜀1(𝑥),
respectively. In the case concerned,

min 𝜀1 = 𝜀1(𝑥 = 0) ≡ ℎ+ 𝛿,

max 𝜀2 = 𝜀2(𝑥 = 0) ≡ ℎ− 𝛿.
(48)

Those energy values determine the spectral gap (the
gap width Δ𝜀 = 2𝛿). The system is in the normal
phase if the chemical potential 𝜇 is located under the
lower edge of the band 𝜀2(𝑥), provided that the ener-
gies ℎ𝐴 and ℎ𝐵 are positive or, if the energies ℎ𝐴 and
ℎ𝐵 are negative, above the upper edge of the band
𝜀1(𝑥). The following conditions have to be satisfied:

min 𝜀2 = 𝜀2(𝑥 = 9) ≡ ℎ−
√︁

𝛿2 + 9⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩𝑡2 > 0
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in the former case, and

max 𝜀1 = 𝜀1(𝑥 = 9) ≡ ℎ+
√︁

𝛿2 + 9⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩𝑡2 < 0

in the latter one (in our model, the energy of bosons
is always reckoned from the chemical potential level).

2) ⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩ < 0.
At 𝛿 > 0, this inequality takes place if ℎ𝐴 > 0

and ℎ𝐵 < 0 (ℎ > 0 or ℎ < 0). The band edges are
determined now by the inequalities

ℎ− 𝛿 6 ~𝜔 6 ℎ−
√︁
𝛿2 − 9|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|𝑡2 (49)

and

ℎ+
√︁
𝛿2 − 9|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|𝑡2 6 ~𝜔 6 ℎ+ 𝛿. (50)

The spectral gap is confined by the values

min 𝜀1 = 𝜀1(𝑥 = 9) =

ℎ+
√︀

𝛿2 − 9|⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩|𝑡2 > 0,

max 𝜀2 = 𝜀2(𝑥 = 9) =

ℎ−
√︀
𝛿2 − 9|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|𝑡2 < 0

(51)

and the gap width equals Δ𝜀 = 2(𝛿2−9|⟨𝜎𝑧
𝐴⟩⟨𝜎𝑧

𝐵⟩|×
× 𝑡2)1/2. The chemical potential is located in the gap
if the indicated inequalities are satisfied. The gap dis-
appears at 𝛿 = ±3𝑡

√︀
|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|.

The behavior of the functions 𝜌𝛼(~𝜔) at the band
edges is governed by both the distribution function
𝜌0(𝑥0) with the frequency-dependent argument 𝑥0

and the multiplier to the right from 𝜌0(𝑥0) on the
right-hand side of formula (45). When approaching
the band edges (including the case 𝑥0 → 0, which
corresponds to the limiting transition ~𝜔 → ℎ±
± 𝛿), the function 𝜌0(𝑥0) tends to a finite value of
1

𝜋
√
3
. This fact follows from formula (14), because, in

this limit, 𝑍1(𝑥0)/𝑍0(𝑥0) → 0,
√︀

𝑍0(𝑥0) →
√
3
2 , and

𝐹 (𝜋/2, 0) = 𝜋
2 .

On the other hand,

~𝜔 − ℎ+ 𝛿𝛼 →
{︂
1, ~𝜔 → ℎ+ 𝛿𝛼,

0, ~𝜔 → ℎ− 𝛿𝛼.

Therefore,

𝜌𝐴(~𝜔) →
{︂

2
𝑡2

𝛿
|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩| ⟨𝜎

𝑧
𝐴⟩ 1

𝜋
√
3
, ~𝜔 → ℎ+ 𝛿,

0, ~𝜔 → ℎ− 𝛿;
(52)

𝜌𝐵(~𝜔) →
{︂
0, ~𝜔 → ℎ+ 𝛿,
2
𝑡2

𝛿
|⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩| ⟨𝜎

𝑧
𝐵⟩ 1

𝜋
√
3
, ~𝜔 → ℎ− 𝛿.

y

a

b

c

Fig. 3. Dispersion laws of bosonic excitations in the hon-
eycomb lattice (a and b) and the frequency dependence of the
one-particle spectral density of states 𝜌(𝜔) (c) in the case 𝛿 = 0

and for the one-particle energy 𝜀 = 0.5. One partial spectral
density of states was obtained for the temperatures 𝛽 = 10, 4,

and 2 (⟨𝑛𝛼⟩ = 1
2
−⟨𝜎𝑧

𝛼⟩, ⟨𝑛𝛼⟩𝛽=10 = 0.0066, ⟨𝑛𝛼⟩𝛽=4 = 0.1192,
⟨𝑛𝛼⟩𝛽=2 = 0.2689)

Expanding each of the functions 𝑍0(𝑥), 𝑍1(𝑥), and
𝐹 (𝜋/2,𝑚) in a series in its argument, when the lat-
ter is small, it can be convinced that, if the devia-
tions from the points where 𝜌𝐴,𝐵 = 0 are small, those
functions linearly increase with the frequency. In all
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Fig. 4. (a) Dispersion laws 𝜀(q) in the NO phase calculated
for 𝛽 = 5 and 𝛿 = 0.005, 0.05, and 0.2. The chemical poten-
tial level (𝜇 = 0) is located below the band spectrum (dashed
curve). (b) Frequency dependences of the one-particle spectral
density for sublattices 𝐴 and 𝐵 calculated for 𝛽 = 5 and 𝛿 = 0.2

and 0.05

other cases, the function 𝜌𝐴(~𝜔) and 𝜌𝐵(~𝜔) be-
come equal to zero at the band edges in a jump-like
manner.

Numerical calculations according to formula (45)
and making allowance for expressions (15) for the av-
erage ⟨𝜎𝑧

𝐴⟩ and ⟨𝜎𝑧
𝐵⟩ confirm the described topology

of spectral densities. In particular, in case (1) where
the chemical potential is located under or above both
bands, the spectral density has a jump on one side
of the gap and grows smoothly on the other side. If
the chemical potential is located in the gap, the spec-
tral density has jumps on both gap sides. The general
and well-known property of the Bose–Hubbard model
is that the spectral densities 𝜌𝐴 and 𝜌𝐵 are negative
in the region with ~𝜔 < 0 (i.e. below the chemical

Fig. 5. Dispersion laws for the NO phase at various values
of half-difference between one-particle energies 𝑑 = 0.35, 0.45,
and 0.55 (a), and one-particle spectral density of states for
sublattices 𝐴 (b) and 𝐵 (c) for the indicated 𝜀𝐴- and 𝜀𝐵-
values. The average population numbers of sites in the elemen-
tary cell, ⟨𝑛𝛼⟩ (𝛼 = 𝐴,𝐵), are given. The dashed curve marks
the chemical potential level (𝜇 = 0)
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Fig. 6. (a) Dispersion laws 𝜀(q) (𝛿 = 0.5) for the temperatures 𝛽 = 1, 10, and 100 (the critical temperature 𝑘𝑇𝑐 = 0) in the
NO phase. (b) One-particle spectral density of states for sublattice 𝐴, 𝜌𝐴(𝜔). The chemical potential level is located at the gap
middle-point. (c and d) Scaled-up regions of panel b

potential level) and positive in the region with ~𝜔 > 0
(above 𝜇).

For a honeycomb lattice of the graphene type, the
spectrum of bosonic excitations is gapless (Δ𝜀 = 0)
if the depths of potential wells are identical (𝜀𝐴 =
= 𝜀𝐵). Figures 3, a and b illustrate the temperature-
induced variation of the spectral gap width: as the
temperature decreases, the band width increases and
reaches a maximum at the temperature of the phase
transition into the state with a Bose condensate. Two
spectral branches touch each other at Dirac points 𝐾
and 𝐾 ′ in the Brillouin zone corners.

The dispersion law of bosonic excitations for an-
other cross-section of the energy surface for the spec-
trum along the axis 𝑞𝑦 within the limits of the first
Brillouin zones (the component 𝑞𝑥 = 0) is shown in
Fig. 3, b. Here, two spectral branches do not coin-
cide at the Brillouin zone boundary. In the case con-
cerned (𝛿 = 0, 𝜀𝐴 = 𝜀𝐵 = 0.5), the one-particle spec-

tral density for various temperatures was obtained
(Fig. 3,c). In vicinities of the Dirac points, the en-
ergy spectrum changes linearly (Fig. 3, a).

In the case of different potential well depths (𝜀𝐴 ̸=
̸= 𝜀𝐵), the gap mentioned above emerges at the Bril-
louin zone boundary. The gap width is determined
by the difference between the on-site energies. Figu-
re 4, a illustrates the energy spectrum of bosonic ex-
citations at the inverse temperature 𝛽 = 5. Small dif-
ferences between the on-site energies 𝛿 = 0.005, 0.05,
and 0.2 (𝜀𝐴 ̸= 𝜀𝐵 > 0) were considered. The spec-
tral gap magnitude Δ𝜀 = 2𝛿, and the gap limits are
~𝜔1,2 = ℎ ± 𝛿. For the spectrum of bosonic excita-
tions located above the chemical potential level 𝜇, the
calculated spectral densities are positive (Figs. 3, b
and 4, b), and, in the case where the bands are lo-
cated under the 𝜇-level, they are negative. The limit-
ing frequency values that confine the interval, where
𝜌𝛼(~𝜔) ̸= 0, equal ~𝜔3,4 = ℎ±

√︀
𝛿2 + ⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩𝐽2(0).
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In the case where the chemical potential level lies
between the bands (see Fig. 5, a corresponding to
the same inverse temperature 𝛽 = 5), the behavior
of the energy spectrum of bosonic excitations is es-
sentially different. The extrema of spectral branches
at q = 0 are oriented toward the chemical potential
level 𝜇. The negative values of one-particle spectral
density (𝜌(~𝜔) < 0) correspond to the lower band lo-
cated under the chemical potential level 𝜇, and the
positive ones to the upper band (Figs. 5, b and c).

From the (𝑇, ℎ) phase diagram (Fig. 1), one can
see that the point of the phase transition between
the NO and SF phases, where the SF phase becomes
separated into two regions, corresponds to the criti-
cal gap value in the spectrum of bosonic excitations,
Δ(𝑘𝑇𝑐) = 2𝛿𝑐 = 1 (in 𝐽(0)-units). Figure 6, a (the
corresponding 𝛿 = 0.5) illustrates the behavior of
the energy spectrum of bosonic excitations at various
temperatures in the case where the chemical potential
level is located at the band midpoint. At the inverse
temperature 𝛽 = 100 (practically, this is the absolute
zero temperature), two spectral branches practically
touch each other at the zone center (at q = 0); this
situation corresponds to the point of the phase transi-
tion NO → SF for 𝑑 = 0.5 and 𝛽𝑐 → ∞. The average
population number for Bose particles at a site in the
sublattice 𝐴, ⟨𝑛𝐴⟩ = 0, whereas in the sublattice 𝐵,
⟨𝑛𝐵⟩ = 1. The figure also demonstrates the forms of
the one-particle spectral density of states at the 𝐴-
site for the values 𝛽 = 1 and 10, and near the critical
point at 𝛽 = 100 (𝑘𝑇𝑐 w 0) (panels b to d).

The character of changes in the frequency depen-
dence of the one-particle spectral density of states,
which depends on the location of the chemical po-
tential level, qualitatively agrees with the results of
calculations obtained in the framework of the ex-
act diagonalization technique for the one-dimensional
chain model [23]. In the cited work, the hoppings of
hard-core bosons onto neighbor sites were considered,
and negative values were obtained for the one-particle
spectral densities at energies located below the chem-
ical potential level.

5. Conclusions

On the basis of the hard-core boson model, the energy
spectrum of bosonic excitations and the one-particle
spectral densities were calculated for a plane honey-
comb lattice of the graphene type. The features in the

band spectrum structure and the spectral density in
the normal (NO) phase, as well as their dependences
on the location of the chemical potential level, the
difference between the local energies of particles in
the sublattices, and the temperature, are considered.

Conditions for the appearance of a gap in the band
spectrum are analyzed. It is found that, in the case
of hard-core bosons when particles are described by
the Pauli statistics, there emerges a temperature-
dependent gap (in contrast to electrons in graphene-
type lattices). The spectral gap Δ𝜀 exists:

– at the edge of the Brillouin zone, if the chemical
potential level is located below (above) the energy
bands; in this case, Δ𝜀 = 2𝛿;

– at q = 0, if the chemical potential level lies be-
tween the energy bands; in this case, Δ𝜀 =
= 2
√︀
𝛿2 − |⟨𝜎𝑧

𝐴⟩⟨𝜎𝑧
𝐵⟩|𝐽2(0).

In the former case, the gap disappears at 𝛿 = 0. As
a result, there appear the Dirac points with a linear
dispersion law at points 𝐾 and 𝐾 ′ of the Brillouin
zone. In the latter case, the gap becomes zero at 𝑘𝑇 =
= 0, ℎ = 0, and 𝛿 = 1

2𝐽(0) (𝛿 = 1
2 in 𝐽(0)-units). A

linear spectrum of the Dirac type, 𝜀q ∼ 𝐽(0)

2
√
2
𝑎𝑞, also

emerges in this case
The profiles of the calculated spectral densities cor-

respond to general criteria: the densities are negative
in the interval 𝜔 < 0 and positive at 𝜔 > 0. The
specificity of the honeycomb lattice structure mani-
fests itself in the available logarithmic singularities in
the curves 𝜌𝛼(~𝜔) for each band and in a jump-like
zeroing at the spectrum edges (except for the points
~𝜔 = ℎ−𝛿𝛼, where the density tends to zero linearly).

The results of our research can serve as a basis
for the description of the thermodynamics of Bose
atoms in hexagonal optical lattices and the further
study of their dynamics (experimental means that
allow the features in the energy spectrum and the
spectral densities of ultracold atoms in the systems
of this type to be revealed directly include the inter-
band and momentum-resolved Bragg spectroscopies
[27, 28]). For the ultimate solution of the problem to
be obtained, it is necessary to consider the case of the
SF phase (with a Bose condensate). Unlike the nor-
mal phase, the chemical potential in the SF phase is
located in either of the energy bands. As a result,
a considerable reconstruction of the bosonic spec-
trum associated with the appearance of additional
subbands occurs [24, 29, 30]. The corresponding cal-
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Fig. 7. Nearest neighbours for sites in sublattices 𝐴 and 𝐵

Fig. 8. First Brillouin zone. b1 and b2 are the translation
vectors

culations of the dispersion laws in the bands and the
spectral densities for a lattice of the graphene type
will be the subject of our separate consideration.

APPENDIX A
Graphene-Type Honeycomb Lattice

The two-dimensional graphene-type honeycomb optical lattice
is obtained as a result of the interference of three coherent
laser beams [8] oriented at an angle of 2𝜋/3 with respect to
each other and with the sum of their wave vectors being equal
to zero, k1 + k2 + k3 = 0. This lattice include two triangu-
lar sublattices 𝐴 and 𝐵 shifted with respect to each other by
the vector (a1+a2)

3
. The elementary cell of the lattice contains

two sites, one per each sublattice. For this lattice (Fig. 7), the
translation vectors are

a1 = (𝑎
√
3, 0), a2 =

(︃
𝑎

√
3

2
,
3

2
𝑎

)︃
. (A1)

A honeycomb lattice has a hexagonal Brillouin zone in the in-
verse space of wave vectors. This is a regular hexagon with
two nonequivalent points 𝐾 and 𝐾′ at the zone corners

(Fig. 8). The corresponding translation vectors are

b1 =

(︂
1

√
3𝑎

,
1

3𝑎

)︂
, b2 =

(︂
0,

2

3𝑎

)︂
, (A2)

where |b1| = |b2| = 2
3𝑎

, and 𝑎 is the distance between the
neighbor sites in the direct lattice. The distance from the Bril-
louin zone center to points 𝐾 and 𝐾′ equals 4𝜋

3
√
3𝑎

.
While considering the energy spectrum of quantum parti-

cles (bosons) arranged in the optical lattice, the strong cou-
pling approach can be used. It is based on the consideration
of particle hoppings between the neighbor sites describing by
the parameter 𝑡, which is connected with the overlapping of
the wave functions of Bose particles that are localized at those
sites. The coordination number of every atom 𝑧 = 3:

R1 =

(︃
𝑎
√
3

2
,
𝑎

2

)︃
, R2 =

(︃
−
𝑎
√
3

2
,
𝑎

2

)︃
, R3 = (0,−𝑎). (A3)

The Fourier transforms of the nearest-neighbor hopping en-
ergy calculated in two cases – 𝐴 ⇒ 𝐵 (𝐽𝐴𝐵(q)) and 𝐵 ⇒ 𝐴

(𝐽𝐵𝐴(q)) – differ by the sign before the vectors R𝑐 (Fig. 7):

𝐽𝐴𝐵(q) = 𝑡

3∑︁
𝑐=1

e𝑖qR𝑐 , 𝐽𝐵𝐴(q) = 𝑡

3∑︁
𝑐=1

e−𝑖qR𝑐 . (A4)

Hence, we obtain

𝐽𝐴𝐵(q) = 𝑡
(︁
e−𝑖𝑞𝑦𝑎 + 2 cos

(︁√
3
2
𝑞𝑥𝑎
)︁
e𝑖

𝑞𝑦𝑎

2

)︁
≡ 𝐽(q),

𝐽𝐵𝐴(q) ≡ 𝐽(−q) (A5)

and, in the general case, the dimensionless parameter associ-
ated with the transfer 𝐴 
 𝐵 between the nearest sites looks
like

𝛾(q) =

√︀
|𝐽𝐴𝐵(q) 𝐽𝐵𝐴(q)|

𝑡
=

=

√︂
1+4 cos

(︁√
3

2
𝑞𝑥𝑎
)︁
cos
(︀
3
2
𝑞𝑦𝑎
)︀
+4 cos2

(︁√
3

2
𝑞𝑥𝑎
)︁
. (A6)

Note that 𝛾(q) = 0 at points 𝐾 and 𝐾′ of the Brillouin zone.
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ДОСЛIДЖЕННЯ БОЗОННОГО
СПЕКТРА ДВОВИМIРНИХ ОПТИЧНИХ
ҐРАТОК ЗI СТРУКТУРОЮ ТИПУ
ГРАФЕНУ. НОРМАЛЬНА ФАЗА

Р е з ю м е

Дослiджено зонний спектр бозе-атомiв у двовимiрних ге-
ксагональних оптичних ґратках iз структурою типу графе-
ну. У наближеннi хаотичних фаз розраховано для нормаль-
ної фази закони дисперсiї в зонах та одночастинковi спе-
ктральнi густини. Для ґратки з енергетично еквiвалентни-
ми вузлами отримано температурно залежний безщiлинний
спектр з точками Дiрака на краю зони Брiллюена. Хiмi-
чний потенцiал розташований у цьому випадку поза дозво-
леною енергетичною зоною. При вiдмiнностi мiж енергiями
частинок на вузлах рiзних пiдґраток, коли виникає щiлина
у спектрi, хiмiчний потенцiал може перебувати мiж пiдзо-
нами. У такому разi має мiсце значна перебудова зонного
спектра. Визначено частотнi залежностi одночастинкових
спектральних густин для обидвох пiдґраток залежно вiд
розмiщення рiвня хiмiчного потенцiалу, величини щiлини у
зонному спектрi та температури.
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