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PACS 63.20. e; 71.36.+c;
72.30.+q

Long-wave phonon-polaritons and longitudinal optical phonons in ionic crystals with two atoms
per unit cell have been considered. The model of the point charge and the self-consistent electro-
magnetic field in the dielectric medium is used. The standard dispersion laws for both branches
of phonon-polaritons regarded as transversal waves are obtained. The frequency of longitudi-
nal optical phonons is expressed in terms of the ion plasma frequency in an insulator mul-
tiplied by the factor

√︀
𝜀0/(𝜀0 − 𝜀∞), where 𝜀0 is the static dielectric constant, and 𝜀∞ is

the high-frequency one. A good agreement between the found expression and tabulated data is
found.
K e yw o r d s: ionic crystal, self-consistent electromagnetic field, long-wave vibrations, phonon-
polaritons, longitudinal optical phonons, ion plasma frequency.

1. Introduction

In the framework of the general theory of phonons,
we will calculate interatomic force constants in order
to determine the force that acts on the atom after
its small deviation from the equilibrium position [1,
2], which makes it possible to construct the dynamic
matrix and obtain phonon frequencies as the roots of
the secular determinant.

The importance to take the electromagnetic inter-
action into account, while considering long-wave, in
comparison with the lattice constant, optical vibra-
tions in solids was demonstrated in works [3, 4]. In
the recent paper [5], high-frequency optical vibra-
tions in ionic crystals with two atoms per elemen-
tary cell were proposed to be considered as plasma
oscillations of point charges. The consideration given
below aims at extending the results of work [5] to
the low-frequency limit of phonon-polaritons and, in
such a way, at obtaining the expression for the trans-
verse phonon frequency in terms of the high-frequency
and static dielectric constants from the standard re-
lation for the static limit of the dielectric induc-
tion [4]. However, in contrast to the widely known
model of rigid ions [6], no effective charges are intro-
duced.
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2. System of Equations
for the Electromagnetic Field and Ions

The fact that the elastic forces are proportional to the
gradients of displacements is neglected in the long-
wave approximation. The thermal motion of ions and
the damping will also be neglected. Only small vibra-
tions in non-magnetic media will be studied; there-
fore, the nonlinear magnetic part of the Lorentz force
can be omitted at once. The short-range elastic forces
are considered in the harmonic approximation. In the
framework of the Born–Huang theory, the linearized
equations of motion for ions look like

𝜕v+/𝜕𝑡 = −(𝜔2
0(u+ − u−)𝑀 − 𝑍𝑒E)/𝑀+, (1)

𝜕v−/𝜕𝑡 = −(𝜔2
0(u− − u+)𝑀 + 𝑍𝑒E)/𝑀−. (2)

where the reduced mass of an elementary cell in the
crystal, 𝑀 = 𝑀+𝑀−

𝑀++𝑀−
, was introduced, the subscript

+ or − corresponds to the ion charge sign, u± is the
ion displacement from its equilibrium position, v±
the ion velocity, 𝑀± the ion mass, 𝜔0 the resonance
frequency [7, (27.47)] (in such a macroscopic theory,
this is an external parameter, as a rule), 𝑍 the dif-
ference between the proton and electron numbers in
the ion, and 𝑒 the elementary charge. The total time
derivative coincides with the partial one after the lin-
earization.
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The self-consistent average electromagnetic field
has to satisfy Maxwell’s equations in the insulator,

𝜕D∞/𝜕𝑡 = 𝑐∇×B− 4𝜋j, (3)

𝜕B/𝜕𝑡 = −𝑐∇×E. (4)

In our approach, the density of the current created
by the ions with the definite charge sign is expressed
in terms of the corresponding velocity as follows:

j± = ±𝑍𝑒𝑛0v±, (5)

where 𝑛0 is the equilibrium density of ions with
the given sign. In the isotropic case, Eq. (3) intro-
duces the dielectric induction, which is linearly re-
lated to the electric field strength E in the approx-
imation of small vibrations [8, 9]. It is natural that
the high-frequency dielectric permittivity 𝜀∞ describ-
ing the electron polarization of ions should be used
in Eq. (3), because the motion of ions was taken
into account through the electric current (5). In this
case, the high-frequency dielectric induction equals
D∞ = 𝜀∞E. However, we may introduce the ionic
polarization density by rewriting the linearized cur-
rent (5),

𝑃𝑖 = 𝑍𝑒𝑛0u, (6)

where u = u+ − u− is the relative shift of sublat-
tices. This circumstance allows us to determine the
dielectric induction as follows:

D = 𝜀∞E+ 4𝜋𝑍𝑒𝑛0u. (7)

One can easily see that Eqs. (1) and (2) give rise to

𝜕2u/𝜕𝑡2 = −𝜔2
0u+ 𝑍𝑒E/𝑀. (8)

In order to find the resonance frequency, let us con-
sider the static case where the time derivatives equal
zero. In the electrostatic situation, we have the fol-
lowing expression for the dielectric induction (7) in
terms of the dielectric constant:

D0 = 𝜀0E = 𝜀∞E+ 4𝜋𝑍𝑒𝑛0u. (9)

Neglecting the time derivative in Eq. (8), we obtain

0 = −𝜔2
0u+ 𝑍𝑒E/𝑀. (10)

By solving Eqs. (9) and (10) simultaneously, we arrive
at the expression for the sought frequency,

𝜀0E = 𝜀∞E+ 4𝜋𝑍𝑒𝑛0𝑍𝑒E/(𝑀𝜔2
0); (11)

whence

𝜔0 =

√︃
4𝜋𝑍2𝑒2𝑛0

𝑀(𝜀0 − 𝜀∞)
. (12)

In the general case, Eq. (3) for an arbitrary frequency
looks like

𝜕𝜀∞E/𝜕𝑡 = 𝑐∇B− 4𝜋𝑍𝑒𝑛0 (v+ − v−) . (13)

Hence, we have obtained a homogeneous system of
time-dependent equations (8), (4), and (13) describ-
ing coupled vibrations of the ionic lattice and oscilla-
tions of the self-consistent electromagnetic field.

3. Optical Vibrations in the Ionic Crystal

Now, using the system of equations indicated above,
we can derive an equation for the electric field waves.
Differentiating Eq. (13) with respect to the time and
substituting the derivative 𝜕B/𝜕𝑡 from Eq. (4), we
obtain

𝜕2𝜀∞E/𝜕𝑡2 = −𝑐2∇ (∇E)− 4𝜋𝑍𝑒𝑛0𝜕
2u/𝜕𝑡2. (14)

It is convenient to pass to the Fourier components in
the obtained equations, by following the rule

E (x, 𝑡) =

∫︁
𝑑3𝑘𝑑𝜔E (k, 𝜔) 𝑒𝑖kx−𝑖𝜔𝑡/(2𝜋)4. (15)

Then, from Eq. (8), we obtain

u =
𝑍𝑒

(𝜔2
0 − 𝜔2)𝑀

E. (16)

Dividing the field into the potential and vortex parts,
E = E‖ + E⊥, we obtain two linear homogeneous
algebraic equations,

−𝜔2E⊥ = − 𝑐2

𝜀∞
𝑘2E⊥ − 4𝜋𝑍2𝑒2𝑛0

𝜀∞𝑀
E⊥ 𝜔2

𝜔2 − 𝜔2
0

, (17)

−𝜔2E‖ = −4𝜋𝑍2𝑒2𝑛0

𝜀∞𝑀
E‖ 𝜔2

𝜔2 − 𝜔2
0

. (18)

Equation (17) gives us the dispersion law for phonon-
polaritons in the high-frequency limit 𝜔 ≫ 𝜔0,

𝜔2 = 𝑐2𝑘2/𝜀∞ +Ω2
𝑖 , (19)
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where the following notation was introduced for the
ionic plasma frequency:

Ω𝑖 =
√︀
4𝜋𝑍2𝑒2𝑛0/(𝑀𝜀∞). (20)

This result coincides with that obtained in work
[5, (13)].

Equation (17) gives the known dispersion law for
transverse waves with an arbitrary frequency,

𝜔4 − 𝜔2(𝜔2
0 + 𝑐2𝑘2/𝜀∞ + 4𝜋𝑍2𝑒2𝑛0/(𝑀𝜀∞))+

+𝜔2
0𝑐

2𝑘2/𝜀∞ = 0, (21)

which coincides with Eq. (12.6) in work [2]. The bi-
quadratic equation (21) has standard solutions for 𝜔2

[2, Eq. (12.7)],

𝜔2=
1

2

(︃
𝜔2
𝐿+

𝑐2

𝜀∞
𝑘2 ±

±

√︃(︂
𝜔2
𝐿+

𝑐2

𝜀∞
𝑘2
)︂2

− 4𝜔2
0

𝑐2

𝜀∞
𝑘2

)︃
, (22)

where

𝜔2
𝐿 = 𝜔2

0 +Ω2
𝑖 . (23)

The lower phonon-polariton branch has the frequency
𝜔0 in the short-wave limit, which corresponds to the
frequency of transverse optical phonons.

Equation (18), besides the trivial root 𝜔 = 0, gives
the frequency of longitudinal vibrations,

𝜔2 = 𝜔2
𝐿, (24)

which corresponds to longitudinal optical phonons.
Using Eqs. (12) and (20), formula (23) can be rewrit-
ten in the form

𝜔2
𝐿 =

4𝜋𝑍2𝑒2𝑛0

𝑀

𝜀0
(𝜀0 − 𝜀∞)𝜀∞

, (25)

in which one can easily recognize the known Lyddane–
Sachs–Teller formula [10]

𝜔2
𝐿 = 𝜔2

0

𝜀0
𝜀∞

. (26)

Formula (25) can be rewritten in the form

𝜔2
𝐿 = Ω2

𝑖

𝜀0
𝜀0 − 𝜀∞

. (27)

Longitudinal optical
frequencies for some ionic crystals

Crystal 𝜌, g/cm3 𝜀0 𝜀∞ 𝜔tab
𝐿 , ТHz 𝜔𝐿, ТHz 𝜔𝐿/𝜔

tab
𝐿

LiH 0.78 12.9 3.6 210 213 1.02
LiF 2.64 8.9 1.9 120 119 0.99
LiCl 2,.07 12.0 2.7 75 65.0 0.87
LiBr 3.46 13.2 3.2 61 52.0 0.85
NaF 2.79 5.1 1.7 78 76.9 0.99
NaCl 2.17 5.9 2.25 50 44.8 0.90
NaBr 3.21 6.4 2.6 39 34.5 0.88
KF 2.50 5.5 1.5 61 56.9 0.93
KCl 1.99 4.85 2.1 40 35.6 0.89
KI 3.12 5.1 2.7 26 22.8 0.88
RbI 3.55 5.5 2.6 19 15.8 0.83
MgO 3.58 9.8 2.95 14 13.7 0.98

Hence, the frequency of longitudinal phonons is al-
ways higher than the frequency of corresponding
plasma oscillations, but tends to the latter under the
condition 𝜀0 ≫ 𝜀∞.

In order to compare the obtained transverse
phonon frequency with tabulated data on 𝜔tab

𝐿 , it is
convenient to change from the density of ions with
the same sign in expression (25) to the mass density
of the crystal 𝜌 using the formula 𝑛0

𝑀 = 𝜌
𝑀+𝑀−

. Then,
we may write

𝜔𝐿 = 𝑍

√︂
𝜌 𝜀0

𝑀+𝑀−(𝜀0 − 𝜀∞)𝜀∞
×

× 1.70156 × 10−9 s−1. (28)

For the sake of comparison, we took the data on the
frequency of longitudinal vibrations 𝜔tab

𝐿 from Ta-
ble 5.1 in work [11] (see Table). The values for the
ionic crystal density were taken from work [12].

4. Conclusions

Hence, the known dispersion laws for phonon-pola-
ritons and longitudinal optical phonons can be ob-
tained in the framework of the macroscopic model
for ionic crystals without introducing the effective
charge. The transverse frequency of optical phonons
in a two-atom-per-cell ionic crystal is obtained from
the electrostatic equilibrium condition. The table
demonstrates a good agreement between the frequen-
cies of longitudinal optical phonons calculated by for-
mula (25) with the known data [11]. Certainly, the

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 8 795



A.A. Stupka

macroscopic model of point charges gives better re-
sults for ions with smaller radii. The presented con-
sideration is a generalization of work [5], in which ions
were considered as free point charges.
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ЧАСТОТИ ДОВГОХВИЛЬОВИХ
ФОНОН-ПОЛЯРИТОНIВ ТА ОПТИЧНИХ ФОНОНIВ
У ДВОАТОМНИХ IОННИХ КРИСТАЛАХ

Р е з ю м е

Розглянуто довгохвильовi фонон-поляритони i поздовжнi
оптичнi фонони в iонних кристалах з двома атомами в еле-
ментарнiй комiрцi. Використано модель точкових зарядiв i
самоузгодженого електромагнiтного поля в дiелектрично-
му середовищi. Отримано стандартнi закони дисперсiї для
обох гiлок фонон-поляритонiв як поперечних хвиль. Часто-
ту поздовжнiх оптичних фононiв виражено через iонну пла-
змову частоту у дiелектрику з множником

√︀
𝜀0/(𝜀0 − 𝜀∞) зi

статичною 𝜀0 та високочастотною 𝜀∞ дiелектричними ста-
лими. Порiвнянням з табличними даними показано добру
точнiсть зазначеного виразу.
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