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The nontrivial integrable extension of a nonlinear ladder electric network system characterized
by two coupling parameters is presented. Relying upon the lowest local conservation laws, the
concise form of the general semidiscrete integrable system is given, and two versions of its
self-consistent reduction in terms of four true field variables are found. The comprehensive
analysis of the dispersion equation for low-amplitude excitations of the system is made. The
criteria distinguishing the two-branch and four-branch realizations of the dispersion law are
formulated. The critical values of adjustable coupling parameter are found, and a collection
of qualitatively distinct realizations of the dispersion law is graphically presented. The loop-
like structure of the low-amplitude dispersion law of a reduced system emerging within certain
windows of the adjustable coupling parameter turns out to reproduce the loop-like structure of
the dispersion law typical of beam-plasma oscillations in hydrodynamic plasma. The richness
of the low-amplitude spectrum of the proposed ladder network system as a function of the
adjustable coupling parameter is expected to stimulate even the more rich dynamical behavior
in an essentially nonlinear regime.
K e yw o r d s: nonlinear ladder electric network system, dispersion law, hydrodynamic plasma.

1. Introduction

After the discovery of first integrable nonlinear dyna-
mical models on a regular one-dimensional lattice [1–
4], the interest in the development of new integrable
semidiscrete nonlinear systems has been steadily sup-
ported by the wide range of physical problems, where
the spatial discreteness and regularity play a crucial
role. Among the most typical physical objects, where
the semidiscrete nonlinear systems found their appli-
cations, are the optical waveguide arrays [5], semi-
conductor superlattices [6,7], electric superstructures
[8], as well as the regular macromolecular structures
of both natural [9] and synthetic [10] origins.

In two recent articles [11, 12], we have proposed
early unknown integrable semidiscrete nonlinear mul-
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tifield systems associated with the new type of fourth-
order spectral problems. The number of field vari-
ables in a particular system was determined by the
adopted reduction and can never be decreased lower
than six truly independent field variables. Thus, even
in its simplest realization, the analysis of the system
appears to be rather complicated.

One of the ways to obtain more simple but still
early unknown systems is to reduce the order of an
auxiliary spectral problem associated with a tentative
system within a zero-curvature scheme. In so doing,
it is reasonable to demand some elements of contigui-
ty between the antecendent and sought-for schemes.
Otherwise, the procedure of empirical selection of an
auxiliary spectral operator consistent with a proper
auxiliary evolution operator in the framework of the
zero-curvature approach may fail to be fruitful.
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The above observation, when combined with the
Caudrey definition of the order of a spectral operator
[13–15], has allowed us to reveal the constructive ver-
sion of the early unknown third-order auxiliary spec-
tral operator giving rise to new integrable systems. In
this paper, we shall present the real-field realization
of a general semidiscrete nonlinear integrable system
and carry on the analysis of its low-amplitude exci-
tations related to a reduced system given in terms of
symmetric field variables. On the other hand, we shall
propose an alternative reduced version of the system
allowing to treat it as the nontrivial extension of a
ladder-like nonlinear electric transmission line, con-
sisting of nonlinear inductors and nonlinear capaci-
tors and influenced by some vibrational subsystem.

The main aim of the paper was to develop a
semidiscrete integrable model suitable to analyze the
complex nonlinear dynamical phenomena presumably
in ladder-like nonlinear electric networks coupled with
the vibrational degrees of freedom. As the first step,
we will show that, even in the linear regime, the pro-
posed model demonstrates an essentially nontrivial
behavior as a function of the additional adjustable
coupling parameter in contrast to the majority of al-

ready known integrable models exhibiting rather sim-
ple low amplitude dispersion laws due to the lack of
an additional coupling.

2. Auxiliary Operators
Mutually Consistent in the Framework
of Zero-Curvature Equation

In order to ensure the integrability of a desired nonlin-
ear system, one need to approbate the zero-curvature
equation [16]

�̇�(𝑛|𝑧) = 𝐵(𝑛+ 1|𝑧)𝑀(𝑛|𝑧)−𝑀(𝑛|𝑧)𝐵(𝑛|𝑧) (2.1)

by the spectral 𝑀(𝑛|𝑧) and evolution 𝐵(𝑛|𝑧) op-
erators chosen properly among nonsingular matri-
ces. Here, the dot written over the operator 𝑀(𝑛|𝑧)
on the left-hand side of the zero-curvature equation
(2.1) means the differentiation with respect to the
time 𝜏 , the integer 𝑛 denotes the discrete spatial co-
ordinate running from minus to plus infinity, while 𝑧
denotes the auxiliary spectral parameter independent
of time.

The arguments given in Introduction prompt us to
define the spectral operator 𝑀(𝑛|𝑧) as a 3×3 matrix,

𝑀(𝑛|𝑧) =

⎛⎝ 𝑧2 + 𝑇 (𝑛) 𝛽𝐹+(𝑛)𝑧 + 𝛼𝐹+(𝑛) 𝐺+(𝑛)𝑧 +𝐺−(𝑛)𝑧
−1

𝛼𝐹−(𝑛)𝑧 + 𝛽𝐹−(𝑛) 0 𝛼𝐹−(𝑛) + 𝛽𝐹−(𝑛)𝑧
−1

𝐺−(𝑛)𝑧 +𝐺+(𝑛)𝑧
−1 𝛽𝐹+(𝑛) + 𝛼𝐹+(𝑛)𝑧

−1 𝑇 (𝑛) + 𝑧−2

⎞⎠, (2.2)

and to seek the evolution operator 𝐵(𝑛|𝑧) in the form

𝐵(𝑛|𝑧) =

⎛⎝ 𝑎(𝑛)𝑧2 + 𝑑(𝑛) 𝛽𝑏+(𝑛)𝑧 + 𝛼𝑏+(𝑛) 𝑐+(𝑛)𝑧 + 𝑐−(𝑛)𝑧
−1

𝛼𝑏−(𝑛)𝑧 + 𝛽𝑏−(𝑛) 𝑑(𝑛)− 𝑐(𝑛) 𝛼𝑏−(𝑛) + 𝛽𝑏−(𝑛)𝑧
−1

𝑐−(𝑛)𝑧 + 𝑐+(𝑛)𝑧
−1 𝛽𝑏+(𝑛) + 𝛼𝑏+(𝑛)𝑧

−1 𝑑(𝑛) + 𝑎(𝑛)𝑧−2

⎞⎠, (2.3)

where 𝛼 and 𝛽 are some fitting parameters indepen-
dent of the time. Then the direct calculations based
on the zero-curvature equation (2.1) confirm our con-
jecture and allow us to decipher almost all matrix
elements 𝐵𝑗𝑘(𝑛|𝑧) of the tested evolution operator
𝐵(𝑛|𝑧) through the matrix elements 𝑀𝑗𝑘(𝑛|𝑧) of the
chosen spectral operator 𝑀(𝑛|𝑧) provided
𝛼2 + 𝛽2 = 0. (2.4)

Thus, for the functions entering into the evolution
operator 𝐵(𝑛|𝑧), we have
𝑎(𝑛) = 𝑘, (2.5)

𝑏+(𝑛) = 𝑘𝐹+(𝑛), (2.6)
𝑏−(𝑛) = 𝑘𝐹−(𝑛− 1), (2.7)
𝑐+(𝑛) = 𝑘𝐺+(𝑛), (2.8)
𝑐−(𝑛) = 𝑘𝐺−(𝑛− 1), (2.9)
𝑑(𝑛)=−𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛−1)−𝑘𝐺+(𝑛)𝐺−(𝑛−1), (2.10)

where 𝑘 is an arbitrary (time-dependent, in general)
parameter. The only exception is the sampling func-
tion 𝑐(𝑛) which, similarly to other precedents [17, 18],
remains arbitrary for the time being.

Here and latter on, we adopt the parameters 𝑘 and
𝛼𝛽 to be the real-valued ones.
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3. General Semidiscrete
Nonlinear Evolution Equations

We call the quantities 𝐹+(𝑛), 𝐹−(𝑛), 𝐺+(𝑛),
𝐺−(𝑛), and 𝑇 (𝑛) to be the prototype field vari-
ables. According to the zero-curvature equation (2.1)
and expressions (2.2) and (2.3), (2.5)–(2.10) for the
spectral 𝑀(𝑛|𝑧) and evolution 𝐵(𝑛|𝑧) operators, their
evolution is described by the following collection of
semidiscrete nonlinear equations:

𝑑

𝑑𝜏
ln𝐹+(𝑛) = 𝑘𝐺+(𝑛+ 1)− 𝑘𝐺+(𝑛)−

− 𝑘𝑇 (𝑛)− 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)−

− 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛) + 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1)+

+ 𝑘𝐺+(𝑛)𝐺−(𝑛− 1) + 𝑐(𝑛), (3.1)

𝑑

𝑑𝜏
ln𝐹−(𝑛) = 𝑘𝐺−(𝑛)− 𝑘𝐺−(𝑛− 1)+

+ 𝑘𝑇 (𝑛) + 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1)+

+ 𝑘𝐺+(𝑛)𝐺−(𝑛− 1)− 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)−

− 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)− 𝑐(𝑛+ 1), (3.2)

𝑑

𝑑𝜏
ln
[︁
1− 𝑇 (𝑛) +𝐺+(𝑛)−𝐺−(𝑛)

]︁
=

= 𝑘𝐺+(𝑛)− 𝑘𝐺+(𝑛+ 1) + 𝑘𝐺−(𝑛)− 𝑘𝐺−(𝑛− 1)−

− 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)− 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)+

+ 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1) + 𝑘𝐺+(𝑛)𝐺−(𝑛− 1), (3.3)

𝑑

𝑑𝜏
ln
[︁
1 + 𝑇 (𝑛)−𝐺+(𝑛)−𝐺−(𝑛)

]︁
=

= 𝑘𝐺+(𝑛)− 𝑘𝐺+(𝑛+ 1)− 𝑘𝐺−(𝑛) + 𝑘𝐺−(𝑛− 1)−

− 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)− 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)+

+ 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1) + 𝑘𝐺+(𝑛)𝐺−(𝑛− 1), (3.4)

𝑑

𝑑𝜏
ln
[︁
1 + 𝑇 (𝑛)−𝐺+(𝑛) +𝐺−(𝑛)

]︁
=

= 𝑘𝐺+(𝑛+ 1)− 𝑘𝐺+(𝑛) + 𝑘𝐺−(𝑛− 1)− 𝑘𝐺−(𝑛)−

− 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)− 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)+

+ 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1) + 𝑘𝐺+(𝑛)𝐺−(𝑛− 1). (3.5)

The present concise form (3.1)–(3.5) of these equa-
tions has been acquired due to the use of some lowest
local conservation laws dictated by the matrix struc-
ture (2.2) of the spectral operator 𝑀(𝑛|𝑧) and found
by the technique described in our recent work [19] (see
also the pioneering work on the direct generation of
local conservation laws [20]).

Anyway, according to the very method of their
construction, the obtained equations (3.1)–(3.5) are
said to possess the zero-curvature representation (2.1)
with the spectral and evolution operators 𝑀(𝑛|𝑧) and
𝐵(𝑛|𝑧) given by formulas (2.2) and (2.3), respectively,
where the constraint (2.4) imposed onto the fitting
parameters 𝛼 and 𝛽, as well as expressions (2.5)–
(2.10) for the constituent parts of the evolution oper-
ator 𝐵(𝑛|𝑧), have been taken into account. This prop-
erty proves to be the key indication of the integrabil-
ity [16] of the system under consideration (3.1)–(3.5)
in the Lax sense.

4. Reduced Systems

The question how to fix the sampling function 𝑐(𝑛) is
tantamount to the problem of imposing an additional
constraint onto the five prototype field variables so
that only four of them be truly independent. In gen-
eral, there exist a number of variants how to select
one of the admissible additional constraints [12] giv-
ing rise to one or another particular parametrization
of field variables.

We begin with the reduction allowing us to define
the sampling function 𝑐(𝑛) through some redundant
quantity 𝑞(𝑛|𝑛 − 1) and to exclude both of them si-
multaneously from the further consideration. The ap-
proach assumes the following parametrization:

𝐹+(𝑛) = 𝐹+ exp [+𝑥+(𝑛)−𝑦+(𝑛)+𝑞(𝑛|𝑛− 1)], (4.1)

𝐹−(𝑛) = 𝐹− exp [−𝑥−(𝑛)+𝑦−(𝑛)−𝑞(𝑛+ 1|𝑛)], (4.2)

𝐺+(𝑛) =

= 1−exp [+𝑥−(𝑛)+𝑦−(𝑛)−𝑦+(𝑛)] cosh[𝑥+(𝑛)], (4.3)

𝑇 (𝑛) =

= 1−exp [−𝑦+(𝑛)+𝑦−(𝑛)] cosh[𝑥+(𝑛)+𝑥−(𝑛)], (4.4)

𝐺−(𝑛) =

= 1−exp [−𝑥+(𝑛)−𝑦+(𝑛)+𝑦−(𝑛)] cosh[𝑥−(𝑛)], (4.5)

where �̇�+ = 0 = �̇�−.
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The equations of motion for the field variables
𝑥+(𝑛), 𝑦+(𝑛) and 𝑥−(𝑛), 𝑦−(𝑛) read as follows:

�̇�+(𝑛) = 𝑘𝐺+(𝑛+ 1)− 𝑘𝐺+(𝑛), (4.6)

�̇�+(𝑛) = 𝑘𝑇 (𝑛) + 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)+

+ 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)− 𝑘𝛼𝛽𝐹+𝐹−, (4.7)

�̇�−(𝑛) = 𝑘𝐺−(𝑛− 1)− 𝑘𝐺−(𝑛), (4.8)

�̇�−(𝑛) = 𝑘𝑇 (𝑛) + 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1)+

+ 𝑘𝐺+(𝑛)𝐺−(𝑛− 1)− 𝑘𝛼𝛽𝐹+𝐹−. (4.9)

These equations are seen to be essentially self-consis-
tent, i.e., they contain neither the sampling function
𝑐(𝑛), nor the redundant variable 𝑞(𝑛|𝑛−1). As for the
variable 𝑞(𝑛|𝑛− 1), it serves mainly for the definition
of a sampling function 𝑐(𝑛) by means of the equation

𝑞(𝑛|𝑛− 1) = 𝑐(𝑛) + 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1)+

+ 𝑘𝐺+(𝑛)𝐺−(𝑛− 1)− 𝑘𝛼𝛽𝐹+𝐹−. (4.10)

Nevertheless, namely the proper choice of this defi-
nition (4.10) ensures the proper frame of reference
for the true field variables 𝑥+(𝑛), 𝑦+(𝑛) and 𝑥−(𝑛),
𝑦−(𝑛) due to the presence of the last term on the
right-hand sides of Eqs. (4.7) and (4.9) for �̇�+(𝑛)
and �̇�−(𝑛).

The structure of Eqs. (4.7), (4.9), and (4.10)
prompts us to adopt 𝐹+𝐹− = 1 without any loss of
generality.

We call the obtained system (4.6)–(4.9) supplemen-
ted by the parametrization formulas (4.1)–(4.5) as the
reduced integrable system in symmetric parametriza-
tion. While having been convenient for the mathe-
matical consideration, this reduction appears to be
less suitable for the physical interpretation.

Fortunately, there exists an alternative reduction
closely related to the ladder-like nonlinear electric
transmission lines [21–24] and exhibiting the same
low-amplitude behavior as the symmetric one (4.6)–
(4.9). The reduction is based on the constraint

𝑑

𝑑𝜏
ln

𝐹+(𝑛)𝐹−(𝑛)

[1− 𝑇 (𝑛)]2 − [𝐺+(𝑛)−𝐺−(𝑛)]2
= 0 (4.11)

that fixes the sampling function 𝑐(𝑛) by the expres-
sion

𝑐(𝑛) = 𝑐+ 𝑘𝐺+(𝑛) + 𝑘𝐺−(𝑛− 1), (4.12)

with 𝑐 being an arbitrary function of time 𝜏 . Then,
introducing the new true field variables 𝑔+(𝑛), 𝑔−(𝑛)
and 𝑡(𝑛), 𝑤(𝑛) by means of the substitutions

𝐺+(𝑛) = 𝑔+(𝑛) + [1− 𝑔+(𝑛)]𝑡(𝑛), (4.13)

𝐺−(𝑛) = 𝑔−(𝑛) + [1− 𝑔−(𝑛)]𝑡(𝑛) (4.14)

and

𝑇 (𝑛) = [1− 𝑔+(𝑛)𝑔−(𝑛)]𝑡(𝑛) + 𝑔+(𝑛)𝑔−(𝑛), (4.15)

𝐹+(𝑛) = 𝐹+ exp[+𝑤(𝑛)]×

× [1− 𝑔+(𝑛)][1− 𝑡(𝑛)][1 + 𝑔−(𝑛)], (4.16)

𝐹−(𝑛) = 𝐹− exp[−𝑤(𝑛)]×

× [1 + 𝑔+(𝑛)][1− 𝑡(𝑛)][1− 𝑔−(𝑛)] (4.17)

(with �̇�+ = 0 = �̇�−) and specifying the general in-
tegrable system (3.1)–(3.5) by formula (4.12) for the
sampling function 𝑐(𝑛), we have

�̇�+(𝑛)

1− 𝑔2+(𝑛)
= 𝑘𝐺−(𝑛)− 𝑘𝐺−(𝑛− 1), (4.18)

�̇�−(𝑛)

1− 𝑔2−(𝑛)
= 𝑘𝐺+(𝑛+ 1)− 𝑘𝐺+(𝑛) (4.19)

and

𝑡(𝑛)

1− 𝑡(𝑛)
=

= 𝑘𝛼𝛽𝐹+(𝑛+ 1)𝐹−(𝑛)− 𝑘𝛼𝛽𝐹+(𝑛)𝐹−(𝑛− 1)+

+ 𝑘𝐺+(𝑛+ 1)𝐺−(𝑛)− 𝑘𝐺+(𝑛)𝐺−(𝑛− 1)−

− 𝑘𝐺+(𝑛+ 1)𝑔−(𝑛) + 𝑘𝑔+(𝑛)𝐺−(𝑛− 1)+

+ 𝑘𝐺+(𝑛)𝑔−(𝑛)− 𝑘𝑔+(𝑛)𝐺−(𝑛), (4.20)

�̇�(𝑛) = 𝑘𝐺+(𝑛) + 𝑘𝐺−(𝑛)− 𝑘𝑇 (𝑛). (4.21)

Here, we have assumed without any loss of generality
that 𝑐 = 0. System (4.18)–(4.21) as a whole describes
two coupled subsystems so that the first two equa-
tions (4.18) and (4.19) correspond to the subsystem
of a nonlinear self-dual electric network, while the last
two equations (4.20) and (4.21) are related to some
nonlinear vibrational subsystem.
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In order to explain the above statement, let us con-
sider the simplest case where the coupling parame-
ter 𝛼𝛽 is equal to zero: 𝛼𝛽 = 0. Then it is possi-
ble to satisfy the third equation (4.20) by putting
𝑡(𝑛) = 0. As a consequence, the first two equations
(4.18) and (4.19) become essentially self-consistent,

�̇�+(𝑛)

1− 𝑔2+(𝑛)
= 𝑘𝑔−(𝑛)− 𝑘𝑔−(𝑛− 1), (4.22)

�̇�−(𝑛)

1− 𝑔2−(𝑛)
= 𝑘𝑔+(𝑛+ 1)− 𝑘𝑔+(𝑛), (4.23)

while the fourth equation (4.21) becomes redundant.
Provided the quantity 𝑔+(𝑛) is identified with the

dimensionless current 𝐼(𝑛) through the 𝑛-th induc-
tor and the quantity 𝑔−(𝑛) with the dimensionless
voltage 𝑉 (𝑛) on the 𝑛-th capacitor, the truncated
system (4.22) and (4.23) can be treated as a nonlin-
ear ladder-like electric network system, whose elec-
tric scheme is presented in a number of classical
articles [21–24]. However, the functional characteris-
tics 𝐿(𝐼(𝑛)) and 𝐶(𝑉 (𝑛)) of inductors and capaci-
tors in our system (4.22) and (4.23) are distinct from
those adopted in either of the mentioned publications
[21–24]. Precisely, the functional dependences corre-
sponding to our truncated system (4.22) and (4.23)
are as follows:

𝐿(𝐼(𝑛)) =
artanh𝐼(𝑛)

𝐼(𝑛)
(4.24)

and

𝐶(𝑉 (𝑛)) =
artanh𝑉 (𝑛)

𝑉 (𝑛)
. (4.25)

5. Low-Amplitude Quartic
Dispersion Equation and General
Principles of Its Analysis

Assuming the coupling parameters 𝑘 and 𝛼𝛽 to be
the real ones, let us obtain the dispersion equation
for low-amplitude excitations in the symmetrically re-
duced semidiscrete nonlinear system (4.6)–(4.9). In so
doing, we linearize the system of our interest (4.6)–
(4.9) by expanding its left-hand-side terms near the
values 𝑥+(𝑛) = 0, 𝑦+(𝑛) = 0 and 𝑥−(𝑛) = 0,
𝑦−(𝑛) = 0 and use the standard plane-wave ansätze

𝑥+(𝑛) = 𝑥+ exp(𝑖κ𝑛− 𝑖𝜔𝜏), (5.1)

𝑦+(𝑛) = 𝑦+ exp(𝑖κ𝑛− 𝑖𝜔𝜏), (5.2)

𝑥−(𝑛) = 𝑥− exp(𝑖κ𝑛− 𝑖𝜔𝜏), (5.3)

𝑦−(𝑛) = 𝑦− exp(𝑖κ𝑛− 𝑖𝜔𝜏). (5.4)

Then the spectrum of the linearized system

�̇�+(𝑛)/𝑘 ≈ 𝑦+(𝑛+ 1)− 𝑦−(𝑛+ 1)− 𝑥−(𝑛+ 1)−

− 𝑦+(𝑛) + 𝑦−(𝑛) + 𝑥−(𝑛), (5.5)

�̇�+(𝑛)/𝑘 ≈ 𝑦+(𝑛)− 𝑦−(𝑛) + 𝛼𝛽
[︀
𝑥+(𝑛+ 1)−

− 𝑦+(𝑛+ 1)− 𝑥−(𝑛) + 𝑦−(𝑛)
]︀
, (5.6)

�̇�−(𝑛)/𝑘 ≈ 𝑦+(𝑛− 1)− 𝑦−(𝑛− 1) + 𝑥+(𝑛− 1)−

− 𝑦+(𝑛) + 𝑦−(𝑛)− 𝑥+(𝑛), (5.7)

�̇�−(𝑛)/𝑘 ≈ 𝑦+(𝑛)− 𝑦−(𝑛) + 𝛼𝛽
[︀
𝑥+(𝑛)−

− 𝑦+(𝑛)− 𝑥−(𝑛− 1) + 𝑦−(𝑛− 1)
]︀

(5.8)

will be determined by the quartic dispersion equation

Ω4 − 2𝛼𝛽 sin(κ)Ω3 − 2[1− cos(κ)]Ω2 +

+2𝛼𝛽[1− 2 cos(κ)][1− cos(κ)]Ω2 +

+8𝛼𝛽 sin(κ)[1− cos(κ)]Ω−

− 4𝛼𝛽[1− cos(κ)]2 = 0, (5.9)

where we have introduced the normalized cyclic fre-
quency Ω = 𝜔/𝑘 and restricted the coupling param-
eter 𝑘 to be time-independent. It is remarkable that
the same dispersion equation (5.9) can be obtained
also in the low-amplitude limit of an alternative phys-
ically motivated reduction (4.18)–(4.21).

To examine the roots of Eq. (5.9), it is appropriate
to make the substitution

Ω = 2𝜆 sin(κ/2). (5.10)

As a consequence, we come to the quartic auxiliary
dispersion equation

𝜆4+𝑎(κ|𝛼𝛽)𝜆3 + 𝑏(κ|𝛼𝛽)𝜆2+𝑐(κ|𝛼𝛽)𝜆+𝑑(κ|𝛼𝛽)=0,

(5.11)
where

𝑎(κ|𝛼𝛽) = −2𝛼𝛽 cos(κ/2), (5.12)
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𝑏(κ|𝛼𝛽) = −1 + 3𝛼𝛽 − 4𝛼𝛽 cos2(κ/2), (5.13)

𝑐(κ|𝛼𝛽) = +4𝛼𝛽 cos(κ/2), (5.14)

𝑑(κ|𝛼𝛽) = −𝛼𝛽. (5.15)

Its discriminant [25, 26] 𝐷(κ|𝛼𝛽) is given by the for-
mula [25, 27, 28]

𝐷(κ|𝛼𝛽) =

= 𝑎2(κ|𝛼𝛽)𝑏2(κ|𝛼𝛽)𝑐2(κ|𝛼𝛽)−4𝑎3(κ|𝛼𝛽)𝑐3(κ|𝛼𝛽)−

− 4𝑏3(κ|𝛼𝛽)𝑐2(κ|𝛼𝛽)+18𝑎(κ|𝛼𝛽)𝑏(κ|𝛼𝛽)𝑐3(κ|𝛼𝛽)−

− 27𝑐4(κ|𝛼𝛽) + 256𝑑3(κ|𝛼𝛽)−

− 4𝑎2(κ|𝛼𝛽)𝑏3(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)+

+18𝑎3(κ|𝛼𝛽)𝑏(κ|𝛼𝛽)𝑐(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)+

+16𝑏4(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)−

− 80𝑎(κ|𝛼𝛽)𝑏2(κ|𝛼𝛽)𝑐(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)−

− 6𝑎2(κ|𝛼𝛽)𝑐2(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)+

+144𝑏(κ|𝛼𝛽)𝑐2(κ|𝛼𝛽)𝑑(κ|𝛼𝛽)−27𝑎4(κ|𝛼𝛽)𝑑2(κ|𝛼𝛽)+

+144𝑎2(κ|𝛼𝛽)𝑏(κ|𝛼𝛽)𝑑2(κ|𝛼𝛽)−

− 128𝑏2(κ|𝛼𝛽)𝑑2(κ|𝛼𝛽)−

− 192𝑎(κ|𝛼𝛽)𝑐(κ|𝛼𝛽)𝑑2(κ|𝛼𝛽). (5.16)

In the regions of a negative discriminant 𝐷(κ|𝛼𝛽) <
0, the theory of quartic equations [25–27] predicts two
real roots and two complex roots. However, in the
regions of a positive discriminant 𝐷(κ|𝛼𝛽) > 0, the
situation turns out to be ambiguous until we invoke
two seminvariants 𝐻(κ|𝛼𝛽) and 𝑄(κ|𝛼𝛽) given by
the formulas [27, 28]

𝐻(κ|𝛼𝛽) = 8𝑏(κ|𝛼𝛽)− 3𝑎2(κ|𝛼𝛽), (5.17)

𝑄(κ|𝛼𝛽) = 3𝑎4(κ|𝛼𝛽)− 16𝑎2(κ|𝛼𝛽)𝑏(κ|𝛼𝛽)+

+16𝑎(κ|𝛼𝛽)𝑐(κ|𝛼𝛽) + 16𝑏2(κ|𝛼𝛽)−

− 64𝑑(κ|𝛼𝛽) (5.18)

and determine their signs. Precisely at 𝐷(κ|𝛼𝛽) > 0,
the general theory [25–28] predicts four real roots pro-
vided 𝐻(κ|𝛼𝛽) < 0 and 𝑄(κ|𝛼𝛽) > 0 or four complex
roots provided either 𝐻(κ|𝛼𝛽) > 0 or 𝑄(κ|𝛼𝛽) < 0.

6. Typical Features
of the Low-Amplitude Dispersion Law
as a Function of the Adjustable
Coupling Parameter 𝛼𝛽

Inasmuch as the quantities 𝐷(κ|𝛼𝛽), 𝐻(κ|𝛼𝛽) and
𝑄(κ|𝛼𝛽) depend only on two parameters κ and
𝛼𝛽, it is convenient to use the plane of these pa-
rameters in order to visualize the regions, where
the signs of 𝐷(κ|𝛼𝛽), 𝐻(κ|𝛼𝛽) and 𝑄(κ|𝛼𝛽) re-
main fixed. Figure 1 shows such regions found by
the computer simulation. Each region is marked by
three vertically arranged signs (column of three
signs) so that the upper, middle, and lower signs
are related, respectively, to 𝐷(κ|𝛼𝛽), 𝐻(κ|𝛼𝛽), and
𝑄(κ|𝛼𝛽). N.B. The caudal-fin like region (although
being unlabeled due to the lack of space) is under-
stood as marked by col(+−+) signature.

At κ = 0 and κ = ±𝜋, the results presented in
Fig. 1 allow the direct analytical interpretation based
on the simplified expressions

𝐷(0|𝛼𝛽) = 16𝛼𝛽(2𝛼𝛽 − 1)2 ×

× [17(𝛼𝛽)3 + 33(𝛼𝛽)2 − 12𝛼𝛽 − 1], (6.1)

𝐻(0|𝛼𝛽) = −4[(𝛼𝛽 + 1)2 + 2(𝛼𝛽)2 + 1], (6.2)

𝑄(0|𝛼𝛽)=16[3(𝛼𝛽)4+4(𝛼𝛽)3−3(𝛼𝛽)2+6𝛼𝛽+1] (6.3)
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Fig. 1. Subdivision into the regions with fixed signs of
𝐷(κ|𝛼𝛽) (upper sign), 𝐻(κ|𝛼𝛽) (middle sign), 𝑄(κ|𝛼𝛽) (lower
sign) in the plane of the wave vector κ and the adjustable cou-
pling parameter 𝛼𝛽. The curves 𝐷(κ|𝛼𝛽) = 0 are marked by
the solid lines. The curves 𝐻(κ|𝛼𝛽) = 0 are marked by the
dot-dashed lines. The curves 𝑄(κ|𝛼𝛽) = 0 are marked by the
dotted lines
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and

𝐷(±𝜋|𝛼𝛽) = −16𝛼𝛽[(𝛼𝛽 − 1)2 + 8(𝛼𝛽)2], (6.4)

𝐻(±𝜋|𝛼𝛽) = 8(3𝛼𝛽 − 1), (6.5)

𝑄(±𝜋|𝛼𝛽) = 16[(𝛼𝛽 − 1)2 + 8(𝛼𝛽)2] (6.6)

following from the general ones (5.12)–(5.18).
Thus, at κ = 0, formula (6.1) for 𝐷(0|𝛼𝛽) ensures

that all six roots of the equation 𝐷(0|𝛼𝛽) = 0 must
be purely real. To wit, we have

(𝛼𝛽)1 ≃ −2.2441, (6.7)

(𝛼𝛽)2 ≃ −0.0703, (6.8)

(𝛼𝛽)3 = 0, (6.9)

(𝛼𝛽)4 ≃ 0.3731, (6.10)

(𝛼𝛽)5 = 0.5, (6.11)

(𝛼𝛽)6 = 0.5, (6.12)

where the roots (𝛼𝛽)3, (𝛼𝛽)5, and (𝛼𝛽)6 are self-
evident, while the roots (𝛼𝛽)1, (𝛼𝛽)2, and (𝛼𝛽)4
are obtainable from the cubic equation, whose dis-
criminant [25, 27] is proved to be positive. As for
the quantity 𝐻(0|𝛼𝛽) (formula (6.2)), it is seen to
be essentially negative. At last, the quartic equation
𝑄(0|𝛼𝛽) = 0 (see formula (6.3) for 𝑄(0|𝛼𝛽) ) must
possess two real negative roots, since its discriminant
is negative and 𝑄(0|𝛼𝛽 ≥ 0) > 0, while the parameter
𝛼𝛽 must be purely real by definition.

The consideration of formulas (6.4)–(6.6) for
𝐷(±𝜋|𝛼𝛽), 𝐻(±𝜋|𝛼𝛽), and 𝑄(±𝜋|𝛼𝛽) related to κ =
= ±𝜋 yields 𝐷(±𝜋|𝛼𝛽 > 0) < 0, 𝐷(±𝜋|𝛼𝛽 < 0) > 0,
and 𝐻(±𝜋|𝛼𝛽 > 1/3) > 0, 𝐻(±𝜋|𝛼𝛽 < 1/3) < 0,
whereas 𝑄(±𝜋|𝛼𝛽) > 0 for all real 𝛼𝛽.

Examining the analytical data contained in three
previous paragraphs, we clearly observe their one-to-
one reproductions on the lines κ = 0 and κ = ±𝜋 of
Fig. 1.

According to the commonly accepted graphical
treatment of a dispersion law [29–31], we shall be
interested in the real-valued solutions 𝜆*

𝑗 (κ|𝛼𝛽) =
= 𝜆𝑗(κ|𝛼𝛽) of the auxiliary dispersion equation
(5.11) at the real-valued wave vector κ spanning the
first Brillouin zone −𝜋 ≤ κ ≤ +𝜋. Thus, juxtaposing

the signatures of all regions pictured in Fig. 1 with
the early listed criteria on the character of roots,
we can readily conclude that the regions marked by
col(+−+) signature should produce the four-branch
auxiliary dispersion law, while the auxiliary disper-
sion law in the other regions should be the two-
branch one.

The same statement concerns also the actual dis-
persion law, i.e., the dispersion law given in terms
of cyclic eigenfrequencies Ω𝑗(κ|𝛼𝛽) = 2𝜆𝑗(κ|𝛼𝛽)×
× sin(κ/2), except for the merging point κ = 0,
where Ω𝑗(κ = 0|𝛼𝛽) ≡ 0. Here, the integer 𝑗 de-
notes the ordinal number of the eigenmode of low-
amplitude excitations and serves as the branch num-
ber in their dispersion law.

Figure 2 demonstrates the typical metamorphoses
in the actual low-amplitude dispersion law as the
adjustable coupling parameter 𝛼𝛽 grows from the
values smaller than (𝛼𝛽)1 to the values larger than
(𝛼𝛽)5 = (𝛼𝛽)6. As we have expected, the most crucial
qualitative rearrangements in the dispersion law are
seen to happen when the value of coupling parame-
ter 𝛼𝛽 passes through any root (𝛼𝛽)𝑘 of the equation
𝐷(0|𝛼𝛽) = 0 or through the value (𝛼𝛽)* ≃ 0.3557
being the ordinate for each of two symmetric casp
points on the line 𝐷(κ|𝛼𝛽) = 0 (see the caudal-fin re-
gion in Fig. 1). In this respect, the points (𝛼𝛽)𝑘 (with
𝑘 = 1, 2, 3, 4, 5, 6) and (𝛼𝛽)* can be referred to as the
critical ones. Meanwhile, when the coupling param-
eter 𝛼𝛽 varies between any two distinct neighboring
critical points, the changes in a structure of the dis-
persion law are proved to be solely quantitative rather
than qualitative in complete agreement with the cri-
teria evaluating the character of admissible roots of
the quartic auxiliary dispersion equation (5.11).

Considering the dispersion curves on each subfig-
ure of Fig. 2, we observe that some of them have
the dead-end points with respect to the wave vec-
tor κ. Nonetheless, each dead-end point is seen to be
shared by two distinct branches. As a consequence,
the combination of such joint branches can be treated
as the unique loop-like branch or the unique folding
branch. Here, we would like to point out on a cer-
tain similarity between the low-amplitude oscillations
in our semidiscrete system (4.6)–(4.9) and the beam-
plasma oscillations in hydrodynamic plasma, where
the loop-like structure of a dispersion law is known
to be rather typical [30, 31]. Regarding the linearized
version (5.5)–(5.8) of our integrable system (4.6)–

646 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 6



Linear Analysis

-2

-1

0

1

2

W
ab=-0.08

-2

-1

0

1

2ab=0.3

-2

-1

0

1

2

W
ab=0.37 ab=0.38

-2

-1

0

1

2ab=0.4

-1 0 1

-8

-4

0

4

8 ab=-2.5
W

-1 0 1

ab=-2.0

-1 0 1

-8

-4

0

4

8ab=-0.5

ab=-0.01

-1 0 1

-2

-1

0

1

2

W
ab=0.5

/p
-1 0 1

ab=1.0

/p
-1 0 1

-2

-1

0

1

2
ab=1.5

/p

Fig. 2. Real-valued normal cyclic frequencies as a function of the wave vector
at twelve distinct values of adjustable coupling parameter

(4.9), Fig. 1 prompts that the loop-like structure of a
dispersion law must inevitably emerge, once the cou-
pling parameter 𝛼𝛽 enters into one of the following
two intervals:

(𝛼𝛽)4 < 𝛼𝛽 < (𝛼𝛽)5 ≡ (𝛼𝛽)6 (6.13)

or

(𝛼𝛽)5 ≡ (𝛼𝛽)6 < 𝛼𝛽 < ∞, (6.14)

where the critical points (𝛼𝛽)𝑘 are given by formulas
(6.7)–(6.12). As for the folding branch structure of a
dispersion law, it must be prescribed to the interval

(𝛼𝛽)* < 𝛼𝛽 < (𝛼𝛽)4, (6.15)

where (𝛼𝛽)* ≃ 0.3557 as we already know. The pecu-
liarities concerning the loop-like and folding-like dis-
persion curves are clearly seen on the respective sub-
figures of Fig. 2.

From the standpoint of stability analysis, any in-
terval of wave vectors supporting four real-valued
branches of the quartic dispersion relation (5.9)
should be treated as an interval of stability, while
any interval of wave vectors supporting two real-va-
lued branches of the quartic dispersion relation (5.9)
should be considered as an interval of instability. He-
re, due to the spatial discreteness of our linearized
system (5.5)–(5.8), it seems impossible to apply the
Sturrock rules [29, 30] and to qualify each particular
instability either as convective or absolute one. For
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us, however, the mere fact of instability is more im-
portant than the strict identification of instability
type.

Fortunately, the predisposition to an instability is
not a dominant property of the considered linearized
system (5.5)–(5.8), since it can be eliminated by the
proper choice of the adjustable coupling parameter
𝛼𝛽. Precisely at

−∞ < 𝛼𝛽 < (𝛼𝛽)1 (6.16)
or at
(𝛼𝛽)2 < 𝛼𝛽 < 0, (6.17)

all four branches of low-amplitude excitations are sta-
ble for all wave vectors −𝜋 ≤ κ ≤ +𝜋, thus ensuring
the good background for the stable solutions of any
semidiscrete nonlinear system of interest (4.6)–(4.9)
or (4.18)–(4.21).

7. Conclusion

Basing on the semidiscrete zero-curvature equation,
we have found the mutually consistent spectral and
evolution operators of a new type and have obtained
the early unknown integrable nonlinear evolution sys-
tem on a quasi-one-dimensional lattice.

When choosing the fixation of a sampling func-
tion, one can come to distinct reductions of the ba-
sic semidiscrete system and, as a consequence, to
the distinct parametrizations of prototype field am-
plitudes. We have considered two possible reduced
semidiscrete integrable systems, one of which pro-
vides us with its clear physical interpretation as a
subsystem of the ladder-like nonlinear transmission
line coupled with the subsystem of nonlinear lattice
vibrations.

Each integrable nonlinear system (either reduced or
basic one) is characterized by two parameters respon-
sible for the interfield couplings of principally distinct
origins. The variation of coupling parameters should
lead to several regimes in the behavior of the sys-
tem with nontrivial dynamics. This statement finds
its natural confirmation already on the stage of low-
amplitude plane-wave excitations, whose dispersion
law turns out to be essentially dependent on the mag-
nitude and the sign of the adjustable coupling param-
eter provided other coupling parameter is fixed. Thus,
in some windows of the adjustable coupling param-
eter, we observe the clear resemblance between the
obtained loop-like dispersion curves and those typi-
cal of the beam-plasma oscillations in hydrodynamic

plasma [30, 31]. There are also windows of the ad-
justable coupling parameter, where all branches of
low-amplitude oscillations remain stable within the
whole Brillouin zone.

In contrast, in a majority of already known in-
tegrable systems [1–4, 15, 22, 24], the spectrum of
low-amplitude excitations remains fixed, inasmuch as
the governing parameter responsible for its rearrange-
ments is simply absent.

This work has been supported by the National
Academy of Sciences of Ukraine within the Program
No. 0112U000056.
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О.О.Вахненко, В.О.Вахненко

ЛIНIЙНИЙ АНАЛIЗ РОЗШИРЕНОЇ
IНТЕҐРОВНОЇ МОДЕЛI НЕЛIНIЙНОЇ
ДРАБИНЧАСТОЇ МЕРЕЖI

Р е з ю м е

Представлено нове нетривiальне iнтеґровне розширення не-
лiнiйної моделi драбинчастої електричної мережi, яке хара-
ктеризується двома параметрами зв’язку. Спираючись на

декiлька найнижчих локальних законiв збереження, подано
стислу форму загальної напiвдискретної iнтеґровної систе-
ми та знайдено двi версiї її самодостатньої редукцiї в тер-
мiнах чотирьох iстинних польових змiнних. Проведено все-
бiчний аналiз дисперсiйного рiвняння низькоамплiтудних
збуджень системи. Сформульовано критерiї, що вирiзня-
ють двогiлкову та чотиригiлкову реалiзацiї закону диспер-
сiї. Встановлено критичнi значення регульовного параме-
тра зв’язку та проiлюстровано низку якiсно вiдмiнних реа-
лiзацiй закону дисперсiї. Вказано, що петлеподiбна будова
низькоамплiтудного закону дисперсiї редукованої системи,
притаманна певним вiкнам регульовного параметра зв’язку,
вiдтворює петлеподiбну структуру типового закону диспер-
сiї струменево-плазмових коливань в гiдродинамiчнiй пла-
змi. Очiкується, що розмаїття низькоамплiтудного спектрa
запропонованої драбинчастої мережi як функцiї регульов-
ного параметра зв’язку здатне привести до ще бiльшого
розмаїття динамiчної поведiнки системи в суттєво нелiнiй-
ному режимi.
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