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A general form for the scalar-field potential distribution has been proposed for a closed “thick”
null string either collapsing or expanding in the plane 𝑧 = 0. Conditions, under which the
energy-momentum tensor components for a scalar field that contracts into a one-dimensional
object (a circle with a varying radius) asymptotically coincide with those for a closed null
string moving along the same trajectory, have been found.
K e yw o r d s: scalar-field potential, “thick” null string, energy-momentum tensor.

1. Introduction

According to modern ideas, the space strings, which
are one-dimensional regions where the energy density
is concentrated, could arise in a natural way owing
to a spontaneous symmetry violation at phase tran-
sitions in the course of the Universe evolution [1–
7]. In the framework of various Grand Unified Theo-
ry models, the strings, together with domain walls
and monopoles, are topological defects. As was shown
in work [8], the presence of such objects in the Uni-
verse does not contradict the observation of the mi-
crowave relic radiation. Again, one cannot exclude
that those objects could survive till now and, hence,
can be observed [9, 10]. Null strings realize a zero-
tension boundary in the string theory [5, 7]. In recent
years, the possibilities of null string applications in
the cosmology have been discussed. For instance, it
was demonstrated in work [11] that, by considering a
gas of null strings as a dominant source of the gravita-
tion in 𝐷-dimensional Friedman–Robertson–Walker
spaces with 𝑘 = 0, the inflation mechanism typical of
those spaces can be described. In a number of works,
the gas of relic null strings is considered as a proba-
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ble candidate for the role of a carrier of the so-called
“dark” matter, whose existence of in the Universe can
be regarded as the established fact. The research ob-
ject in the cited works is not a separate null string,
but a gas of null strings. Nevertheless, the properties
of this gas still remain unclear. In our opinion, the
problems concerning the gravitational field generated
by a null string moving along various trajectories can
be a first step to the understanding of properties of
the gas of null strings.

The components of the energy-momentum tensor
for a null string look like [11]

𝑇𝑚𝑛√−𝑔 = 𝛾

∫︁
𝑑𝜏𝑑𝜎 𝑥𝑚

,𝜏𝑥
𝑛
,𝜏𝛿

4
(︀
𝑥𝑙 − 𝑥𝑙 (𝜏, 𝜎)

)︀
, (1)

where the superscripts 𝑚, 𝑛, and 𝑙 can range from
0 to 3; the functions 𝑥𝑚 = 𝑥𝑚(𝜏, 𝜎) describe the
null-string trajectory of motion; 𝜏 and 𝜎 are the
parameters on the world surface of a null string;
𝑥𝑚
,𝜏 = 𝜕𝑥𝑚/𝜕𝜏 ; 𝑔 = |𝑔𝑚𝑛|, 𝑔𝑚𝑛 is the metric tensor

of the outer space; and 𝛾 = const. In the cylindrical
coordinate system,

𝑥0 = 𝑡, 𝑥1 = 𝜌, 𝑥2 = 𝜃, 𝑥3 = 𝑧,

the functions 𝑥𝑚(𝜏, 𝜎) for the trajectories of a closed
null string that are considered in this work are as
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follows:

𝑡 = 𝜏, 𝜌 = ∓𝜏, 𝜃 = 𝜎, 𝑧 = 0, (2)

where the sign “−” corresponds to the collapse of
the null string in the plane 𝑧 = 0 (in this case,
𝜏 ∈ (−∞, 0]), and the sign “+” to its radial expansion
in the plane 𝑧 = 0 (in this case, 𝜏 ∈ [0,+∞)).

Since all directions on the hypersurfaces 𝑧 = const
are equivalent for every trajectory (2), the metric
functions are 𝑔𝑚𝑛 = 𝑔𝑚𝑛(𝑡, 𝜌, 𝑧). Then, using the in-
variance of the quadratic form with respect to the
coordinate transformation 𝜃 → −𝜃, we obtain 𝑔02 =
= 𝑔12 = 𝑔32 = 0. The quadratic form of the space-
time should also be invariant with respect to the
transformation 𝑧 → −𝑧, so that

𝑔𝑚𝑛(𝑡, 𝜌, 𝑧) = 𝑔𝑚𝑛(𝑡, 𝜌,−𝑧) (3)

and, as a consequence, 𝑔03 = 𝑔31 = 0. At last, ta-
king advantage of a freedom in choosing the coordi-
nate systems in the general relativity theory, we make
the reference frame partially fixed by the requirement
𝑔01 = 0. Hence, the quadratic form for the problem
concerned can be expressed in the form

𝑑𝑆2 = 𝑒2𝜈(𝑑𝑡)2 −𝐴(𝑑𝜌)2 −𝐵(𝑑𝜃)2 − 𝑒2𝜇(𝑑𝑧)2, (4)

where 𝜈, 𝜇, 𝐴, and 𝐵 are some functions of the vari-
ables 𝑡, 𝜌, and 𝑧.

The components of the energy-momentum tensor
for a massless field should satisfy the equality

𝑇𝛼
𝛼 = 0. (5)

Taking Eqs. (1), (2), and (4) into account, equality
(5) reads

𝑇 0
0 + 𝑇 1

1 = 𝛾
𝑒−(𝜈+𝜇)

√
𝐴𝐵

{︀
𝑒2𝜈 −𝐴

}︀
𝛿(𝑧)𝛿(𝜂) = 0, (6)

where

𝜂 = 𝑡± 𝜌, (7)

the sign “+” corresponds to the collapse of the null
string in the plane 𝑧 = 0, and the sign “−” to its
radial expansion in this plane. From equality (6), it
follows that

𝑒2𝜈 ≡ 𝐴. (8)

By analyzing the system of Einstein equations (1),
(2), (4), and (8), we can determine the dependences
of metric functions, namely,

𝜈 = 𝜈(𝜂, 𝑧), 𝐵 = 𝐵(𝜂, 𝑧), 𝜇 = 𝜇(𝜂, 𝑧). (9)

In this case, the Einstein system itself is reduced to
the equations

𝐵,𝜂𝜂

𝐵
+ 2𝜇,𝜂𝜂 − 2𝜈,𝜂

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
−

−1

2

(︂
𝐵,𝜂

𝐵

)︂
+ 2 (𝜇,𝜂)

2
= −2𝜒𝑇00, (10)(︂

𝐵,𝑧

𝐵

)︂
,𝑧

+
1

2

(︂
𝐵,𝑧

𝐵

)︂2
+

𝐵,𝑧

𝐵
(2𝜈,𝑧 − 𝜇,𝑧) = 0, (11)

𝐵,𝜂𝑧

𝐵
+ 2𝜈,𝜂𝑧 − 𝜈,𝑧

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
−

−1

2

𝐵,𝑧

𝐵

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
= 0, (12)

2𝜈,𝑧𝑧 + 4(𝜈,𝑧)
2 + 𝜈,𝑧

(︂
𝐵,𝑧

𝐵
− 2𝜇,𝑧

)︂
= 0, (13)

(𝜈,𝑧)
2 + 𝜈,𝑧

𝐵,𝑧

𝐵
= 0, (14)

where 𝑇00 = 𝛾 𝑒2𝜈−𝜇
√
𝐵

𝛿(𝜂)𝛿(𝑧).
Let us complement the system of Einstein equa-

tions (10)–(14) with the equations of motion for the
null string. In a pseudo-Riemannian space-time, they
are determined by the following system of equations:

𝑥𝑚
,𝜏𝜏 + Γ𝑚

𝑝𝑞𝑥
𝑝
,𝜏𝑥

𝑞
,𝜏 = 0, (15)

𝑔𝑚𝑛𝑥
𝑚
,𝜏𝑥

𝑛
,𝜏 = 0, 𝑔𝑚𝑛𝑥

𝑚
,𝜏𝑥

𝑛
,𝜎 = 0, (16)

where Γ𝑚
𝑝𝑞 are the Christoffel symbols. Substituting

Eqs. (4), (8), and (9) into Eqs. (15) and (16), we
can directly demonstrate that, for the functions de-
termining the trajectories of motion (2), all equa-
tions of motion for the null string are satisfied iden-
tically, i.e. those trajectories are realized indeed, and
the gravitational field of null strings does not change
them.

With Eqs. (8) and (9), the quadratic form (4) looks
like

𝑑𝑆2 = 𝑒2𝜈
(︀
(𝑑𝑡)2 − (𝑑𝜌)2

)︀
−𝐵(𝑑𝜃)2 − 𝑒2𝜇(𝑑𝑧)2, (17)

where 𝜈 = 𝜈(𝜂, 𝑧), 𝐵 = 𝐵(𝜂, 𝑧), 𝜇 = 𝜇(𝜂, 𝑧).
As follows from the system of equations (10)–(14),

all components of the energy-momentum tensor of
the string are identically equal to zero beyond the
string, i.e. at 𝜂 ̸= 0 and 𝑧 ̸= 0, and differ from zero
(tend to infinity) immediately on the string. This en-
ables the system of Einstein equations to be studied
in two directions: (i) to confine the analysis to the
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“outer” problem, i.e. to the region, where the com-
ponents of energy-momentum tensor (the right-hand
sides of the Einstein equations) equal zero; (ii) to con-
sider the components of the energy-momentum tensor
of a string as the boundary of a certain “smeared” dis-
tribution and carry out the analysis of the Einstein
equations for this “smeared” distribution. It can be
demonstrated that the analysis of the “outer” prob-
lem gives rise to a huge number of vacuum solutions
for the Einstein equations, which satisfy the symme-
try of the problem. For instance, it is easy to verify
that the functions

𝑒2𝜈 = 𝑒2𝜇 = 1, 𝐵 = 𝑧2

or the functions

𝑒2𝜈 = |𝛽𝜂| , 𝑒2𝜇 = (𝛽(𝜂))
2
, 𝐵 = (𝛽(𝜂) · 𝑧)2 ,

where 𝛽(𝜂) is an arbitrary function, are the outer
solutions for the system of equations (10)–(14). Ho-
wever, the criteria that would allow a unique solution
describing the gravitational field of the null string to
be chosen from this set of functions remain unclear.

On the other hand, while attempting to consider
the components of the energy-momentum tensor of
the string as a limiting case of a certain “smeared”
distribution – e.g., a simple substitution of delta-
functions in the energy-momentum tensor by corre-
sponding peaked functions – there may arise errors
associated with the fact that it is not clear how a pos-
sible emergence of terms (multipliers) tending to zero
(constant) at the contraction of this “smeared” dis-
tribution into a one-dimensional object can be taken
into account. Therefore, it is a simpler task to con-
sider, from the very beginning, a “well-determined”
“smeared” distribution, e.g., a real-valued massless
scalar field (because we deal with a scalar zero object)
and, afterward, to contract it into a string with a re-
quired configuration, provided that the corresponding
components of the energy-momentum tensors of the
scalar field and the null string should asymptotically
coincide.

2. System of Einstein
Equations for a “Smeared” Problem

The components of the energy-momentum tensor for
a real-valued massless scalar field look like [2]

𝑇𝛼𝛽 = 𝜙,𝛼𝜙,𝛽 − 1

2
𝑔𝛼𝛽𝐿, (18)

where 𝐿 = 𝑔𝜔𝜆𝜙,𝜔𝜙,𝜆, 𝜙,𝛼 = 𝜕𝜙/𝜕𝑥𝛼, 𝜙 is the scalar
field potential, and the subscripts 𝛼, 𝛽, 𝜔, and 𝜆 vary
from 0 to 3. In order to ensure the self-consistency of
the Einstein equations (17) and (18), we require that

𝑇𝛼𝛽 = 𝑇𝛼𝛽 (𝜂, 𝑧) → 𝜙 = 𝜙 (𝜂, 𝑧) . (19)

Substituting Eqs. (17) and (19) into Eq. (18), we ob-
tain

𝑇00 = (𝜙,𝜂)
2 +

𝑒2(𝜈−𝜇)

2
(𝜙,𝑧)

2,

𝑇03 = ±𝑇13 = 𝜙,𝜂𝜙,𝑧,

𝑇11 = (𝜙,𝜂)
2 − 𝑒2(𝜈−𝜇)

2
(𝜙,𝑧)

2,

𝑇01 = ±(𝜙,𝜂)
2,

𝑇33 =
1

2
(𝜙,𝑧)

2,

𝑇22 = −𝐵𝑒−2𝜇

2
(𝜙,𝑧)

2,

(20)

where the sign “+” describes the collapse, and the
sign “−” the expansion of the null string.

The system of Einstein equations (17) and (20) can
be presented in the form

𝐵,𝜂𝜂

𝐵
+ 2𝜇,𝜂𝜂 − 2𝜈,𝜂

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
−

−1

2

(︂
𝐵,𝜂

𝐵

)︂2
+ 2 (𝜇,𝜂)

2
= −2𝜒(𝜙,𝜂)

2, (21)(︂
𝐵,𝑧

𝐵

)︂
,𝑧

+
1

2

(︂
𝐵,𝑧

𝐵

)︂2
+

𝐵,𝑧

𝐵
(2𝜈,𝑧 − 𝜇,𝑧) = 0, (22)

𝐵,𝜂𝑧

𝐵
+ 2𝜈,𝜂𝑧 − 𝜈,𝑧

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
−

−1

2

𝐵,𝑧

𝐵

(︂
𝐵,𝜂

𝐵
+ 2𝜇,𝜂

)︂
= −2𝜒𝜙,𝜂𝜙,𝑧, (23)

2𝜈,𝑧𝑧 + 4(𝜈,𝑧)
2 + 𝜈,𝑧

(︂
𝐵,𝑧

𝐵
− 2𝜇,𝑧

)︂
= 0, (24)

(𝜈,𝑧)
2 + 𝜈,𝑧

𝐵,𝑧

𝐵
=

𝜒

2
(𝜙,𝑧)

2. (25)

Let the scalar field distribution be initially concen-
trated in a “thin” ring, for which the variables 𝜂 (see
its definition in Eq. (7)) and 𝑧 vary in the intervals

𝜂 ∈ [−Δ𝜂,Δ𝜂] , 𝑧 ∈ [−Δ𝑧,Δ𝑧] , (26)

where Δ𝜂 and Δ𝑧 are small positive constants that
determine the ring “thickness”, i.e.

Δ𝜂 ≪ 1, Δ𝑧 ≪ 1, (27)
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Then the ring is contracted into a one-dimensional
object (a null string),

Δ𝜂 → 0, Δ𝑧 → 0. (28)

If the system of equations (21)–(25) is considered for
this process, the space, in which this “smeared” null
string is located and where the variables 𝜂 and 𝑧 vary
in the intervals 𝜂 ∈ (−∞,+∞) and 𝑧 ∈ (−∞,+∞),
can be conditionally divided into three regions: re-
gion I,

𝜂 ∈ (−∞,−Δ𝜂) ∪ (Δ𝜂,+∞) , 𝑧 ∈ (−∞,+∞) ; (29)

region II,

𝜂 ∈ [−Δ𝜂,+Δ𝜂] , 𝑧 ∈ (−∞,−Δ𝑧) ∪ (Δ𝑧,+∞) ; (30)

and region III,

𝜂 ∈ [−Δ𝜂,Δ𝜂] , 𝑧 ∈ [−Δ𝑧,Δ𝑧] . (31)

While contracting the scalar field into a string,
the system of equations (21)–(25) for the scalar field
should asymptotically coincide with the system of
equations (10)–(14) for the closed null strings. There-
fore, in regions I and II (Eqs. (29) and (30)),

𝜙 → 0, 𝜙,𝑧 → 0, 𝜙,𝜂 → 0, (32)

and, in region (31)–inside the “thin” ring–in the gen-
eral case,

𝜙𝐼,𝐼𝐼

𝜙𝐼𝐼𝐼
≤ 1,

(𝜙,𝑧)𝐼,𝐼𝐼
(𝜙,𝑧)𝐼𝐼𝐼

≤ 1,
(𝜙,𝜂)𝐼,𝐼𝐼
(𝜙,𝜂)𝐼𝐼𝐼

≤ 1, (33)

where 𝜙𝐼,𝐼𝐼 are the scalar field potentials in regions I
and II, 𝜙𝐼𝐼𝐼 is the scalar field potential in region III
(inside the “thin” ring), and the equalities take place
at the region boundaries.

Comparing the system of equations (10)–(14) for
the closed null string with the system of equations
(21)–(25), a conclusion can be drawn that, when the
scalar field is contracted into a string, i.e. at Δ𝜂 → 0
and Δ𝑧 → 0,

(𝜙,𝑧)
2
⃒⃒
𝑧→0,𝜂→0

→ 0, (𝜙,𝜂)
2
⃒⃒
𝑧→0,𝜂→0

→ ∞,

(𝜙,𝑧𝜙,𝜂)|𝑧→0,𝜂→0 → 0.
(34)

According to Eq. (32), in region I, the scalar field
potential

𝜙(𝜂0, 𝑧) → 0 (35)

at any fixed 𝜂 = 𝜂0 ∈ (−∞,−Δ𝜂) ∪ (+Δ𝜂,+∞) and
for all 𝑧 ∈ (−∞,+∞). However, if we consider the
distribution of scalar field potential at any fixed 𝜂 =
= 𝜂0 ∈ [−Δ𝜂,Δ𝜂] (regions II and III ), then, in
the case 𝑧 ∈ (−∞,−Δ𝑧) ∪ (Δ𝑧,+∞) (region II ), it
must be

𝜙(𝜂0, 𝑧) → 0, (36)

and, in the case 𝑧 ∈ [−Δ𝑧,Δ𝑧] (region III ),

𝜙(𝜂0, 𝑧)𝐼𝐼𝐼
𝜙(𝜂0, 𝑧)𝐼𝐼

> 1. (37)

3. Distribution of the Scalar Field
Potential for a “Smeared” Null String

Under conditions (35)–(37), it is convenient to express
the distribution of a scalar field potential in the form

𝜙(𝜂, 𝑧) = ln

(︂
1

𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧)

)︂
, (38)

where the functions 𝛼(𝜂) and 𝜆(𝜂) are symmetric with
respect to the inversion 𝜂 → −𝜂, i.e.

𝛼(𝜂) = 𝛼(−𝜂), 𝜆(𝜂) = 𝜆(−𝜂), (39)

the function 𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧) is confined,

0 < 𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧) ≤ 1, (40)

and the scalar field potential (38), according to
Eq. (40), can change from

𝜙 → 0, при 𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧) → 1, (41)

to

𝜙 → ∞, при 𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧) → 0. (42)

In region I, according to Eqs. (35) and (41),

𝛼(𝜂) → 1, 𝜆(𝜂) → 0. (43)

Since, according to Eq. (36), the scalar field potential
in region II tends to zero, then, for 𝜂 ∈ [−Δ𝜂,Δ𝜂]
and any fixed 𝑧 = 𝑧0 ∈ (−∞,−Δ𝑧)∪(Δ𝑧,+∞), there
must be

𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧0) → 1. (44)

In region III, for the same values 𝜂 ∈ [−Δ𝜂,Δ𝜂] and
𝑧 = 𝑧0 ∈ [−Δ𝑧,Δ𝑧],

0 < 𝛼(𝜂) + 𝜆(𝜂)𝑓(𝑧0) < 1. (45)
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From Eq. (44), it follows that, for all 𝑧 ∈
∈ (−∞,−Δ𝑧) ∪ (Δ𝑧,+∞), the function 𝑓(𝑧) tends
to a certain non-zero constant,

𝑓(𝑧)|𝑧∈(−∞,−Δ𝑧)∪(Δ𝑧,+∞) → 𝑓0 = const ̸= 0, (46)

and the functions 𝛼(𝜂) and 𝜆(𝜂) are related to each
other,

𝜆(𝜂) =
1

𝑓0
(1− 𝛼(𝜂)) . (47)

Substituting Eq. (47) into Eq. (45), we obtain that,
in region III,

0 < 𝛼(𝜂) + (1− 𝛼(𝜂))
𝑓(𝑧0)

𝑓0
< 1. (48)

Then, from equalities (42) and (48), it follows that,
at 𝜙 → ∞,

𝛼(𝜂) → 0, 𝑓(𝑧) → 0. (49)

Hence, in expression (38) for the scalar field poten-
tial, the functions 𝛼(𝜂) and 𝑓(𝑧) are bounded for all
𝑧 ∈ (−∞,+∞) and 𝜂 ∈ (−∞,+∞),

0 < 𝛼(𝜂) < 1, 0 < 𝑓(𝑧) < 𝑓0. (50)

Moreover, in region I, according to Eq. (43),

𝛼(𝜂)|𝜂∈(−∞,−Δ𝜂)∪(+Δ𝜂,+∞) → 1. (51)

At the same time, from Eq. (49) with regard for the
symmetry of the function 𝛼(𝜂) (see equality (39)), it
follows that

lim
𝜂→0

𝛼(𝜂) → 0. (52)

The distribution for the function 𝑓(𝑧) is determined
by equality (46) if 𝑧 ∈ (−∞,−Δ𝑧) ∪ (Δ𝑧,+∞) .
Whereas,

𝑓(𝑧)|𝑧→0 → 0 (53)

as 𝑧 → 0, according to Eq. (49).
Differentiating Eq. (38) and taking Eq. (47) into

account, we obtain

𝜙,𝜂 = − 𝛼,𝜂(1− 𝑓(𝑧)/𝑓0)

𝛼(𝜂) + (1− 𝛼(𝜂))𝑓(𝑧)/𝑓0
,

𝜙,𝑧 = − (1− 𝛼(𝜂))𝑓,𝑧/𝑓0
𝛼(𝜂) + (1− 𝛼(𝜂))𝑓(𝑧)/𝑓0

.

(54)

Substituting Eqs. (43), (44), and (46) into Eq. (54),
we obtain that 𝜙,𝑧 → 0 and 𝜙,𝜂 → 0 in regions I
and II, which coincides with Eq. (32). In region III,
if 𝑧 → 0, the first of equalities (54) can be expressed
in the following form in view of Eq. (53):

𝜙,𝜂 = −𝛼,𝜂/𝛼(𝜂). (55)

From whence, in accordance with Eq. (34), we have

|𝛼,𝜂/𝛼(𝜂)|𝜂→0 → ∞ (56)

as Δ𝜂 → 0 and Δ𝑧 → 0. Taking Eq. (53) into ac-
count, the second of equalities (54) can be expressed
in the following form, as 𝑧 → 0:

𝜙,𝑧 = −𝑓,𝑧/𝑓(𝑧). (57)

In accordance with Eq. (34), this yields

𝑓,𝑧/𝑓(𝑧)|𝑧→0 → 0 (58)

as Δ𝜂 → 0 and Δ𝑧 → 0.
On the other hand, considering equalities (54) in a

small vicinity of the circle (𝜂 = 0, 𝑧 = 0), i.e. in the
region where the scalar field is concentrated and for
which, according to Eqs. (52) and (53), 𝑓(𝑧)/𝑓0 ≪ 1
and 𝛼(𝜂) ≪ 1, we can write down

𝜙,𝑧𝜙,𝜂 =
(𝛼,𝜂/𝛼(𝜂))(︁
1 + 1

𝑓0

𝑓(𝑧)
𝛼(𝜂)

)︁ (𝑓,𝑧/𝑓(𝑧))(︁
1 + 𝑓0

𝛼(𝜂)
𝑓(𝑧)

)︁ . (59)

Then, according to Eq. (34), there must be(︂
𝛼,𝜂

𝛼(𝜂)

)︂(︂
𝑓,𝑧
𝑓(𝑧)

)︂⃒⃒⃒⃒
𝑧→0,𝜂→0

→ 0 (60)

as Δ𝑧 → 0 and Δ𝜂 → 0.
As an example, the functions

𝛼(𝜂) = exp

(︂
−1

𝜖+ (𝜉𝜂)2

)︂
, (61)

𝑓(𝑧) = 𝑓0 exp

(︃
−𝛾

(︃
1− exp

(︃
−1

(𝜁𝑧)
2

)︃)︃)︃
, (62)

where the constants 𝜉 and 𝜁 describe the size (the
“thickness”) of the ring, in which the scalar field is
concentrated, satisfy the found conditions with re-
spect to the variables 𝜂 and 𝑧, respectively. Namely,
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Fig. 1. Distributions of the function 𝛼(𝜂)+ (1−𝛼(𝜂))𝑓(𝑧)/𝑓0
for Eqs. (61) and (62) at 𝜖 = 0.01, 𝜉 = 𝜁 = 1, and 𝛾 = 4 in the
region 𝜂 ∈ [−10, 10] and 𝑧 ∈ [−10, 10]
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Fig. 2. The same as in Fig. 1, but for 𝜉 = 𝜁 = 4

as follows from Eqs. (61) and (62), if Δ𝜂 → 0 and
Δ𝑧 → 0, we obtain

𝜉 → ∞, 𝜁 → ∞. (63)

The positive constants 𝜖 and 𝛾 provide the fulfillment
of conditions (52), (53), (56), and (58) as Δ𝑧 → 0,
Δ𝜂 → 0, 𝑧 → 0, and 𝜂 → 0; namely, at Δ𝜂 ≪ 1 and
Δ𝑧 ≪ 1, we obtain

𝜖 ≪ 1, 𝛾 ≫ 1, (64)

and, at a further contraction into a one-dimensional
object (a null string), i.e. as Δ𝑧 → 0 and Δ𝜂 → 0, we
obtain

𝜖 → 0, 𝛾 → ∞. (65)

Substituting Eqs. (47), (61), and (62) into Eq. (38),
we obtain an expression for one of the probable po-
tential distributions for a real-valued massless scalar
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Fig. 3. Distribution of the scalar field potential given by
Eqs. (38), (61), and (62) over the variable 𝜌 (𝜌 ∈ [0, 20]) at
𝜂 = 𝑡+ 𝜌, 𝑧 = 0.01, 𝜖 = 0.01, 𝛾 = 4, 𝜉 = 𝜁 = 0.6, and the fixed
𝑡 = −15
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Fig. 4. The same as in Fig. 3, but for the fixed 𝑡 = −5

field. During the contraction into a one-dimensional
object, the components of its energy-momentum ten-
sor asymptotically coincide with those of the energy-
momentum tensor for a closed null strings that moves
along trajectories (2) and (3).

In Figs. 1 and 2, the distributions of the function
𝛼(𝜂)+(1−𝛼(𝜂))𝑓(𝑧)/𝑓0, where the functions 𝛼(𝜂) and
𝑓(𝑧) are given by Eqs. (61) and (62), which were cal-
culated for 𝜖 = 0.01 and 𝛾 = 4, and corresponding to
the constant values 𝜉 = 𝜁 = 1 (Fig. 1) and 𝜉 = 𝜁 = 4
(Fig. 2), are exhibited in the region 𝜂 ∈ [−10, 10]
and 𝑧 ∈ [−10, 10]. The figures demonstrate that, as
the constants 𝜉 and 𝜁 increase, the region where the
function concerned differs from unity (i.e. the region
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Fig. 5. The same as in Fig. 3, but at 𝜂 = 𝑡 + 𝜌 and for the
fixed 𝑡 = 5
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Fig. 6. The same as in Fig. 5, but for the fixed 𝑡 = 15
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Fig. 7. Distributions of the scalar field potential given by
Eqs. (38), (61), and (62) over the variable 𝜌 (𝜌 ∈ [0, 20]) at
𝑧 = 0.01, 𝜖 = 0.01, 𝛾 = 4, 𝜉 = 𝜁 = 0.2, and 𝑡 = −10 (𝜂 = 𝑡+ 𝜌)
and 10 (𝜂 = 𝑡− 𝜌)

where the scalar field is concentrated, and the scalar
field potential considerably differs from zero) con-
tracts, and, respectively, the thickness of the ring,
in which the scalar field is concentrated, diminishes.
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Fig. 8. The same as in Fig. 7, but at 𝜉 = 𝜁 = 0.6
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Fig. 9. Distribution of the scalar field potential given by
Eqs. (38), (61), and (62) over the variable 𝜌 (𝜌 ∈ [0, 20]) on
the surface 𝜃 = const at 𝑧 ∈ [−10, 10], 𝜖 = 0.01, 𝛾 = 4, and
the fixed 𝜉 = 𝜁 = 0.2, and for 𝑡 = −10 (𝜂 = 𝑡 + 𝜌) and 10
(𝜂 = 𝑡− 𝜌)

-20

-10

0

10

20

y

-20 -10 10 20
z

Fig. 10. The same as in Fig. 9, but for 𝜉 = 𝜁 = 0.6

In Figs. 3 and 4, the distributions of the scalar
field are shown for two fixed time values 𝑡 = −15
and −5, respectively (here, the functions 𝛼(𝜂) and
𝑓(𝑧) are given by Eqs. (61) and (62), and 𝜂 = 𝑡+ 𝜌).
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From those figures, it follows immediately that, as the
time 𝑡 increases, the radius of a “smeared” null string
decreases (the string collapses in the plane 𝑧 = 0).
The regions, in which 𝜙 → 0, are marked by the dark
color.

In Figs. 5 and 6, the distributions of the scalar field
are shown for two fixed time values 𝑡 = 5 and 15,
respectively (here, 𝜂 = 𝑡 − 𝜌 and 𝑡 ∈ [0,+∞)). One
can see that, as the time 𝑡 increases, the radius of
the “smeared” null string grows (the string radially
expands in the plane 𝑧 = 0).

In Figs. 7 and 8 (Figs. 9 and 10), the distributions
of the scalar field potential (38) are shown at fixed
values of variables 𝑡 and 𝑧 (𝑡 and 𝜃), respectively
(the functions 𝛼(𝜂) and 𝑓(𝑧) are given by Eqs. (61)
and (62)). The figures demonstrate that, as the con-
stants 𝜉 and 𝜁 increase, the region where the scalar
field potential substantially differs from zero becomes
narrower, i.e. the thickness of the ring, in which the
scalar field is concentrated, diminishes.

4. Conclusions

In this work, the systems of Einstein equations de-
scribing the distributions of a real-valued massless
scalar field concentrated in a thin ring and in a closed
null string that either collapses or contracts in the
plane 𝑧 = 0 are compared. The conditions imposed
on the scalar field potential are obtained, under which
the components of the energy-momentum tensors for
a scalar field that contracts into a one-dimensional
object (a circle with varying radius) and a closed
null string asymptotically coincide. A general form of
the potential distribution describing the motion of a
scalar field concentrated in a thin ring is proposed
in the cases where the ring either collapses or ex-
pands in the plane 𝑧 = 0. An example is given for the
scalar field potential distribution that satisfies those
conditions.
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О.П.Леляков, А.С.Карпенко, Р.-Д.О.Бабаджан

РОЗПОДIЛ ПОТЕНЦIАЛУ СКАЛЯРНОГО
ПОЛЯ ДЛЯ “РОЗМАЗАНОЇ” ЗАМКНЕНОЇ
НУЛЬ-СТРУНИ, ЯКА ПРЯМУЄ В ПЛОЩИНI 𝑧 = 0

Р е з ю м е

У роботi запропоновано загальний вигляд розподiлу потен-
цiалу скалярного поля для “розмазаної” нуль-струни, яка
колапсує в площинi 𝑧 = 0, а також для “розмазаної” нуль-
струни, яка розширюється в площинi 𝑧 = 0. Знайденi умо-
ви, за яких компоненти тензора енергiї-iмпульсу скалярно-
го поля, при стисканнi поля в одновимiрний об’єкт (коло
змiнного радiуса) асимптотично збiгаються з компонентами
тензора енергiї-iмпульсу замкненої нуль-струни, що прямує
за тiєю самою траєкторiєю.
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