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A MODEL FOR 𝑑𝑥2−𝑦2 SUPERCONDUCTIVITY
IN THE STRONGLY CORRELATED FERMIONIC SYSTEMPACS 74.20.Mn, 74.25.Ha

Based on the known phenomenology of high-𝑇𝑐 cuprates and the available numerical calcula-
tions of the 𝑡−𝐽 model, a two-dimensional effective fermionic model with the nearest neighbor
attraction is proposed. Numerical calculations suggest that the model has the 𝑑𝑥2−𝑦2 super-
conductivity (SC) in the ground state at a low fermionic density. We argue that this model
captures the important physics of the 𝑑𝑥2−𝑦2 superconducting correlations found earlier in the
𝑡 − 𝐽 model by the exact diagonalization approach. Within a self-consistent RPA diagram-
matic study, the density and the coupling strength dependence of the critical temperature is
calculated. We also investigate the influence of the impurities on our results and show that the
suppression of the superconductivity is insignificant, when the retardation effects are accounted
for as opposed to the Hartree–Fock approximation.
K e yw o r d s: superconductivity, strongly correlated fermionic system, 𝑡−𝐽 model, mean-field
approximation.

The Hubbard model with an attractive on-site inter-
action has played an important role in the qualitative
understanding of 𝑠-wave superconductors. Several in-
teresting problems, like the crossover from the BCS
regime to the region where Cooper pairs form a
Bose condensate (BC) [1], can be addressed within
this model, by using analytical and numerical tech-
niques [2]. The more realistic microscopically deriv-
able electron-phonon Hamiltonian is the underlying
model for the attractive Hubbard one. Although the
phononic degrees of freedom are not explicit, it is ex-
pected that the qualitative properties of the attrac-
tive Hubbard model are the same as those of the
electron-phonon one, while the latter is much more
difficult to study numerically or analytically.

However, since it has been conclusively established
that the high critical temperature (high-𝑇𝑐) super-
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conductors have a condensate with pairs formed in
the 𝑑𝑥2−𝑦2 channel [3, 4], the direct relevance of the
on-site attractive Hubbard model for cuprates is ques-
tionable. In addition, the studies of 𝐻𝑐2 in cuprates
suggest that the Cooper pairs are only several lattice
spacings in size, locating the high-𝑇𝑐 materials in an
intermediate region between the BCS and the BC lim-
its [4]. In this regime, the BCS mean-field (MF) ap-
proximation is not quantitatively accurate [5]. Thus,
it would be desirable to have a fermionic model with
a 𝑑𝑥2−𝑦2 superconducting ground state that can be
studied with reliable non-perturbative diagrammatic
and computational techniques in the small coherence
length region. Results obtained in this framework
could be directly compared with the cuprate phe-
nomenology. The ideas presented in this research can
be applied to the recently discovered iron-pnictide su-
perconductors, which also exhibit the unconventional
behavior having the pairing symmetry in the nodal
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Fig. 1. Mean-field phase diagram of the 𝑡 − 𝑈 − 𝑉 model at
half-filling [5]. DS, SS, PS, CDW, and SDW denote 𝑑-wave SC,
𝑠-wave SC, phase separation, charge-density-wave, and spin-
density-wave order, respectively

𝑑𝑥𝑦-wave channel, and their phase diagram has re-
gions, where the superconducting state emerges in the
existing antiferromagnetic environment [6].

How can one consruct a minimal model that can
provide the generalization of the attractive Hubbard
model to the case of 𝑑𝑥2−𝑦2 superconductivity? The
current literature shows that many studies of 𝑑-wave
superconductors are performed, by using the BCS
MF approximation after introducing a proper attrac-
tive kernel in the gap equation to induce 𝑑-wave cor-
relations. This approach is accurate in a weak cou-
pling, where pairs are large, but it does not address
the regime of small pairs which is more realistic for
cuprates. To improve these results, it is natural to
consider, as a first candidate for a model with 𝑑-wave
SC, the so-called 𝑡−𝑈 − 𝑉 model [7], where 𝑈 is re-
pulsive on-site, 𝑉 is the strength of a density-density
attraction at a distance of one lattice spacing 𝑎, and 𝑡
is the amplitude of a nearest-neighbor (n.n.) hopping
term. In the MF approximation [7], the phase dia-
gram of the 𝑡−𝑈−𝑉 model at the half-filling (Fig. 1)
has, indeed, an “island” of 𝑑-wave SC. However, it
is worth to note the small size of this phase caused
by the competition with the phase separation (PS),
where electrons doubly occupy a macroscopic region
of the cluster to minimize the energy. A recent study
[8] has shown that the effect of PS cannot be simply
avoided by introducing a long-range Coulomb repul-
sion, since PS may be replaced in this situation by
a charge-density-wave (CDW) state, rather than by
SC. Thus, the competition SC-PS is subtle and not
created by the absence of long-range interactions [9].

The techniques beyond the MF approximation fur-
ther show that the 𝑡 − 𝑈 − 𝑉 model is of very
limited use for the study of 𝑑-wave superconduc-
tors. Analyzing the results obtained with the use of
the Quantum Monte Carlo (QMC) and Exact Diag-
onalization (ED) techniques [10] at small 𝑈/𝑡, where
the MF approximation predicts a 𝑑-wave condensate,
it becomes clear that the competition with PS oc-
curs. This phase can be observed numerically with
QMC simulations, since it was found in some regions
of the parameter space that the mean particle den-
sity converges to two very different results depending
on the randomly chosen initial Hubbard–Stratonovich
fields. Such a behavior is typical of systems with two
competing minima in the free energy, as it happens
in the presence of PS.

Thus, it would be desirable to have a model free
from the problems described above, where carriers at
a 𝑠𝑚𝑎𝑙𝑙 density form pairs, mimicking the expected
hole-pairing of cuprates. The 𝑡 − 𝑈 − 𝑉 model at
a low electronic density has 𝑠-wave SC rather than
𝑑-wave SC [7], by complicating matters further. An
inescapable conclusion of this analysis is that it is
necessary to go beyond the 𝑡 − 𝑈 − 𝑉 model for a
proper study of effective fermionic models for 𝑑-wave
SC [11]. It is remarkable that, in spite of the recent
huge effort devoted to the study of 𝑑-wave SC in
cuprates, the analog of the attractive Hubbard model
for 𝑑𝑥2−𝑦2 pairs still seems unknown.

The main purpose of this paper is to discuss a
fermionic model for 𝑑𝑥2−𝑦2 SC, which solves the prob-
lems found in the 𝑡−𝑈 − 𝑉 Hamiltonian. This topic
embraces a huge effort by the condensed matter com-
munity and introduces a set of potential candidates
[12]. Before the construction of such a phenomeno-
logical model, we start with identifying a higher level
underlying model, which would be microscopically
derivable, on the one hand, and, on the other hand,
would have numerical results suggesting strong pair-
ing correlations in the 𝑑-wave channel in the ground
state. In the case of the attractive Hubbard model
with the 𝑠-wave superconductivity, such higher-level
model is the electron-phonon Hamiltonian. For the 𝑑-
wave superconductivity, the best candidate for such
starting point is, in our view, the 𝑡− 𝐽 model in the
regime of low doping. Indeed, in the elaborate and
sophisticated ab initio numerical study [13], the pa-
rameters of the 𝑡− 𝐽 model were mapped to the mi-
croscopic parameters of the multiband 𝑝 − 𝑑 model,
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which, in turn, is in direct relation to the microscopic
chemical and crystal structure of cuprates. An inde-
pendent significant numerical effort was devoted to
studying the possible orders in the 𝑡 − 𝐽 model. As
a result, the clear indications of 𝑑-wave pairing cor-
relations were found in the region of parameters rel-
evant to cuprates [14]. However, the 𝑡 − 𝐽 model it-
self is hard to be studied analytically or numerically,
especially in the regime of low doping, which is, in
fact, the most relevant to the physics of cuprates
[10]. Thus, in order to better access this region with
a wider variety of the techniques, in particular self-
consistent diagrammatics, we attempt to go one level
of simplification further and to construct a minimal
phenomenological model specifically for the 𝑑-wave
superconductivity with the parameters based on the
accessible numerical results for the 𝑡− 𝐽 model.

Analyzing the model studied here with computa-
tional techniques shows that it presents strong pairing
correlations in the 𝑑-wave channel (and PS does not
cause serious problems) [14]. The Hamiltonian con-
tains an attractive n.n. density-density interaction at
the distance 𝑎, as in the 𝑡− 𝑈 − 𝑉 model, but it dif-
fers from it in the fermionic dispersion, which is dom-
inated in the new model by hopping within the 𝑠𝑎𝑚𝑒
sublattice, i.e. linking next-nearest-neighbor (n.n.n.)
sites (see Fig. 2, a). This model was discussed before
in the context of the “Antiferromagnetic van Hove”
(AFVH) scenario for the cuprates, where the high 𝑇𝑐

is induced by a large peak in the hole density of states
(DOS) caused by antiferromagnetism [15]. The intra-
sublattice dispersion is natural if the holes move in
a nearly antiferromagnetic background that is ener-
getically costly to be disturbed. The attractive inter-
action has its origin in AF correlations. In [15], the
model was studied only within the MF approxima-
tion. But here, we substantially improve the analysis
using a computational self-consistent diagrammatic
technique. The Hamiltonian of the proposed model
as a candidate for 𝑑-wave SC is

𝐻 =
∑︁
k𝛼

𝜖AF(k)
[︁
𝑐†k𝛼𝑐k𝛼 + h.c.

]︁
− |𝑉 |

∑︁
⟨ij⟩

𝑛i𝑛j, (1)

where 𝛼 = 𝐴,𝐵 indicates the sublattice; 𝜖AF(k) =
= 4𝑡11 cos 𝑘𝑥 cos 𝑘𝑦 + 2𝑡20(cos 2𝑘𝑥 + cos 2𝑘𝑦) is the
dispersion; 𝑡11, 𝑡20, and 𝑉 are parameters; and 𝑛i

is the number operator, with the rest of the nota-
tion to be standard. The operators 𝑐 satisfy anticom-
mutation relations. They do not have a spin index,

(d) 

(C) (a) 

Fig. 2. (a) Schematic representation of model (1). Fermions
move within the same sublattice, and interact at distance one;
(b) the quasiparticle energy vs the momentum obtained at the
half-filling with the use of the 𝑡− 𝑡′ − 𝐽 model [16]. The result
shown is a good fit of Monte Carlo data on a 12 × 12 clus-
ter at 𝐽/𝑡 = 0.4; (c)Spectral weight 𝐴(p, 𝜔) for one hole in
an antiferromagnet calculated using the rainbow approxima-
tion. The first excited state is the “string state” and is located
at 𝜔 ∼ −0.6 eV; (d) 𝑉 (𝑥) along the 𝑥-axis after the Fourier
transformation of the smeared potential 𝑉 (p) = 𝛿(p−Q) (see
the text); 𝜉AF is given in lattice units

but carry a sublattice index which plays a similar
role. Particles are distributed such that a half of them
are in each sublattice. Intuitively, the particles de-
scribed by Eq. (1) represent “holes” in the cuprates.

The origin of the hole dispersion in Eq.(1) (see
Fig. 2, b) is the analytical fit to the numerically cal-
culated positions of the quasiparticle maxima of the
spectral function for different momenta within the
framework of the 𝑡−𝑡′−𝐽 model (𝑡′ was added to the
model to better fit the experimental results). Fig. 2, c
demonstrates the spectral weight 𝐴(p, 𝜔) for one
hole in an antiferromagnet calculated with the use of
the rainbow approximation. Different numerical tech-
niques produce very similar results [16], and all are
in excellent agreement with the generalized tight-
binding study and with the photoemission results for
Sr2CuO2Cl2 [13, 17]. This emphasizes a deep relation
between the simple model under consideration, on the
one hand, and the 𝑡−𝐽 and the microscopic structure
of the cuprates, on the other hand. To ensure that the
one-particle dispersion is robust against an increase
in the hole concentration, the further numerical study
was undertaken, which showed that the quasiparti-
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Fig. 3. Two fermions in the large |𝑉 | limit of Eq. (1) showing
the 𝑑𝑥2−𝑦2 -wave character of the bound state (a); two fermions
in the large |𝑉 | limit of the 𝑡−𝑈−𝑉 model (b). The bound state
is the 𝑠-wave; (c) 𝑑𝑥2−𝑦2 pairing correlations vs the distance
𝑟 for Eq. (1) at 𝑇 = 0 studied with the exact diagonalization
techniques on a 32-site cluster. The couplings are |𝑉 |/𝑡11 =

= 1.0, 𝑡20/𝑡11 = 0.4, and 𝑥 is indicated. Correlations in the 𝑠−
and 𝑝-channels are negligible [14]

cle peak still carries a spectral weight up to the hole
concentrations of about 25% [18]. Note that the nu-
merically obtained dispersion in Fig. 2, b reflects the
remarkable feature of the hole-doped cuprates near
the optimal doping, namely the presence of a univer-
sal flat band dispersion near (𝜋, 0) [4] that cannot be
explained using band structure calculations.

For the NN attraction between these quasiparti-
cles, induced by a local AF phase fluctuation, it
may seem questionable whether one can use the same
interaction both at and away from the half-filling.
However, the hole-hole potential is not much af-
fected at distances shorter than 𝜉AF. This can be il-
lustrated by a real space analysis (Fig. 2, d) of a
smeared 𝛿-function potential of the AF origin 𝑉 (q) =
= 𝜉AF/

[︀
1 + 𝜉2AF(q−Q)2

]︀
, where the lattice spacing

is set to 1, and Q = (𝜋, 𝜋). Figure 2, d shows that
the NN potential (𝑥 = 1) does not change noticeably,
as 𝜉AF is reduced, while 𝑉 (𝑥 > 1) is rapidly sup-
pressed. This simple analysis agrees surprisingly well
with more sophisticated studies of the real space po-
tentials in such systems (see, e.g., [19,20]) Then, using
the same NN form of the potential for many densities
should not be a bad approximation. Note that the lo-

cal character of the real-space potential does not im-
ply small Cooper pairs. Their size can be regulated,
by using both its range and intensity, even though
small cluster calculations often underestimated the
𝑑-wave pair size [21].

What is the origin of the 𝑑-wave symmetry in the
ground state of the two-body problem? Let us con-
sider the large |𝑉 | limit and analyze the movement
of one particle around another one as schematically
shown in Fig. 3, a. In this regime, the energy is min-
imized, when the interparticle distance is one lattice
spacing at all times. Keeping particle B fixed at a
given site, the problem now amounts to solving an
effective four-site hopping Hamiltonian of particle A
moving along the four n.n. sites to B using the hoping
amplitude 𝑡11 along the diagonal. Here, it is impor-
tant to observe that the sign of 𝑡11 is chosen as a
positive number by the requirement that the mini-
mum in the dispersion be at p = (𝜋/2, 𝜋/2) or (0, 𝜋),
as it is natural in problems of holes in antiferromag-
nets [15]. The signs of 𝑡11 and 𝑡20 are physically rel-
evant, unlike the sign of a n.n. hopping that can be
changed by suitable transformations on a square lat-
tice. Then, the ground state of the effective four-site
problem corresponds to selecting a phase alternat-
ing in sign for particle A (Fig. 3, a). This leads to a
𝑑𝑥2−𝑦2 bound state, providing a real-space intuitive
explanation for the appearance of 𝑑-wave pairs, which
complements those based on the perturbative inter-
change of magnons [3]. We remark that this simple
result found in Eq.(1) is not present in the 𝑡−𝑈 − 𝑉
model. If the n.n.n. hopping (Fig. 3, a) is replaced by
the n.n. hopping of the 𝑡 − 𝑈 − 𝑉 model, then the
ground-state phases of particle A orbiting around 𝐵
at large |𝑉 | are as those shown in Fig. 3, b. They cor-
respond to the 𝑠-wave bound state.

The presence of 𝑑𝑥2−𝑦2 bound states in the two-
body problem of Eq. (1) suggests SC in the same
channel at a finite particle density. However, CDW
and PS states are also favored by a particle-particle
attraction. Thus, an explicit calculation is needed to
verify the existence of a SC condensate. In the earlier
numerical study of the ground-state pairing correla-
tions 𝐶𝑑(r) on a

√
32×

√
32 site cluster with the use

of exact diagonalization techniques, it was found that
𝑑-wave strong pairing correlations exist in the ground
state of Hamiltonian (1) supplemented by mild higher
order repulsion, unlike the results obtained before for
the 𝑡− 𝑈 − 𝑉 model [14].
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Hamiltonian (1) can also be studied diagrammat-
ically, by using Eliashberg-type equations [22]. With
this approach, we have calculated 𝑇𝑐 vs 𝑥 in the in-
termediate to strong coupling region. Working in the
Matsubara space and in natural units, we approxi-
mate the normal state proper self-energy, by itera-
tively solving the equation

Σ(k, 𝜔𝑛) = − 𝑇

𝑁

∑︁
q,𝜔′

𝑛

𝑉eff(k−q, 𝜔𝑛−𝜔′
𝑛)𝐺(q, 𝜔′

𝑛), (2)

where 𝑁 is the number of sites (we used a 32× 32
cluster for this calculation), 𝑇 the temperature,
𝜔𝑛 = (2𝑛+ 1)𝜋𝑇 (−∞ < 𝑛 < +∞), the full nor-
mal state one-particle Green’s function satisfies
𝐺(k, 𝜔𝑛) = 1/ [𝑖𝜔𝑛 − (𝜖AF(k)− 𝜇)− Σ(k, 𝜔𝑛)], and
𝑉eff(k, 𝜔𝑛) is the RPA effective potential with par-
ticle-hole bubbles containing 𝐺, rather than the non-
interacting Green’s function, to make the calcula-
tion self-consistent. Once the normal state 𝐺 is found,
we use

Φ(k, 𝜔𝑛) =
∑︁
q,𝜔′

𝑛

𝑀(k,q, 𝜔𝑛, 𝜔
′
𝑛)Φ(q, 𝜔

′
𝑛) (3)

for the SC state. Here, Φ(k, 𝜔𝑛) is the anomalous self-
energy, which can be considered as an order parame-
ter for SC, and 𝑀(k,q, 𝜔𝑛, 𝜔

′
𝑛) = − 𝑇

𝑁 𝑉eff(k− q, 𝜔𝑛−
−𝜔′

𝑛) 𝐺(q, 𝜔′
𝑛)𝐺(−q,−𝜔′

𝑛). We have solved Eqs. (2)
and (3) self-consistently at different temperatures and
densities, using ten times the bandwidth as an en-
ergy cutoff. The symmetry of the SC condensate is
determined from the symmetry of the eigenvector
of Eq. (3) corresponding to the largest eigenvalue
[22]. After all ring diagrams are summed up [23], this
symmetry is 𝑑𝑥2−𝑦2 .

The results for 𝑇𝑐 are shown in Figs. 3 a, b compa-
red to the MF approximation [15], which is equiva-
lent in this model to the Hartree–Fock (HF) approx-
imation. The qualitative agreement is good. Quan-
titatively, the self-consistent approach reduces 𝑇𝑐 at
the optimal doping by a factor ∼1.5 still maintain-
ing 𝑇𝑐 at a high value (note that, at small concen-
trations, 𝑇𝑐 tends to zero, but the small 𝑥 region
on the phase diagram of the cuprates is dominated
by the AF order, and the superconductivity is sup-
pressed). No drastic further reductions of 𝑇𝑐 are ex-
pected by adding diagrams beyond RPA to the cal-
culation. The reason is that, in this model, the ver-
tex correction identically vanishes due to intrinsic fea-
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Fig. 4. (a) Critical temperature 𝑇𝑐 of model (1) vs the fer-
mionic density 𝑥, using 𝑡11 = 0.165 eV, 𝑡20 = 0.0435 eV, and
𝑉 = −0.075 eV, as suggested by the high-𝑇𝑐 phenomenol-
ogy [9]. The solid line corresponds to the self-consistent RPA
approximation. The dashed line is the MF or HF result [9];
(b) 𝑇𝑐 vs the coupling constant 𝑉 , with 𝑡11, 𝑡20 fixed as in (a),
at the density where 𝑇𝑐 is maximum in (a). 𝑉 is in units of
𝑉AFVH = −0.075 eV, the coupling used in [9]

tures of Hamiltonian (1) namely such that the parti-
cles move within the same sublattice, while the inter-
action is an intersublattice one. To understand this
effect, we consider the real-space representation of
the vertex correction contribution to the self-energy,
which is given by Σvertex(r, 𝜏) ∝

∑︀
e1,e2=x̂,ŷ 𝐺(r+

+ e1, 𝜏)𝐺(r+e1+e2,−𝜏)𝐺(r+e2, 𝜏). It is clear that
there is always Green’s function that vanishes, irre-
spective of whether r connects the same or differ-
ent sublattices. Finally, we note that the values of
𝑇𝑐 shown in Fig. 4, a are realistic, and the presence
of an “optimal” density is a consequence of the peak
in the DOS of 𝜖𝐴𝐹 (k) [15].

Next, we will include the influence of the impurities
in our study to address the small disorder influence on
the properties of the 𝑑-wave condensate. This prob-
lem is long standing in the area of the correlated sys-
tem, in general, and in the physics of the cuprates,
in particular (see [24] and references therein). Our
present study is concentrated on the influence of im-
purities on the critical temperature and the overall
stability of the 𝑑-wave condensate at the introduc-
tion of a small disorder. We will treat impurities in
the Born approximation and, in addition, consider
them to be dilute and uncorrelated [25]. In this case,
the scattering is elastic. Within this approximation,
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Fig. 5. (a) impurity vertex; (b) combination of impurity scat-
tering and two-body potential processes (see the text)

one accounts, partially or fully, only for the set of dia-
grams depicted in Fig. 5, a as contributing to the irre-
ducible self-energy. These diagrams are proportional
to the impurity concentration 𝑛𝑖, while the others are
of a higher order in 𝑛𝑖 and, therefore, discarded (e.g.,
like those containing the potential lines that cross)
[25]. This approximation is exact in the first order of
the impurity concentration in the meaning that the
positions of impurities are averaged. In the case of
dense impurities, it is not correct, because the sys-
tem is no longer uniform.

The diagrams, that are kept, represent an infinite
set of the multiple Born scattering processes on the
same impurity starting with the single scattering pro-
cess. Figure 5, a shows the integral equation for the
irreducible impurity vertex Γimp(p,p

′, 𝜔𝑛) after the
summation of the infinite series:

Γimp(p,p
′, 𝜔𝑛) = 𝑉imp(p− p′)+

+
1

𝑁

∑︁
p1

𝑉imp(p− p1)𝐺(p1, 𝜔𝑛)Γimp(p1,p
′, 𝜔𝑛),

where 𝑉imp(q) is the Fourier transform of the bare
impurity potential, i.e. 𝑉imp(q) =

∑︀
x exp (−𝑖x · q)×

×𝑉imp(x) corresponding to the dashed line. Fermio-
nic lines are not straight on the figure to indicate
that the momentum changes its direction (but not the

absolute value) after each scattering. In vacuum, the
impurity vertex is proportional to the full scattering
amplitude 𝑓(p,p′) for a free particle of mass 𝑚 and
kinetic energy 𝑝2

2𝑚 scattered on a potential 𝑉imp(q):
Γimp(p,p

′, 𝜔𝑛) = − 2𝜋~2

𝑚 𝑓(p,p′). The proper self-
energy addition due to the impurity scattering is

Σimp(p, 𝜔𝑛) = 𝑛𝑖Γ(p,p, 𝜔𝑛),

where 𝑛𝑖 is the concentration of impurities, and
should be added to the two-body proper self-energy.
This sum of two terms is to be substituted in the
Dyson equation:

𝐺(k, 𝜔𝑛) = 𝐺0(k, 𝜔𝑛)+

+𝐺0(k, 𝜔𝑛)[Σ(k, 𝜔𝑛) + Σimp(k, 𝜔𝑛)]𝐺(k, 𝜔𝑛).

To give a clear idea of diagrams included and ex-
cluded, the two typical diagrams are presented in
Fig. 5, b. The first one is implicitly kept (note that the
inner fermionic lines are thin): it is not compact, since
the inner line is loaded with the impurity self-energy
and, hence, does not explicitly contribute to the ir-
reducible self-energy (if the lines were thick, it would
lead to the double counting). But it will appear in the
expansion when the thick line is substituted with the
thin one and the self-energy. The second diagram is
compact and excluded. It would contribute explicitly
to the irreducible self-energy if it were included. Now,
we consider the impurity potential, which is assumed
local and spin-independent. Its Fourier transform is
a momentum-independent constant 𝑈imp. Then, di-
rectly applying the rules above, one can obtain the
contribution from the 𝑚-fold scattering process to the
proper self-energy, namely:

Σimp(𝜔𝑛) =
𝑛𝑖

𝑁𝑚−1
×

×
∑︁

p1...p𝑚−1

𝑈imp𝐺(p1, 𝜔𝑛)𝑈imp ... 𝐺(p𝑚−1, 𝜔𝑛)𝑈imp =

=
𝑛𝑖

𝑁𝑚−1
𝑈𝑚
imp

[︃∑︁
k

𝐺(k, 𝜔𝑛)

]︃𝑚−1

.

The first-order Born scattering (𝑚 = 1) is just the
zero momentum Fourier component of the impurity
potential times the impurity concentration 𝑛𝑖𝑈imp,
which is just a constant to be absorbed by the chem-
ical potential later on (as it happens to the tadpole
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Fig. 6. Influence of dilute impurities on 𝑇𝑐: solid line is the
result of pure RPA calculations, dot-dashed line is obtained in
the “dirty” RPA; dashed line is the pure HF approximation,
dotted line is the “dirty” HF case. Strong coupling calculation
is much less affected by the impurities than the HF approxi-
mation

diagrams [26]). Thus, the minimal nontrivial account
for the impurities is contained in the second-order
Born term 𝑛𝑖𝑁

𝑈

2

imp

∑︀
k 𝐺(k, 𝜔𝑛)(𝑚 = 2), which is

considered in the literature as the “weak scatterer
limit”. Then one can calculate directly the unitary
(or the strong scatterer) limit, when all the proper
diagrams are summed up. The irreducible self-energy
due to the multiple Born scattering to all orders is
the infinitely descendant geometric series sum:

Σimp(𝜔𝑛)) =
𝑛𝑖

𝑈2
imp

𝑁

∑︀
k 𝐺(k, 𝜔𝑛)

1− 𝑈imp

𝑁

∑︀
k 𝐺(k, 𝜔𝑛)

.

Note that the impurity vertex is momentum-
independent in this case:

Γimp(p,p
′, 𝜔𝑛) =

𝑈imp

1− 𝑈imp

𝑁

∑︀
k 𝐺(k, 𝜔𝑛)

.

Figure 6 presents the influence of the multiple
isotropic impurity scattering (unitary limit) on 𝑇𝑐:
the result for a system with 10% impurities of the
strength 𝑈 = 0.25 eV is depicted to compare with
that for the clean system. The dependence 𝑇𝑐(𝑉 ) is
affected rather modestly (less than a 10%-drop in the
RPA case) for such severe amount of “dirt”. One can
see that, for 10% of impurity, the system is still a high
temperature superconductor.

Summarizing, we have studied a model for fermions
moving on a 2D square lattice with the intrasublattice
hopping and attractive n.n. density-density interac-
tions. Using numerical and analytical techniques, we
conclude that, in this model, (i) the two-body prob-
lem leads to a 𝑑𝑥2−𝑦2 -wave bound state in a nat-
ural way, and (ii) in the dilute limit, the ground
state has strong 𝑑𝑥2−𝑦2 pairing correlations. We have
also provided the evidence of that the 𝑡 − 𝑈 − 𝑉
model actually does not show a clear signal of 𝑑-
wave SC in computational studies, and the compe-
tition with PS prevents the analysis of its interme-
diate coupling regime. Thus, we conclude that the
new model discussed here is a natural generalization
to 𝑑𝑥2−𝑦2 superconductivity of the attractive Hub-
bard model. The new model is based on the phe-
nomenology of the high-𝑇𝑐 cuprates, which is dom-
inated near the half-filling by antiferromagnetic fluc-
tuations. Phenomenological studies of the influence
of impurities, external fields, and other probes on the
𝑑𝑥2−𝑦2 superconductivity would become more accu-
rate if model (1) replaces the 𝑡− 𝑈 − 𝑉 model.

The authors are sincerely grateful to Prof. Yurii
Gorobets, and Prof. Ernst Pashitskii for the fruitful
discussions, comments, and continuous support of the
research.

The work was sponsored by the Institute of Magne-
tism of the National Academy of Sciences of Ukrai-
ne and the National Technical University of Ukraine
“KPI” of the Ministry of Education and Science of
Ukraine.

1. A.J. Leggett, in Modern Trends in the Theory of Con-
densed Matter, edited by A. Pekalski and R. Przystawa,
(Springer, Berlin, 1980).

2. R.T. Scalettar et al., Phys. Rev. Lett. 62, 1407 (1989);
A. Moreo and D. Scalapino, Phys. Rev. Lett. 66, 946 1991);
M. Randeria, N. Trivedi, A. Moreo, and R.T. Scalettar,
Phys. Rev. Lett. 69, 2001 (1992).

3. D.J. Scalapino, Phys. Rep. 250, 331 (1995).
4. N.M. Plakida, High-Temperature Superconductivity: Ex-

periment and Theory (Springer, Berlin, 1995).
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МОДЕЛЬ ДЛЯ 𝑑𝑥2−𝑦2 НАДПРОВIДНОСТI
В СИЛЬНОКОРЕЛЬОВАНIЙ ФЕРМIОННIЙ СИСТЕМI

Р е з ю м е

Пропонується двовимiрна ефективна фермiоннa модель з
притяганням до найближчих сусiдiв, що ґрунтується на вi-
домiй феноменологiї ВТНП i iснуючих чисельних розра-
хунках у моделi 𝑡− 𝐽 . Чисельнi розрахунки показують, що
модель має 𝑑𝑥2−𝑦2 ) надпровiднiсть в основному станi при
низьких фермiонних концентрацiях. Ми стверджуємо, що
ця модель вiдображає важливу фiзику 𝑑𝑥2−𝑦2 надпровiд-
них кореляцiй, знайдених ранiше в 𝑡 − 𝐽 моделi в пiдходi
точної дiагоналiзацiї. У рамках самоузгодженого наближе-
ння хаотичних фаз обчислено залежностi критичної темпе-
ратури вiд концентрацiї i константи зв’язку. Дослiджується
також вплив домiшок на нашi результати i показано, що
при облiку ефектiв запiзнювання зниження надпровiдностi
незначне, на вiдмiну вiд наближення Хартрi–Фока.
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